catia DMU官方经典教程二
- 格式:doc
- 大小:10.71 MB
- 文档页数:25
第五章DMU 机构运动分析1 第五章CATIA V5 DMU 机构运动分析目录1产品介绍 (4)2图标功能介绍(基本概念、基本界面介绍) (4)2.1DMU运动仿真(DMU Simulation)工具条 (4)2.2DMU运动副创建工具条(Kinematics Joints) (4)2.3DMU Generic Animation (5)2.4机构刷新(DMU Kinematics Update) (6)2.5干涉检查模式工具条(Clash Mode) (6)2.6DMU 空间分析(DMU Space Analysis) (6)3功能详细介绍 (7)3.1DMU运动仿真(DMU Simulation)工具条 (7)3.1.1用命令驱动仿真(Simulating with Commands) (7)3.1.2用规则驱动仿真(Simulating With Laws) (9)3.1.3仿真感应器(Sensors) (10)3.1.4机构修饰(Mechanism Dressup) (12)3.1.5创建固定副(Fixed Part) (12)3.1.6装配约束转换(Assembly Constraints Conver) (13)3.1.7测量速度和加速度(Speeds and Accelerations) (15)3.1.8机构分析(Mechanism Analysis) (17)3.2DMU运动副创建工具条(Kinematics Joints) (19)3.2.1创建转动副(Creating Revolute Joints)点击 (19)3.2.2创建滑动副(Creating Prismatic Joints) (20)3.2.3同轴副(Creating Cylindrical Joints) (21)3.2.4创建球铰连接(Creating Spherical Joints) (22)3.2.5创建平动副(Creating Planar Joints) (23)3.2.6创建刚性副(Rigid Joints) (24)3.2.7点-线副(Point Curve Joints) (24)3.2.8曲线滑动副(Slide Curve Joints) (25)3.2.9点-面副(Point Surface Joints) (26)3.2.10万向节(Universal Joints) (26)3.2.11C V连接(CV Joints) (27)3.2.12创建齿轮副(Gear Joints) (28)2 第五章CATIA V5 DMU 机构运动分析3.2.13滑动-转动复合运动副(Rack Joints) (30)3.2.14滑动-滑动复合运动副(Cable Joints) (32)3.2.15用坐标系法建立运动副(Creating Joints Using Axis Systems) (32)3.3DMU Generic Animation工具条 (34)3.3.1创建运动仿真记录(Simulation) (34)3.3.2生成重放文件(Generate Replay) (36)3.3.3重放(Replay) (37)3.3.4仿真播放器(Simulation Player) (37)3.3.5编辑序列(Edit Sequence) (37)3.3.6包络体(Swept Volume) (37)3.3.7生成轨迹线(Trace) (37)3.4机构刷新(DMU Kinematics Update) (38)3.4.1机构位置刷新(Update) (38)3.4.2输入子机构(Import Sub-Mechanisms) (38)3.4.3重设位置(Reset Positions ) (39)3.5干涉检查模式工具条(Clash Mode) (40)3.5.1关闭干涉检查(Clash Detection(Off) (40)3.5.2打开干涉检查(Clash Detection(On) (40)3.5.3遇到干涉停止(Clash Detection(Stop) (40)3.6DMU 空间分析(DMU Space Analysis) (40)3.6.1干涉检查(Clash) (40)3.6.2距离和距离带分析(Distance and band analysis) (40)3.7示例 (41)3 第五章CATIA V5 DMU 机构运动分析1 产品介绍DMU机构运动分析(Kin )是专门做DMU装配运动仿真的模块。
随着产品更新换代速度的加快,现有样机的制造周期和制造成本已难以适应产品开发的需求,使用计算机三维设计技术建立数字样机,可实现实物样机的作用,有效缩短周期、降低成本。
数字样车技术(DMU)指在计算机或工作站中利用CATIA V5软件所具有的装配、干涉检查、功能部件校核、焊接及拆装、人机工程学检查以及4维空间漫游等功能对实车进行虚拟的模仿和再现,使其具有物理模型的特性,从而取代物理模型验证产品的设计、功能(运动)、工艺、制造和维护等方面内容的产品开发技术,形成一辆模拟现实的数字样车,对产品的真实化进行计算机模拟。
图1 静态干涉检查的流程DMU的作用DMU的作用首先是提供各类、各种档次的可视化功能,用不同方式对电子样车的全部部位进行审视、评估,漫游和模拟真实的视觉效果。
尽可能在数字化环境中看到产品在真实世界中相同的效果,实现低成本、高效率的产品可视化模拟。
CATIA V5实现了可视化和产品结构的统一进行,让复杂区域的可视化变得非常容易,使可视化的应用范围得到扩展。
其次是提供各类对车型或部件间进行功能性分析的手段,包括:机构运动,干涉分析,拆装分析,空间分析和管理等。
尽可能在数字化环境中进行与真实世界中相同的分析,使设计师在设计早期就发现问题所在,在设计的各个阶段,及时、大量地进行各种分析,提高产品设计质量。
图2 断面分析界面三是应用关联设计,运用CATIA独有的PUBLICATION技术,按照自顶向下的设计方式,实现装配之间、零部件之间、一个模型文件中的多个几何实体之间、曲面模型和实体模型之间、特征之间等多种层次的端到端的各类关联。
基于骨架的DMU设计分析方式,实现数字样机的快速更改,降低成本,快速地进行多方案的评估与研讨,通过建立关联性的设计模板进行管理和重用,提高设计效率。
以下通过整车实例中的部分案例来说明DMU的实际应用。
DMU静态干涉检查静态干涉检查是DMU中也是整车设计中最重要的部分,干涉检查根据项目周期可以分为设计过程中干涉检查、后期进行验证干涉检查,以及后期发生设计变更后的干涉检查。
CATIA数字样机DMU入门教程
