复合场例题与习题(含答案)
- 格式:doc
- 大小:178.50 KB
- 文档页数:5
图11-4-1例1.如图11-4-1绝缘直棒上的小球,其质量为m 、带电荷量是+q ,小球可在棒上滑动.将此棒竖直放在互相垂直且在水平方向的匀强电场和匀强磁场中,电场强度是E ,磁感应强度是B ,小球与棒间的动摩擦因数为 ,求小球由静止沿棒下滑的最大加速度和最大速度(小球带电荷量不变)例2.如图11-4-3所示,水平放置的平行金属板,长为l =140cm ,两板之间的距离d =30cm ,板间有图示方向的匀强磁场,磁感应强度的大小为B =1.3×10-3T .两板之间的电压按图所示的规律随时间变化(上板电势高为正).在t =0时,粒子以速度v =4×103m/s 从两板(左端)正中央平行于金属板射入,已知粒子质量m =6.64×10-27kg ,带电量q =3.2×10-19C .试通过分析计算,看粒子能否穿越两块金属板间的空间,如不能穿越,粒子将打在金属板上什么地方?如能穿越,则共花多少时间?【益智演练】1.一个质量为m ,电量为q 的负电荷在磁感应强度为B 的匀强磁场中绕固定的正电荷做匀速圆周运动,磁场方向垂直于它的运动平面,作用在负电荷上的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是:( )A .4qBmB .3qBmC .2qBmD .qB m2.如图11-4-5所示,足够长的光滑三角形绝缘槽,与水平面的夹角分别为α和β(α<β),加垂直于纸面向里的磁场.分别将质量相等、带等量正、负电荷的小球 a 、b 依次从两斜面的顶端由静止释放,关于两球在槽上运动的说法正确的是( ) A .在槽上,a 、b 两球都做匀加速直线运动,且a a >a b B .在槽上,a 、b 两球都做变加速运动,但总有a a >a bC .a 、b 两球沿直线运动的最大位移是s a <s bD .a 、b 两球沿槽运动的时间为t a 和t b ,则t a <t b3.一带正电的小球沿光滑水平桌面向右运动,飞离桌面后进入匀强磁场,如图11-4-6所示,若飞行时间t 1后落在地板上,水平射程为s 1,着地速度大小为v 1,撤去磁场,其他条件不变,小球飞行时间t 2,水平射程s 2,着地速度大小为v 2,则( ) A .s 2>s 1 B .t 1>t 2 C .v 1>v 2 D .v 1=v4.用绝缘细线悬挂一个质量为m 、带电量为+q 的小球,让它处于右图11-4-7所示的磁感应强度为B 的匀强磁场中.由于磁场的运动,小球静止在如图位置,这时悬线与竖直方向夹角为α,并被拉直,则磁场运动的速度和方向是( )A .v =mg /Bq ,水平向右B .v =mg /Bq ,水平向左C .v =mg tan α/Bq ,竖直向上D .v =mg tan α/Bq ,竖直向下5.如图11-4-8所示,有一电量为q ,质量为m 的小球,从两竖直的带等量 异种电荷的平行板上方高h 处自由下落,两板间有匀强磁场,磁场方向垂直纸面向里,那么带电小球在通过正交电磁场时( )图11-4-6图11-4-5B 图11-4-7t/10s3 54 1.图11-4-3C .可能做匀速直线运动D .可能做匀加速直线运动 6.如图11-4-9所示,带电平行板间匀强电场竖直向上,匀强磁场方向垂直纸面向里,某带电小球从光滑轨道上的a 点自由下落,经轨道端点P 进入板间后恰好沿水平方向做直线运动.现使小球从稍低些的b 点开始自由滑下,在经过P 点进入板间后的运动过程中,以下分析中正确的是( )A .其动能将会增大B .其电势能将会增大C .小球所受的洛伦兹力将会逐渐增大D .小球受到的电场力将会增大7.如图11-4-4-10所示,在长方形abcd 区域内有正交的电磁场,ab =bc /2=L ,一带电粒子从ad 的中点垂直于电场和磁场方向射入,恰沿直线从b c 边的中点P 射出,若撤去磁场,则粒子从C点射出;若撤去电场,则粒子将(重力不计)( ) A .从b 点射出 B .从b 、P 间某点射出 C .从a 点射出 D .从a 、b 间某点射出8.如图11-4-11所示,在真空中,匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里,三个油滴a 、b 、c 带有等量同种电荷,已知a 静止,b向右匀速运动,c 向左匀速运动,比较它们的质量应有( )A .a 油滴质量最大B .b 油滴质量最大C .c 油滴质量最大D .a 、b 、c 质量一样9.如图11-4-12中所示虚线所围的区域内,存在电场强度为E 的匀强电场和磁感应强度为B的匀强磁场,已知从左侧水平射入的电子,穿过这一区域时未发生偏转,设重力忽略不计,则在这个区域中的E 和B 的方向可能是( ) A .E 和B 都沿水平方向,并与电子运动方向相同 B .E 和B 都沿水平方向,并与电子运动方向相反C .E 竖直向上,B 垂直于纸面向外D .E 竖直向上,B 垂直于纸面向里10.设空间存在竖直向下的匀强电场和垂直纸面向内的匀强磁场,如图11-4-13所示.已知一离子在电场力和洛仑兹力的作用下,从静止开始自A 点沿曲线ACB 运动,到达B 时速度为零.C 是曲线的最低点,不计重力.以下说法正确的是( )A .离子一定带正电B .A 、B 两点位于同一高度C .离子在C 点速度最大D .离子到达B 点后将沿曲线返回A 点11.如图11-4-14所示,在真空中一个光滑的绝缘的水平面上,有直径相同的两个金属球A 、C .质量m A =0.01 kg ,m C =0.005 kg .静止在磁感应强度B =0.5 T 的匀强磁场中的C 球带正电,电量q C =1×10-2 C .在磁场外的不带电的A 球以速度v 0=20 m/s 进入磁场中与C 球发生正碰后,C 球对水平面压力恰好为零,则碰后A 球的速度为 ( )A .10 m/sB .5 m/sC .15 m/sD .-20 m/s12.三种粒子(均不计重力):质子、氘核和 粒子由静止开始在同一匀强电场中加速后,从同一位置沿水平方向射入图11-4-15中虚线框内区域,虚线框内区域加有匀强电场或匀强磁场,以下对带电粒子进入框内区域后运动情况分析正确的是:( )A .区域内加竖直向下方向的匀强电场时,三种带电粒子均可分离B .区域内加竖直向上方向的匀强电场时,三种带电粒子不能分离 A B 图11-4-13图图11-4-8图11-4-12d 图11-4-10v 图11-4-11图11-4-15aD .区域内加垂直纸面向里的匀强磁场时,三种带电粒子均不可以分离13.在光滑绝缘水平面上,一轻绳拉着一个带电小球绕竖直方向的轴O 在匀强磁场中做逆时针方向的水平匀速圆周运动,磁场方向竖直向下,其俯视图如图11-4-16所示,若小球运动到A 点时,由于某种原因,绳子突然断开,关于小球在绳断开后可能的运动情况,以下说法正确的是( )A .小球仍做逆时针匀速圆周运动,半径不变B .小球仍做逆时针匀速圆周运动,但半径减小C .小球做顺时针匀速圆周运动,半径不变D .小球做顺时针匀速圆周运动,半径减小14.质量为m ,带正电为q 的小物块放在斜面上,斜面倾角为α,物块与斜面间动摩擦因数为μ,整个斜面处在磁感应强度为B 的匀强磁场中,如图11-4-17所示,物块由静止开始沿斜面下滑,设斜面足够长,物块在斜面上滑动能达到的最大速度为多大?若物块带负电量为q ,则物块在斜面上滑动能达到的最大速度又为多大?15.