沈沉CAX门户()
今天有个学弟问我DMU装配动画怎么做,网上相关资料不多,我做了个简单的入门的教程。
DMU本身不难,界面也友好,只要了解结构关系和基本操作,入门以后都可以自己摸索。
转载注明出处:/forum-38-1.html
好了,开始了,零部件文件如下:
DMU.zip (46.26 KB)
首先导入part1、part2。
用操纵按钮移动零部件到动画初始位置。
转到DMU模块
使用Track按钮,编辑轨道
如下图操作
设置轨道时间长度
编辑序列(sequence)
将轨道加入序列
看到tree上的序列,可以播放啦
这是个简单的例子,动作复杂可以用序列编辑器导演,如图
东西挺简单吧,接下来可以自己摸索了,很多别的小功能自己探索吧。
导出视频可以用实时渲染模块(下图)。
CATIA/ENOVIA TrainingCOPYRIGHT DASSAULT SYSTEMES 2002 Version 5 Release 9 June 2002D M U K i n e m a t i c s S i m u l a t o rD e t a i l e d S t e p sTable of ContentsSTEP 0 (3)Open the Toy plane (3)STEP 1 (4)Create First Rigid Joints (4)Create the Second Rigid Joint (5)Create the third Rigid Joint (6)Create the fourth Rigid Joint (7)Create the first Revolute Joint (8)Create the Law that drives the first Command (10)STEP 2 (13)Convert Assembly Constraints (13)Edit The New Joint (13)Create a New Law (14)STEP 3 (17)Simulate the Mechanism (17)STEP 4 (18)Generate an Animation (18)Compile a Simulation (19)Display a Replay (20)STEP 5 (22)Compute a Swept Volume (22)Compute a Trace (23)STEP 0Open the Toy plane1. Use "File" ->"Open" and select CATKIN_Plane_Step1.CATProductSTEP 1Create First Rigid Joints1. Position the model as shown on the picture below2. Click on the Rigid Joint IconThe Joint Creation window appears3. Click on New Mechanism button4. Give it a name5. Select the 2 elements to fix together as shown on the picture belowYou get the following window6. Click OK to confirm Rigid Joint CreationCreate the Second Rigid Joint7. Click on the Rigid Joint Icon in order to create the second Joint8. Select the 2 Elements to fix together as shown belowYou get the Joint Creation window as shown below9. Click OK to confirm Rigid Joint CreationCreate the third Rigid Joint10. Click on the Rigid Joint Icon in order to create the Third Joint11. Select the 2 Elements to fix together as shown below∙You get the Joint Creation window as shown belowCreate the fourth Rigid Joint12. Click on the Rigid Joint Icon in order to create the third Joint13. Select the 2 Elements to fix together as shown below∙You get the Joint Creation window as shown below14. Click OK to confirm the Rigid Joint CreationCreate the first Revolute Joint15. Select the R oot Product and swap all elements in “Design Mode” thanks to thecontextual menu16. Position the plane as shown below17. Click on the Revolute Joint Icon18. Select the coincidence axis as Shown below, between the propeller and thepropeller axis19. Select the Offset option in the Joint Creation window20. Select the 2 planes as shown below21. Set the Angle Driven as shown in the picture above22. Click OK to confirm the joint CreationYou should have now the tree as shown belowCreate the Law that drives the first Command23. Select Laws in the tree as shown above24. Click on the Formula IconThe Formulas window