如图11-4-18所示,套在很长的绝缘直棒上的小圆环,其质量为m ,带电量是+q ,小圆环可在棒上滑动,将此棒竖直放在互相垂直,且沿水平方向的匀强电场和匀强磁场中,电场强度是E ,磁感应强度是B ,小圆环与棒的动摩擦因数为μ,求小圆环由静止沿棒下落的最大加速度和最大速度.E 图11-4-18图11-4-1716.如图11-4-19所示,一带电液滴在相互垂直的匀强电场和匀强磁场中运动,已知电场强度的大小为E ,方向竖直向下,磁感应强度为B ,方向垂直纸面向里.若此液滴在垂直于磁感应强度的平面内做半径为R 的匀速圆周运动,设液滴的质量为m ,求:(1)液滴的速度大小和绕行方向;(2)若液滴运行到轨迹最低点A 时,分裂成大小相同的两滴,其中一个液滴仍在原来的平面内做半径为3R 的圆周运动,绕行方向不变,且此圆周的最低点也是A ,另一滴将如何运动?17.质量为m ,带电量为q 的液滴以速度v 沿与水平成45 角斜向上进入正交的匀强电场和匀强磁场叠加区域,电场强度方向水平向右,磁场方向垂直纸面向里,如图11-4-20所示.液滴带正电荷,在重力、电场力及磁场力共同作用下在场区做匀速直线运动.试求:(1)电场强度E 和磁感应强度B 各多大?(2)当液滴运动到某一点A 时,电场方向突然变为竖直向上,大小不改变,不考虑因电场变化而产生的磁场的影响,此时液滴加速度多少?说明此后液滴的运动情况.18.如图11-4-21所示,匀强磁场垂直纸面向里,磁感应强度B =1T ,匀强电场水平向右,电场强度E =103N/C ,有一带正电的微粒m =2×10-6kg ,电量q =2×10-6C ,在纸面内做匀速直线运动.g 取10m/s 2,问: (1)微粒的运动方向和速率如何?(2)若微粒运动到P 电时突然撤去磁场,经过时间t 后运动到Q 点,P 、Q 连线与电场线平行,那么t 为多少?图11-4-19 P图11-4-2019.如图11-4-22所示,一质量为m ,带电量为+q 的粒子以速度v 0从O 点沿y 轴正方向射入磁感应强度为B 的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从点b 处穿过x 轴,速度方向与x 轴正方向的夹角为30°,同时进入场强为E 、方向沿与x 轴负方向成60°角斜向下的匀强电场中,通过了b 点正下方的c 点,如图15-76所示.粒子的重力不计,试求: (1)圆形匀强磁场区域的最小面积;(2)c 点到b 点的距离s .20.如图11-4-23所示,置于光滑水平面上的绝缘小车A 、B 质量分别为m A =3kg 、m B =0.5kg ,质量为m C =0.1kg 、带电量为q =+1/75 C 、可视为质点的绝缘物体C 位于光滑小车B 的左端.在A 、B 、C 所在的空间有一垂直纸面向里的匀强磁场,磁感强度B =10T ,现小车B 静止,小车A 以速度v 0=10m/s 向右运动和小车B 碰撞,碰后物体C 在A 上滑动.已知碰后小车B 的速度为9m/s ,物体C 与小车A 之间有摩擦,其他摩擦均不计,小车A 足够长,全过程中C 的带电量保持不变,求:(1)物体C 在小车A 上运动的最大速率和小车A 运动的最小速度.(g 取10m/s 2) (2)全过程产生的热量.21.如图11-4-24所示,在空间有水平方向的匀强磁场,磁感应强度为B ,方向垂直于纸面向里,在磁场中有一长为L 、内壁光滑且绝缘的细筒MN 竖直放置,筒的底部有一质量为m 、带电荷量为+q 的小球,现使细筒MN 沿垂直磁场的方向水平向右匀速运动,设小球带电荷量不变.(1)若使小球能沿筒壁上升,则细筒运动速度v 应满足什么条件?(2)当细筒运动速度为v 0(v 0>v )时,试求小球在沿细筒上升高度h 时小球的速度大小.v 图11-4-22图11-4-2322.如图11-4-25所示,一质量为0.4kg 的足够长且粗细均匀的绝缘的细管置于水平地面上,细管内表面粗糙,外表面光滑;有一质量为0.1kg ,电量为0.1C 的带正电小球沿管的水平向右的速度进入管内,细管内径略大于小球直径,已知细管所在处有沿水平方向且与细管相垂直的匀强磁场,磁感应强度为1T ,g 取10m/s 2. (1)当细管被固定时,小球在管内运动的末速度的可能值为多少?(2)若细管未被固定时,带电小球以20m/s 的初速度进入管内,且整个运动过程中细管没有离开水平地面,则系统最终产生的内能是多少?23.如图11-4-26所示,水平方向的匀强电场的场强为E (场区宽度为L ,竖直方向足够长),紧挨着电场的是垂直纸面向外的两个匀强磁场区,其磁感应强度分别为B 和2B .一个质量为m 、电量为q 的带正电粒子(不计重力),从电场的边界MN 上的a 点由静止释放,经电场加速后进入磁场,经过t=qBm6π时间穿过中间磁场,进入右边磁场后能按某一路径再返回到电场的边界MN上的某一点b (虚线为场区的分界面).求: (1)中间磁场的宽度d ;(2)粒子从a 点到b 点共经历的时间t ab ;(3)当粒子第n 次到达电场的边界MN时与出发点a 之间的距离S n .24.汤姆生用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图11-4-27所示.真空管内的阴极K 发出的电子(不计初速、重力和电子间的相互作用)经加速电压加速后,穿过A '中心的小孔沿中心轴O 1O 的方向进入到两块水平正对放置的平行金属极板P 和P '间的区域.当极板间不加偏转电压时,电子束打在荧光屏的中心O 点处,形成了一个亮点;加上偏转电压U 后,亮点偏离到O '点,O '与O 点的竖直间距为d ,水平间距可以忽略不计.此时,在P 点和P '间的区域,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B 时,亮点重新回到O 点.已知极板水平方向的长度为L 1,极板间距为b ,极板右端到荧光屏的距离为L 2(如图所示).(1)求打在荧光屏O 点的电子速度的大小.(2)推导出电子比荷的表达式.2B图11-4-26图11-4-2525.如图11-4-28所示,在直角坐标xoy 的第一象限中分布着指向-y 轴方向的匀强电场,在第四象限中分布着垂直纸面向里方向的匀强磁场,一个质量为m 、带电+q 的粒子(不计重力)在A 点(0,3)以初速v 0=120m/s 平行x 轴射入电场区域,然后从电场区域进入磁场,又从磁场进入电场,并且只通过x 轴上的P 点(6,0)和Q 点(8,0)各一次,已知该粒子的荷质比为q/m =108C/kg .(1)画出带电粒子在电场和磁场中的运动轨迹.(2)求磁感强度B 的大小.26.如图11-4-29所示,oxyz 坐标系的y 轴竖直向上,在坐标系所在的空间存在匀强电场和匀强磁场,电场方向与x 轴平行.从y 轴上的M 点(0,H ,0)无初速释放一个质量为m 、电荷量为q 的带负电的小球,它落在xz 平面上的N (c ,0,b )点(c >0,b >0).若撤去磁场则小球落在xy 平面的P (l ,0,0)点(l >0).已知重力加速度为g. (1)已知匀强磁场方向与某个坐标轴平行,试判断其可能的具体方向;(2)求电场强度E 的大小;(3)求小球落至N 点时的速率v .图11-4-29f图11-4-21.分析与解:在带电小球下滑的过程中,小球受重力、电场力、支持力、摩擦力和f 洛,受力分析如图11-4-2所示. 在y 方向 ma =f mg 摩擦力N μ=f ,压力Eq +Bqv =N 解得:m )qE +qvB (μmg =a随着小球速度v 增加时,小球加速度减小.所以,小球向下做加速度逐渐减小的加速运动,最后加速度减小到零,小球做匀速直线运动.开始时0=v 时,此时加速度最大,mqEμg=a m ; 匀速时,0=a 时,速度最大,m mg (qv B qE)0-m += 所以BE qB μmg=v m . 2分析与解:根据题意可知,两金属板间的匀强电场是间断存在的.有电场时,电场方向由上板指向下板,场强大小为E =U /d =1.56V/0.3m=5.2V/m .粒子进入板间在0~1.0×104s 内受向下的电场力Eq 和向下的磁场力Bqv 作用,由于电场力与磁场力之比1=10×4×10×3.12.5=Bqv qE 33 粒子作匀速直线运动,它的位移34s vt 410110m 0.4m -==创?在接着的1.0×104s ~2.0×10-4s 时间内,电场撤消,α粒子只受磁场力作用,将作匀速圆周运动,轨道半径为273319mv 6.6410410R cm 6.38cm Bq 1.310 3.210---创?===创? 轨道直径d ′=2R =12.76cm<d /2, 可见,粒子在作圆周运动时不会打到金属板上,粒子作匀速圆周运动的周期为2432r 2 3.14 6.3810T s 1.010s v 410--p 创?¢===?´由于粒子作匀速圆周运动的周期恰好等于板间匀强电场撤消的时间,所以粒子的运动将是匀速直线运动与匀速圆周运动交替进行,其运动轨迹如图11-4-4所示,经过时间443l 3s 1.430.4t 3T 3210 6.510s v 410----?=+=创+=?´从两板的正中央射离. 【参考答案】1.AC 2.ACD 3.BD 4.BC 5.A 6.ABC 7.C 8.C 9.ABC 10.ABC 11.A 12.B 13.ACD 14.qB μ)αcos μα(sin mg ,qB αcos mg . 15.g ;qB μEq μ+mg . 16.(1)ERB,顺时针方向;(2)顺时针方向,R ′=R17.(1)qvmg 2=B ,q /mg =E ;(2)a ,2v R a ==,gvπ2=v R π2=T 18.(1)v =20m/s ,θ=60°;(2)t =23s 19.(1)22202q B 4v m π3;(2)Eqmv 2034 20.(1)7.5m/s 和8.25m/s ;(2)24.84J 21.v >Bq m g;v ′=20v +m )mg B qv (h 2 22.(1)v 0≥10m/s 时,v =10m/s , v 0<10m/s 时,v =0;(2)Q =13.75J 23.d =qmEL B 21,t ab =2qE L m2+qB 3m π2,s n =q 2mEL B n )34( 24.Bb U ,m e =)2/L +L (bL B Ud 1212 25.(1)略;(2)1.2×1010T 26.(1)图11-4-4mgl=E;(3)v=磁场方向为-x方向或-y方向;(2)qH。
高三物理总复习:复合场参考答案与试题解析一、选择题1.(3分)如图所示,空间存在着由匀强磁场B和匀强电场E组成的正交电磁场,电场方向水平向左,磁场方向垂直纸面向里.有一带负电荷的小球P,从正交电磁场上方的某处自由落下,那么带电小球在通过正交电磁场时()A.一定作曲线运动B.不可能作曲线运动C.可能作匀速直线运动D.可能作匀加速直线运动考点:带电粒子在混合场中的运动.专题:共点力作用下物体平衡专题.分析:对小球受力分析后,得到合力的方向,根据曲线运动的条件进行判断.解答:解:小球进入两个极板之间时,受到向下的重力,水平向右的电场力和水平向左的洛伦兹力,若电场力与洛伦兹力受力平衡,由于重力的作用,小球向下加速,速度变大,洛伦兹力变大,洛伦兹力不会一直与电场力平衡,故合力一定会与速度不共线,故小球一定做曲线运动;故A正确,B错误;在下落过程中,重力与电场力不变,但洛伦兹力变化,导致合力也变化,则做变加速曲线运动.故CD均错误;故选A.点评:本题关键要明确洛伦兹力会随速度的变化而变化,故合力会与速度方向不共线,粒子一定做曲线运动.2.(3分)如图所示,在某空间同时存在着相互正交的匀强电场E匀强磁场B电场方向竖直向下,有质量分别为m1,m2的a,b两带负电的微粒,a电量为q1,恰能静止于场中空间的c点,b电量为q2,在过C点的竖直平面内做半径为r匀速圆周运动,在c点a、b相碰并粘在一起后做匀速圆周运动,则()A.a、b粘在一起后在竖直平面内以速率做匀速圆周运动B.a、b粘在一起后仍在竖直平面内做半径为r匀速圆周运动C.a、b粘在一起后在竖直平面内做半径大于r匀速圆周运动D.a、b粘在一起后在竖直平面内做半径为的匀速圆周运动考点:带电粒子在混合场中的运动;牛顿第二定律;向心力.专题:带电粒子在复合场中的运动专题.分析:粒子a、b受到的电场力都与其受到的重力平衡;碰撞后整体受到的重力依然和电场力平衡,洛伦兹力提供向心力,根据牛顿第二定律列式,再结合动量守恒定律列式求解.解答:解:粒子b受到的洛伦兹力提供向心力,有解得两个电荷碰撞过程,系统总动量守恒,有m2v=(m1+m2)v′解得整体做匀速圆周运动,有故选D.点评:本题关键是明确两个粒子的运动情况,根据动量守恒定律和牛顿第二定律列式分析计算.3.(3分)设空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图所示,已知一离子在电场力和洛仑兹力的作用下,从静止开始自A点沿曲线ACB运动,到达B点时速度为零,C点是运动的最低点,忽略重力,以下说法正确的是()A.这离子必带正电荷B.A点和B点位于同一高度C.离子在C点时速度最大D.离子到达B点时,将沿原曲线返回A点考点:带电粒子在混合场中的运动.专题:带电粒子在复合场中的运动专题.分析:(1)由离子从静止开始运动的方向可知离子必带正电荷;(2)在运动过程中,洛伦兹力永不做功,只有电场力做功根据动能定理即可判断BC;(3)达B点时速度为零,将重复刚才ACB的运动.解答:解:A.离子从静止开始运动的方向向下,电场强度方向也向下,所以离子必带正电荷,A正确;B.因为洛伦兹力不做功,只有静电力做功,A、B两点速度都为0,根据动能定理可知,离子从A到B运动过程中,电场力不做功,故A、B位于同一高度,B正确;C.C点是最低点,从A到C运动过程中电场力做正功做大,根据动能定理可知离子在C点时速度最大,C 正确;D.到达B点时速度为零,将重复刚才ACB的运动,向右运动,不会返回,故D错误.故选:ABC.点评:本题主要考查了带电粒子在混合场中运动的问题,要求同学们能正确分析粒子的受力情况,再通过受力情况分析粒子的运动情况,要注意洛伦兹力永不做功,难度适中.4.(3分)回旋加速器是用来加速带电粒子的装置,如图所示.如果用同一回旋加速器分别加速氚核()和α粒子()比较它们所加的高频交流电源的周期和获得的最大动能的大小,有()A.加速氚核的交流电源的周期较大,氚核获得的最大动能也较大B.加速氚核的交流电源的周期较大,氚核获得的最大动能较小C.加速氚核的交流电源的周期较小,氚核获得的最大动能也较小D.加速氚核的交流电源的周期较小,氚核获得的最大动能较大考点:质谱仪和回旋加速器的工作原理.专题:带电粒子在磁场中的运动专题.分析:回旋加速器是通过电场进行加速,磁场进行偏转来加速带电粒子.带电粒子在磁场中运动的周期与交流电源的周期相同,根据T=比较周期.当粒子最后离开回旋加速器时的速度最大,根据qvB=m求出粒子的最大速度,从而得出最大动能的大小关系.