appears25. Double Click on the first Command as shown belowThe Formula Editor Window appears26. Type the Formula as shown above (check that units are the same)(we could also do this using wizard which displays all variables) 27. Click OK to confirm the formula∙In the line concerning Command1, you can see the formula displayed28. Click OK to confirm∙The Law is displayed in the tree as shown belowSTEP 2Convert Assembly Constraints1. Click onThe Assembly Constraints Conversion Window Appears2. Click on Auto Create button3. Click on OK(A new revolute joint has been created as shown below)Edit The New Joint4. Double Click on the new joint to edit it5. Set the Angle Driven6. Set the Joint Limits at –180deg and 180 deg as show aboveAn Information window is displayed and shows you that the mechanism could be simulatedCreate a New Law7. Click on Law8. Click onThe Formulas window are displayed in the context of the Mechanism9. Double Click on the new Command as shown above∙The Formula editor window appears10. Type the formula as shown above(We could also use the Wizard, in order to create the formula)11. Click OK in the Formula Editor box12. Click OK in the Formulas window∙The laws are displayed as shown belowSTEP 3Simulate the Mechanism1. Click on Simulation with Laws iconThe Kinematic Simulation window appears2. Check the Activate Sensors option as shown b above3. Select the to Revolute joints to be observed as shown below4. Use the VCR interface to simulate the Mechanism with law5. See the Instantaneous values and History of the joints during simulationSTEP 4Generate an Animation1. Click on the Simulation IconThe Kinematic Simulation Window and the Edit Simulation window appear2. Select the Law tab in the Kinematic Simulation window3. Click on4. Select 5 as Number of Steps5. Click on the Delete Button, in the Edit Simulation window6. Click on the Automatic Insert Check Box as shown below7. Click on in the Kinematic Simulation WindowThe steps are inserted automatically8. Click OK to confirm the simulationCompile a Simulation9. Click on the Compile Simulation Icon10. Select 0.1 as time step11. Click OK to confirmThe Replay is displayed in the treeDisplay a Replay12. Double click on the Replay in the tree13. Use the VCR interface to see the Mechanism movingSTEP 5Compute a Swept Volume1. Click on to create a Swept VolumeThe Wept Volume Interface appears2. Click on to Select the product to sweep3. Select “PROPELLER.1” and click on OK4. Check Apply Wrapping and change the grain to 2mm5. Click on Preview to compute6. Click on Cancel.Compute a Trace7. Click onThe Trace window appears8. Select the Root product as Reference9. Select an extremum point from the propeller as shown on the picture below10. Click on the OK button to compute the trace according to the Replay and its timestep。