解答:解:带电粒子在磁场中运动的周期与交流电源的周期相同,根据T=,知氚核(13H)的质量与电量的比值大于α粒子(24He),所以氚核在磁场中运动的周期大,则加速氚核的交流电源的周期较大.根据qvB=m得,最大速度v=,则最大动能E Km=mv2=,氚核的质量是α粒子的倍,氚核的电量是倍,则氚核的最大动能是α粒子的倍,即氚核的最大动能较小.故B正确,A、C、D错误.故选:B.点评:解决本题的关键知道带电粒子在磁场中运动的周期与交流电源的周期相同,以及会根据qvB=m求出粒子的最大速度.5.(3分)(2013•重庆)如图所示,一段长方体形导电材料,左右两端面的边长都为a和b,内有带电量为q的某种自由运动电荷.导电材料置于方向垂直于其前表面向里的匀强磁场中,内部磁感应强度大小为B.当通以从左到右的稳恒电流I时,测得导电材料上、下表面之间的电压为U,且上表面的电势比下表面的低.由此可得该导电材料单位体积内自由运动电荷数及自由运动电荷的正负分别为()A.,负B.,正C.,负D.,正考点:霍尔效应及其应用.专题:压轴题.分析:上表面的电势比下表面的低.知上表面带负电,下表面带正电,根据左手定则判断自由运动电荷的电性.抓住电荷所受的洛伦兹力和电场力平衡求出电荷的移动速度,从而得出单位体积内自由运动的电荷数.解答:解:因为上表面的电势比下表面的低,根据左手定则,知道移动的电荷为负电荷.因为qvB=q,解得v=,因为电流I=nqvs=nqvab,解得n=.故C正确,A、B、D错误.故选C.点评:解决本题的关键掌握左手定则判断洛伦兹力的方向,以及知道最终电荷在电场力和洛伦兹力作用下处于平衡.二、解答题6.在同时存在匀强电场和匀强磁场的空间中,取正交坐标系O﹣xyz(z轴正方向竖直向上)如图所示,已知电场方向沿z轴正方向,大小为E;磁场方向沿y轴正方向,磁感应强度大小为B.重力加速度为g,问:一质量为m、带电量为+q的质点从原点出发能否在坐标轴(x、y、z )上以速度v做匀速运动?若能,m、q、E、B、v及g应满什么关系?若不能,说明理由.考点:带电粒子在混合场中的运动.专题:带电粒子在复合场中的运动专题.分析:根据正电荷受到的电场力与电场线方向相同,受到洛伦兹力与磁场方向相垂直,结合受力平衡条件,即可求解.解答:解:已知带电质点受电场力的方向沿z轴正方向,大小为qE;质点受重力的方向沿z轴负方向,大小为mg (1)若质点在x轴上做匀速运动,则它受到的洛仑兹力必沿x轴正方向或负方向,即有:qvB+qE=mg 或qE=mg+qvB(2)若质点在y轴上做匀速运动,则它受到的洛仑兹力必为零,即有:qE=mg(3)若质点在z轴上做匀速运动,则它受到的洛仑兹力必平行于x轴,而电场力和重力都平行于z轴,三力的合力不可能为零,即质点不可能在z轴上做匀速运动.答:理由如上.点评:考查正电荷受到的电场力与洛伦兹力的方向,掌握左手定则的应用,注意与右手定则的区别.同时理解受力平衡条件的应用.7.如图(甲)所示为电视机中显像管的原理示意图,电子枪中的灯丝加热阴极而逸出电子,这些电子再经加速电场加速后,从O点进入偏转磁场中,经过偏转磁场后打到荧光屏MN上,使荧光屏发出荧光形成图象,不计逸出电子的初速度和重力.已知电子的质量为m、电荷量为e,加速电场的电压为U,偏转线圈产生的磁场分布在边长为l的正方形abcd区域内,磁场方向垂直纸面,且磁感应强度随时间的变化规律如图乙所示.在每个周期内磁感应强度都是从﹣B0均匀变化到B0.磁场区域的左边界的中点与O点重合,ab边与OO′平行,右边界bc与荧光屏之间的距离为s.由于磁场区域较小,且电子运动的速度很大,所以在每个电子通过磁场区域的过程中,可认为磁感应强度不变,即为匀强磁场,不计电子之间的相互作用.(1)求电子射出加速电场时的速度大小(2)为使所有的电子都能从磁场的bc边射出,求偏转线圈产生磁场的磁感应强度的最大值B0(3)荧光屏上亮线的最大长度是多少.考点:带电粒子在匀强电场中的运动;动能定理的应用.专题:压轴题;带电粒子在电场中的运动专题.分析:(1)根据动能定理求出电子射出加速电场时的速度大小.(2)根据几何关系求出临界状态下的半径的大小,结合洛伦兹力提供向心力求出磁感应强度的最大值.(3)粒子在磁场中做匀速圆周运动,出磁场做匀速直线运动,通过最大的偏转角,结合几何关系求出荧光屏上亮线的最大长度.解答:解:(1)设电子射出电场的速度为v,则根据动能定理,对电子加速过程有解得(2)当磁感应强度为B0或﹣B0时(垂直于纸面向外为正方向),电子刚好从b点或c点射出,设此时圆周的半径为R1.如图所示,根据几何关系有:R2=l2+(R﹣)2解得R=电子在磁场中运动,洛仑兹力提供向心力,因此有:,解得(3)根据几何关系可知,设电子打在荧光屏上离O′点的最大距离为d,则由于偏转磁场的方向随时间变化,根据对称性可知,荧光屏上的亮线最大长度为答:(1)电子射出加速电场时的速度大小为.(2)偏转线圈产生磁场的磁感应强度的最大值.(3)荧光屏上亮线的最大长度是.点评:考查电子受电场力做功,应用动能定理;电子在磁场中,做匀速圆周运动,运用牛顿第二定律求出半径表达式;同时运用几何关系来确定半径与已知长度的关系.8.(2009•重庆)如图,离子源A产生的初速为零、带电量均为e、质量不同的正离子被电压为U0的加速电场加速后匀速通过准直管,垂直射入匀强偏转电场,偏转后通过极板HM上的小孔S离开电场,经过一段匀速直线运动,垂直于边界MN进入磁感应强度为B的匀强磁场.已知HO=d,HS=2d,∠MNQ=90°.(忽略粒子所受重力)(1)求偏转电场场强E0的大小以及HM与MN的夹角φ;(2)求质量为m的离子在磁场中做圆周运动的半径;(3)若质量为4m的离子垂直打在NQ的中点S1处,质量为16m的离子打在S2处.求S1和S2之间的距离以及能打在NQ上的正离子的质量范围.考点:动能定理的应用;平抛运动;运动的合成和分解;带电粒子在匀强磁场中的运动.专题:压轴题.分析:(1)正离子被电压为U0的加速电场加速后的速度可以通过动能定理求出,而正离子垂直射入匀强偏转电场后,作类平抛运动,最终过极板HM上的小孔S离开电场,根据平抛运动的公式及几何关系即可求出电场场强E0,φ可以通过末速度沿场强方向和垂直电场方向的速度比求得正切值求解;(2)正离子进入磁场后在匀强磁场中作匀速圆周运动,由洛仑兹力提供向心力,根据向心力公式即可求得半径;(3)根据离子垂直打在NQ的位置及向心力公式分别求出运动的半径R1、R2,再根据几何关系求出S1和S2之间的距离,能打在NQ上的临界条件是,半径最大时打在Q上,最小时打在N点上,根据向心力公式和几何关系即可求出正离子的质量范围.解答:解:(1)正离子被电压为U0的加速电场加速后速度设为V1,则对正离子,应用动能定理有eU0=mV12,正离子垂直射入匀强偏转电场,作类平抛运动受到电场力F=qE0、产生的加速度为a=,即a=,垂直电场方向匀速运动,有2d=V1t,沿场强方向:Y=at2,联立解得E0=又tanφ=,解得φ=45°;(2)正离子进入磁场时的速度大小为V2,解得V2=正离子在匀强磁场中作匀速圆周运动,由洛仑兹力提供向心力,qV2B=,解得离子在磁场中做圆周运动的半径R=2;(3)根据R=2可知,质量为4m的离子在磁场中的运动打在S1,运动半径为R1=2,质量为16m的离子在磁场中的运动打在S2,运动半径为R2=2,又ON=R2﹣R1,由几何关系可知S1和S2之间的距离△S=﹣R1,联立解得△S=4(﹣1);由R′2=(2 R1)2+(R′﹣R1)2解得R′=R1,再根据R1<R<R1,解得m<m x<25m.答:(1)偏转电场场强E0的大小为,HM与MN的夹角φ为45°;(2)质量为m的离子在磁场中做圆周运动的半径为2;(3)S1和S2之间的距离为4(﹣1),能打在NQ上的正离子的质量范围为m<m x<25m.点评:本题第(1)问考查了带电粒子在电场中加速和偏转的知识(即电偏转问题),加速过程用动能定理求解,偏转过程用运动的合成与分解知识结合牛顿第二定律和运动学公式求解;第(2)问考查磁偏转知识,先求进入磁场时的合速度v,再由洛伦兹力提供向心力求解R;第(3)问考查用几何知识解决物理问题的能力.该题综合性强,难度大.9.(2009•中山市模拟)如图所示,虚线上方有场强为E的匀强电场,方向竖直向下,虚线上下有磁感应强度相同的匀强磁场,方向垂直纸面向外,ab是一根长为l的绝缘细杆,沿电场线放置在虚线上方的场中,b端在虚线上,将一套在杆上的带正电的小球从a端由静止释放后,小球先作加速运动,后作匀速运动到达b端,已知小球与绝缘杆间的动摩擦系数μ=0.3,小球重力忽略不计,当小球脱离杆进入虚线下方后,运动轨迹是半圆,圆的半径是,求带电小球从a到b运动过程中克服摩擦力所做的功与电场力所做功的比值.考点:带电粒子在匀强磁场中的运动;牛顿第二定律;向心力;带电粒子在匀强电场中的运动;带电粒子在混合场中的运动.专题:带电粒子在磁场中的运动专题.分析:根据对研究对象的受力分析,结合受力平衡条件,再根据牛顿第二定律,由洛伦兹力提供向心力,及几何关系,可求出小球在b处的速度,并由动能定理,即可求解.解答:解:小球在沿杆向下运动时,受力情况如图,向左的洛仑兹力F,向右的弹力N,向下的电场力qE,向上的摩擦力fF=Bqv,N=F=Bqv∴f=μN=μBqv当小球作匀速运动时,qE=f=μBqV b小球在磁场中作匀速圆周运动时又R=,∴v b=小球从a运动到b过程中,由动能定理得所以答:带电小球从a到b运动过程中克服摩擦力所做的功与电场力所做功的比值为.点评:考查牛顿第二定律、动能定理等规律的应用,学会受力分析,理解洛伦兹力提供向心力.10.(2009•武汉模拟)如图,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c和d,外筒的外半径为r.在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感应强度的大小为B.在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场.一质量为m、带电量为+q的粒子,从紧靠内筒且正对狭缝a的S点出发,初速为零.如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中)考点:带电粒子在匀强磁场中的运动;带电粒子在匀强电场中的运动.专题:带电粒子在磁场中的运动专题.分析:带电粒子从S点出发,在两筒之间的电场作用下加速,沿径向穿过狭缝a而进入磁场区,在洛伦兹力作用下做匀速圆周运动.粒子再回到S点的条件是能沿径向穿过狭缝d.只要穿过了d,粒子就会在电场力作用下先减速,再反向加速,经d重新进入磁场区,然后粒子以同样方式经过c、b,再回到S点.解答:解:如图所示,设粒子进入磁场区的速度大小为V,根据动能定理,有Uq=mv2;设粒子做匀速圆周运动的半径为R,由洛伦兹力公式和牛顿第二定律,有:Bqv=m由上面分析可知,要回到S点,粒子从a到d必经过圆周,所以半径R必定等于筒的外半径r,即R=r.由以上各式解得:U=;答:两极间的电压为.点评:本题看似较为复杂,实则简单;带电粒子在磁场运动解决的关键在于要先明确粒子可能的运动轨迹,只要能确定圆心和半径即可由牛顿第二定律及向心力公式求得结果.11.(2004•江苏)汤姆生用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示,真空管内的阴极K发出的电子(不计初速、重力和电子间的相互作用)经加速电压加速后,穿过A′中心的小孔沿中心轴O1O的方向进入到两块水平正对放置的平行极板P和P′间的区域.当极板间不加偏转电压时,电子束打在荧光屏的中心O点处,形成了一个亮点;加上偏转电压U后,亮点偏离到O′点,(O′与O点的竖直间距为d,水平间距可忽略不计.此时,在P和P′间的区域,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B 时,亮点重新回到O点.已知极板水平方向的长度为L1,极板间距为b,极板右端到荧光屏的距离为L2(如图所示).(1)求打在荧光屏O点的电子速度的大小.(2)推导出电子的比荷的表达式.考点:带电粒子在混合场中的运动;牛顿第二定律;向心力;带电粒子在匀强电场中的运动.专题:计算题;压轴题;带电粒子在电场中的运动专题.分析:当电子受到电场力与洛伦兹力平衡时,做匀速直线运动,因此由电压、磁感应强度可求出运动速度.电子在电场中做类平抛运动,将运动分解成沿电场强度方向与垂直电场强度方向,然后由运动学公式求解.电子离开电场后,做匀速直线运动,从而可以求出偏转距离.解答:(1)当电子受到的电场力与洛沦兹力平衡时,电子做匀速直线运动,亮点重新回复到中心O点,设电子的速度为v,则evB=eE得即(2)当极板间仅有偏转电场时,电子以速度v进入后,竖直方向作匀加速运动,加速度为电子在水平方向作匀速运动,在电场内的运动时间为这样,电子在电场中,竖直向上偏转的距离为离开电场时竖直向上的分速度为电子离开电场后做匀速直线运动,经t2时间到达荧光屏t2时间内向上运动的距离为这样,电子向上的总偏转距离为可解得.点评:考查平抛运动处理规律:将运动分解成相互垂直的两方向运动,因此将一个复杂的曲线运动分解成两个简单的直线运动,并用运动学公式来求解.12.如图所示,M、N为两块带等量异种电荷的平行金属板,S1、S2为板上正对的小孔,N板右侧有两个宽度均为d的匀强磁场区域,磁感应强度大小均为B,方向分别垂直于纸面向里和向外,磁场区域右侧有一个荧光屏,取屏上与S1、S2共线的O点为原点,向下为正方向建立x轴.板左侧电子枪发射出的热电子经小孔S1进入两板间,电子的质量为m,电荷量为e,初速度可以忽略.求:(1)当两板间电势差为U0时,求从小孔S2射出的电子的速度v0;(2)两金属板间电势差U在什么范围内,电子不能穿过磁场区域而打到荧光屏上;(3)电子打到荧光屏上的位置坐标x和金属板间电势差U的函数关系.考点:带电粒子在匀强磁场中的运动;电势差;带电粒子在匀强电场中的运动.专题:带电粒子在磁场中的运动专题.分析:带电粒子在电场中被直线加速,由动能定理可求出粒子被加速后的速度大小,当进入匀强磁场中在洛伦兹力作用下做匀速圆周运动,要使粒子能打在荧光屏上离O点最远,则粒子必须从磁场中垂直射出,由于粒子已是垂直射入磁场,所以由磁感应强度大小相等,方向相反且宽度相同得粒子在两种磁场中运动轨迹是对称的,在磁场中正好完成半个周期,则运动圆弧的半径等于磁场宽度.若不能打到荧光屏,则半径须小于磁场宽度,粒子就不可能通过左边的磁场,也就不会打到荧光屏.所以运动圆弧的半径大于或等于磁场宽度是粒子打到荧光屏的前提条件.可设任一圆弧轨道半径,由几何关系可列出与磁场宽度的关系式,再由半径公式与加速公式可得出打到荧光屏上的位置坐标x和金属板间电势差U的函数关系.解答:解:(1)根据动能定理,得:解得:(2)欲使电子不能穿过磁场区域而打在荧光屏上,应有r<d而:,由此即可解得:(3)若电子在磁场区域做圆周运动的轨道半径为r,穿过磁场区域打在荧光屏上的位置坐标为x,则由轨迹图可得:,注意到:和:所以,电子打到荧光屏上的位置坐标x和金属板间电势差U的函数关系为:答:(1)当两板间电势差为U0时,求从小孔S2射出的电子的速度v0为;(2)两金属板间电势差U在范围内,电子不能穿过磁场区域而打到荧光屏上;(3)电子打到荧光屏上的位置坐标x和金属板间电势差U的函数关系为.点评:题中隐含条件是:粒子能打到荧光屏离O点最远的即为圆弧轨道半径与磁场宽度相等时的粒子.13.如图所示,在地面附近有一范围足够大的互相正交的匀强电场和匀强磁场.匀强磁场的磁感应强度为B,方向水平并垂直纸面向外,电场沿水平方向,一个质量为m、带电量为﹣q的带电微粒在此区域沿与水平方向成45°斜向上做匀速直线运动,如图所示(重力加速度为g).求:(1)电场强度的大小和方向及带电微粒的速度大小;(2)若某时刻微粒运动到场中距地面高度为H的P点时,将电场方向改成竖直向下,微粒至少须经多长时间运动到距地面最高点?(3)微粒运动P点时,突然撤去磁场,电场强度不变,则该微粒运动中距地面的最大高度是多少?考点:带电粒子在匀强磁场中的运动.专题:带电粒子在磁场中的运动专题.分析:(1)带电粒子在电场和磁场及重力场能做匀速直线运动,则有三力合力为零,从而根据平衡条件可确定电场强度的大小与方向;(2)由粒子所受洛伦兹力提供向心力,从而求出运动圆弧的半径与周期,再根据几何关系来确定圆弧最高点与地面的高度及运动时间;(3)当撤去磁场时,粒子受到重力与电场力作用,从而做曲线运动.因此此运动可看成竖直方向与水平方向两个分运动,运用动能定理可求出竖直的高度,最终可算出结果.解答:解:(1)微粒受力分析如图,根据平衡条件可知电场力方向向右,电场力大小为:qE=mg则E=,方向水平向左;qvB=mg则有:v=;。
班级姓名学号高二物理第三章《磁场》复合场练习题一、选择题:1、一个带正电荷的微粒(重力不计)穿过图中匀强电场和匀强磁场区域时,恰能沿直线运动,则欲使电荷向下偏转,应采用的办法是()A.增大电荷质量.B.增大电荷电量.C.减少入射速度.D.增大磁感应强度.2、如图所示,在真空中匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里,三个油滴a、b、c带有等量同种电荷,其中a静止,b向右做匀速运动,c向左做匀速运动.比较它们的重力G a、G b、G c的关系,正确的是( )A.G a最大B.G b最大C.G c最大D.G c最小3、如图所示,空间的某一区域内存在着相互垂直的匀强电场和匀强磁场,一个带电粒子以某一初速度由A点进入这个区域并沿直线运动,从C点离开场区;如果这个场区只有电场,则粒子从B点离开场区;如果这个区域只有磁场,则这个粒子从D点离开场区。
设粒子在上述三种情况下,从A到B、从A到C和从A到D所用的时间分别是t1、t2和t3,比较t1、t2、和t3的大小,则()A、t1=t2=t3B、t1=t2<t3C、t1<t2=t3D、t1<t2<t34、在图中虚线所示的区域存在匀强电场和匀强磁场。
取坐标如图。
一带电粒子沿x 轴正方向进入此区域,在穿过此区域的过程中运动方向始终不发生偏转。
不计重力的影响,电场强度E 和磁感强度B 的方向可能是( )A . E 和B 都沿x 轴正方向 B . E 沿y 轴正向,B 沿z 轴正向C . E 沿x 轴正向,B 沿y 轴正向D .E 、B 都沿z 轴正向5、一长方形金属块放在匀强磁场中,将金属块通以电流,磁场方向和电流方向如图所示,则金属块两表面M 、N 的电势高低情况是( ) A .N M ϕϕ<. B .N M ϕϕ=. C .N M ϕϕ>. D .无法比较.6、设空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图所示,已知一离子在电场力和洛伦兹力的作用下,从静止开始自A 点沿曲线ACB 运动,到达B 点时速度为零,C 点是运动的最低点,忽略重力,以下说法中正确的是( ) A .这离子必带正电荷.B .A 点和B 点位于同一高度.C .离子在C 点时速度最大.D .离子到达B 点后,将沿原曲线返回A 点.二、填空题:7、一个带电微粒在图示的正交匀强电场和匀强磁场中在竖直面内做匀速圆周运动。
复合场 限时练习1. 一匀强磁场的磁感应强度大小为B ,方向垂直于纸面向外,其边界如图中虚线所示,ab 为半圆,ac 、bd 与直径ab 共线,ac 间的距离等于半圆的半径。
一束质量为m 、电荷量为q (q >0)的粒子,在纸面内从c 点垂直于ac 射入磁场,这些粒子具有各种速率。
不计粒子之间的相互作用。
在磁场中运动时间最长的粒子,其运动时间为( ) A. 76m qB π B. 54m qB π C. 43m qB π D. 32m qBπ 【答案】C2. 真空中有一匀强磁场,磁场边界为两个半径分别为a 和3a 的同轴圆柱面,磁场的方向与圆柱轴线平行,其横截面如图所示。
一速率为v 的电子从圆心沿半径方向进入磁场。
已知电子质量为m ,电荷量为e ,忽略重力。
为使该电子的运动被限制在图中实线圆围成的区域内,磁场的磁感应强度最小为( )A. 32mv aeB. mv aeC. 34mv aeD. 35mv ae【答案】C3. 如图,空间某区域存在匀强电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直于纸面向里,三个带正电的微粒a 、b 、c 电荷量相等,质量分别为m a 、m b 、m c 。
已知在该区域内,a 在纸面内做匀速圆周运动,b 在纸面内向右做匀速直线运动,c 在纸面内向左做匀速直线运动。
下列选项正确的是( )A .a b cm m m >> B .b a c m m m >> C .a c bm m m >> D .c b a m m m >> 【答案】B4. 如图,虚线所示的圆形区域内存在一垂直于纸面的匀强磁场,P 为磁场边界上的一点。
大量相同的带电粒子以相同的速率经过P 点,在纸面内沿不同的方向射入磁场。
若粒子射入速率为1v ,这些粒子在磁场边界的出射点分布在六分之一圆周上;若粒子射入速率为2v ,相应的出射点分布在三分之一圆周上。
带电粒子在复合场中的运动一、带电粒子在复合场中运动的轨迹欣赏例1、如图所示,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c和d,外筒的外半径为r,在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感强度的大小为B。
在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场。
一质量为m、带电量为+q的粒子,从紧靠内筒且正对狭缝a的S点出发,初速为零。
如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中)例2、如图所示,在x轴上方有垂直于xy平面的匀强磁场,磁感应强度为B,在x 轴下方有沿y轴负方向的匀强电场,场强为E,一质量为m,电量为-q的粒子从坐标原点O沿着y轴正方向射出,射出之后,第三次到达x轴时,它与O点的距离为L,求此时粒子射出时的速度和运动的总路程(重力不记)例3、据有关资料介绍,受控热核聚变反应装置中有极高的温度,因而带电粒子将没有通常意义上的容器可装,而是由磁场约束带电粒子运动将其束缚在某个区域内,现按下面的简化条件来讨论这个问题,如图所示,有一个环形区域,其截面内半径为R1=√33m,外半径为R2=1.0m,区域内有垂直纸面向外的匀强磁场,已知磁感应强度B=1.0 T,被束缚粒子的比荷qm=4×107C/kg。
(1)若中空区域中的带电粒子沿环的半径方向射入磁场,求带电粒子不能穿越磁场外边界的最大速度V0.(2)若中空区域中的带电粒子以(1)中的最大速度V0沿圆环半径方向射入磁场,求带电粒子从进入磁场开始到第一次回到该点所需要的时间t。
例4、据有关资料介绍,受控热核聚变反应装置中有极高的温度,因而带电粒子将没有通常意义上的容器可装,托卡马克装置是一种利用磁约束来实现受控核聚变的环形容器,由磁场将高温、高密等离子体约束在有限的范围内,现按下面的简化条件来讨论这个问题,如图所示,有一个环形区域,其截面内半径为R1=a,外半径为R2=(2√2−1)a,环形区域内有垂直纸面向外的匀强磁场,磁感应强度为B。
一、带电粒子在复合场中的运动专项训练1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。
极板间存在方向向上的匀强电场,两极板间电压为U 。
质量为m 、带电量为q 的正离子从O 点由静止开始加速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。
两虚线之间的区域无电场和磁场存在,离子可匀速穿过。
忽略相对论效应和离子所受的重力。
求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。
【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =(2)22nqUm B =,2(1,2,3,,1)n k =-L (3)2222(1)t qum k -磁,22(1)=k m t h qU-电 【解析】 【分析】带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。
【详解】(1)离子经电场加速,由动能定理:212qU mv =可得2qUv m=磁场中做匀速圆周运动:2v qvB m r=刚好打在P 点,轨迹为半圆,由几何关系可知:2kd r =联立解得B =; (2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。
设共加速了n 次,有:212n nqU mv =2nn nv qv B m r =且:2n kd r =解得:B =,要求离子第一次加速后不能打在板上,有12d r >且:2112qU mv =2111v qv B m r =解得:2n k <,故加速次数n 为正整数最大取21n k =- 即:B =2(1,2,3,,1)n k =-L ;(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。
经典习题1、(15分)如图所示,MN、PQ是平行金属板,板长为L,两板间距离为d,在PQ板的上方有垂直纸面向里的匀强磁场。
一个电荷量为q、质量为m的带负电粒子以速度v0从MN 板边缘沿平行于板的方向射入两板间,结果粒子恰好从PQ板左边缘飞进磁场,然后又恰好从PQ板的右边缘飞进电场。
不计粒子重力。
试求:(1)两金属板间所加电压U的大小;(2)匀强磁场的磁感应强度B的大小;(3)在图中画出粒子再次进入电场的运动轨迹,并标出粒子再次从电场中飞出的位置与速度方向。
B2.(16分)如图,在x oy平面内,MN和x轴之间有平行于y轴的匀强电场和垂直于x oy平面的匀强磁场,y轴上离坐标原点4 L的A点处有一电子枪,可以沿+x方向射出速度为v0的电子(质量为m,电量为e)。
如果电场和磁场同时存在,电子将做匀速直线运动.如果撤去电场,只保留磁场,电子将从x轴上距坐标原点3L的C点离开磁场.不计重力的影响,求:(1)磁感应强度B和电场强度E的大小和方向;(2)如果撤去磁场,只保留电场,电子将从D点(图中未标出)离开电场,求D点的坐标;(3)电子通过D点时的动能。
3.(12分)如图所示,在y>0的空间中,存在沿y轴正方向的匀强电场E;在y<0的空间中,存在沿y轴负方向的匀强电场,场强大小也为E,一电子(电量为-e,质量为m)在y 轴上的P(0,d)点以沿x轴正方向的初速度v0开始运动,不计电子重力,求:(1)电子第一次经过x轴的坐标值(2)电子在y方向上运动的周期(3)电子运动的轨迹与x轴的各个交点中,任意两个相邻交点间的距离(4)在图上画出电子在一个周期内的大致运动轨迹4.(16分)如图所示,一个质量为m=2.0×10-11kg,电荷量q=+1.0×10-5C的带电微粒(重力忽略不计),从静止开始经U=100V电压加速后,水平进入两平行金属板间的偏转电场中。
金属板长L=20cm,两板间距d=103cm。
物理复合场试题及答案一、选择题(每题3分,共30分)1. 在复合场中,一个带电粒子受到的电场力和磁场力的方向关系是()。
A. 相反B. 垂直C. 相同D. 无法确定2. 一个带正电的粒子在垂直于磁场方向的电场中做匀速圆周运动,以下说法正确的是()。
A. 粒子受到的电场力提供向心力B. 粒子受到的磁场力提供向心力C. 粒子受到的电场力和磁场力的合力提供向心力D. 粒子受到的力相互抵消3. 在复合场中,一个带电粒子做螺旋运动,其轨迹半径与哪些因素有关?()A. 粒子的电荷量B. 粒子的质量C. 磁场的强度D. 所有以上因素4. 一个带电粒子在复合场中的运动轨迹是直线,可以推断出()。
A. 粒子只受到电场力作用B. 粒子只受到磁场力作用C. 粒子受到的电场力和磁场力相互抵消D. 粒子受到的电场力和磁场力方向相反5. 在复合场中,一个带电粒子受到的电场力和磁场力大小相等,其运动状态可能是()。
A. 静止B. 匀速直线运动C. 匀速圆周运动D. 螺旋运动6. 一个带电粒子在复合场中做匀速圆周运动,其速度大小保持不变,这是因为()。
A. 电场力做功B. 磁场力不做功C. 电场力和磁场力大小相等D. 粒子的动能不变7. 在复合场中,一个带电粒子的轨迹是抛物线,可以推断出()。
A. 粒子只受到电场力作用B. 粒子只受到磁场力作用C. 粒子受到的电场力和磁场力方向相反D. 粒子受到的电场力和磁场力方向相同8. 一个带电粒子在复合场中做匀速直线运动,以下说法错误的是()。
A. 粒子受到的电场力和磁场力相互抵消B. 粒子受到的电场力和磁场力大小相等C. 粒子受到的电场力和磁场力方向相反D. 粒子受到的电场力和磁场力方向相同9. 在复合场中,一个带电粒子受到的电场力和磁场力的合力为零,其运动状态可能是()。
A. 静止B. 匀速直线运动C. 匀速圆周运动D. 加速运动10. 一个带电粒子在复合场中的运动轨迹是椭圆,可以推断出()。
学进辅导高三物理学习资料---带电粒子在电、磁场中的运动1.在图所示的坐标系中,x轴水平,y轴垂直,x轴上方空间只存在重力场,第Ⅲ象限存在沿y轴正方向的匀强电场和垂直xy平面向里的匀强磁场,在第Ⅳ象限由沿x轴负方向的匀强电场,场强大小与第Ⅲ象限存在的电场的场强大小相等。
一质量为m,带电荷量大小为q的质点a,从y轴上y=h处的P1点以一定的水平速度沿x轴负方向抛出,它经过x= -2h处的P2点进入第Ⅲ象限,恰好做匀速圆周运动,又经过y轴上方y= -2h的P3点进入第Ⅳ象限,试求:点时速度的大小和方向;⑪质点a到达P⑫第Ⅲ象限中匀强电场的电场强度和匀强磁场的磁感应强度的大小;⑬质点a进入第Ⅳ象限且速度减为零时的位置坐标象限内,既无电场也无磁场,在第三象限,存在沿y轴正方向的匀强电场和垂直xy平面(纸面)向里的均强磁场,在第四象限,存在沿y轴负方向、场强大小与第三象限电场场强相等的匀强电场。
一质量为m、电荷量为q的带电质点,从y轴上y=h处的P1点以一定的水平初速度沿x轴负方向进入第二象限。
然后经过x轴上x= -2h处的P2点进入第三象限,带电质点恰好能做匀速圆周运动.之后经过y轴上y= -2h处的P3点进入第四象限。
已知重力加速度为g.求:(1)粒子到达P2点时速度的大小和方向;(2)第三象限空间中电场强度和磁感应强度的大小;限内存在着垂直于纸面向里的匀强磁场。
一个质量为m ,电量为+q 的带电质点,在第三象限中以沿x 轴正方向的速度v 做匀速直线运动,第一次经过y 轴上的M 点,M 点距坐标原点O 的距离为L ;然后在第四象限和第一象限的电磁场中做匀速圆周运动,质点第一次经过x 轴上的N 点距坐标原点O 的距离为L 3。
已知重力加速度为g ,求:⑪匀强电场的电场强度E 的大小。
⑫匀强磁场的磁感应强度B 1=2×10—2T 、方向垂直纸面向里的匀强磁场,虚线过y 轴上的P 点,OP =1.0m ,在x ≥O 的区域内有磁感应强度大小为B 2、方向垂直纸面向外的匀强磁场。
高三物理复合场练习题1. 题目描述:一个质点受到一个复合场的影响,该复合场由均匀磁场和均匀电场组成。
假设质点带电量为q,质量为m,在磁场的作用下,质点受到的磁力为Fm,电场的作用下受到的电力为Fe。
在该复合场中,质点受到的合力为F,合力的方向与合力的大小有关的变量为x。
2. 题目一:若磁场B与电场E垂直且大小相等,推导出合力F与x的关系式。
解答:由磁场B与电场E垂直且大小相等可得:Fm=qvBsinθ=qvBFe=qE其中,v为质点的速度,θ为速度与磁场方向的夹角。
根据合力的定义,有:F= Fm+Fe=qvB+qE根据叉乘向量性质,可将合力F写成向量形式:F=q(vBsinθ+E)由此可得合力F与变量x的关系式为:F=q(vBsinθ+E)x3. 题目二:若磁场B与电场E的方向相同,推导出合力F与x的关系式。
解答:由磁场B与电场E的方向相同可得:Fm=qvBsinθ=qvBFe=qE根据合力的定义,有:F= Fm+Fe=qvB+qE根据变量x的定义,有:x=vt其中,t为质点运动时间。
代入F=q(vBsinθ+E)x,得:F=q(vBsinθ+Et)综上所述,当磁场B与电场E的方向相同时,合力F与变量x的关系式为:F=q(vBsinθ+Et)4. 题目三:若质点的速度v与弦的夹角θ随时间t的变化规律为:v=a+bt,θ=ωt,推导出合力F与x的关系式。
解答:由题可知:v=a+bt,θ=ωt其中,a和b为常量,ω为角速度。
根据合力的定义,有:Fm=qvBsinθ=qvBsin(ωt)根据合力的定义,有:Fm=qvBsinθ=qvBsin(ωt)根据变量x的定义,有:x=vt即x=(a+bt)t=at+bt²代入F=q(vBsinθ+E)x,得:F=q(vBsinθ+E)(at+bt²)综上所述,当质点的速度v与弦的夹角θ随时间t的变化规律为v=a+bt、θ=ωt时,合力F与变量x的关系式为:F=q(vBsinθ+E)(at+bt²)通过以上练习题,我们能够更好地理解复合场的概念和其对质点受力的影响。
高三物理复合场例题与习题(含答案)例1.设在地面上方的真空室内,存在匀强电场和匀强磁场。
已知电场强度和磁感强度的方向是相同的,电场强度的大小E =4.0V/m ,磁感强度的大小B =0.15T 。
今有一个带负电的质点以=υ20m/s 的速度在此区域内沿垂直场强方向做匀速直线运动,求此带电质点的电量q 与质量之比q/m 以及磁场的所有可能方向。
例2.一带电液滴在如图所示的正交的匀强电场和匀强磁场中运动。
已知电场强度为E ,竖直向下;磁感强度为B ,垂直纸面向内。
此液滴在垂直于磁场的竖直平面内做匀速圆周运动,轨道半径为R 。
问:(1)液滴运动速率多大?方向如何?(2)若液滴运动到最低点A 时分裂成两个液滴,其中一个在原运行方向上作匀速圆周运动,半径变为3R ,圆周最低点也是A ,则另一液滴将如何运动?例3.如图所示,半径为R 的光滑绝缘竖直环上,套有一电量为q 的带正电的小球,在水平正交的匀强电场和匀强磁场中。
已知小球所受电场力与重力的大小相等。
磁场的磁感强度为B 。
则 (1)在环顶端处无初速释放小球,小球的运动过程中所受的最大磁场力。
(2)若要小球能在竖直圆环上做完整的圆周运动,在顶端释放时初速必须满足什么条件?例4.如图所示,直角坐标系xOy 位于竖直平面内,其x 轴沿水平方向,在该空间有一沿水平方向足够长的匀强磁场区域,磁场方向垂直于xOy 平面向里,磁感强度为B ,磁场区域的上、下边界面距x 轴的距离均为d 。
一质量为m 、电量为q 的带正电的微粒从坐标原点O 沿+x 方向发射。
求:(1)若欲使该微粒发射后一直沿x 轴运动,求发射速度的值v 0(2)若欲使发射后不从磁场区域的上界面飞出磁场,求发射速度允许的最大值v 0m复合场(习题)1. 如图3-4-1所示,带电平行板中匀强电场竖直向上,匀强磁场方向 垂直纸面向里,某带电小球从光滑绝缘轨道上的a 点滑下,经过轨道 端点P 进入板间后恰好沿水平方向做直线运动,现使小球从稍低些的 b 点开始自由滑下,在经过P 点进入板间的运动过程中 A 、 动能将会增大 B 、其电势能将会增大C 、 受的洛伦兹力增大D 、小球所受的电场力将会增大2.如图3-4-2所示的正交电磁场区,有两个质量相同、带同种电荷的带电粒子,电量分别为q a 、、q b ,它们沿水平方向以相同速率相对着直线穿过电磁场区,则A 、它们若带负电,则 q a 、>q bB 、它们若带负电,则 q a 、<qb C 、它们若带正电,则 q a 、>q b D 、它们若带正电,则q a 、<q b3.氢原子进入如图3-4-3所示的磁场中,在电子绕核旋转的角速度不变的前提下 A 、如电子逆时针转,旋转半径增大 B 、如电子逆时针转,旋转半径减小 C 、如电子顺时针转,旋转半径增大 D 、如电子顺时针转,旋转半径减小4.如图3-4-4所示,带电粒子在没有电场和磁场的空间以v 从坐标原点O 沿x 轴方向做匀速直线运动,若空间只存在垂直于xoy 平面的匀强磁场时,粒子通过P 点时的动能为E k ;当空间只存在平行于y 轴的匀强电场时,则粒子通过P 点时的动能为 A 、E k B 、2E k C 、4E k D 、5E k5.质量为m ,电量为q 带正电荷的小物块,从半径为R 场强度E ,磁感应强度为B 的区域内,如图3-4-56.如图3-4-6所示,空间分布着图示的匀强电场E (宽为L )和匀强磁场B ,一带电粒子质量为m ,电量为q (重力不计)。
从A 点由静止释放后经电场加速后进入磁场,穿过中间磁场进入右边磁场后能按某一路径再返回A 点而重复前述过程。
求中间磁场的宽度d 和粒子的运动周期。
(虚线为分界线)7.将氢原子中电子的运动看作是绕氢核做匀速圆周运动,这时在研究电子运动的磁效应时,可将电子的运动等效为一个环形电流,环的半径等于电子的轨道半径r 。
现对一氢原子加上一外磁场,磁场的磁感应强度大小为B ,方向垂直电子的轨道平面。
这时电子运动的等效电流用I 1来表示。
现将外磁场反向,但磁场的磁感应强度大小不变,仍为B ,这时电子运动的等效电流用I 2来表示。
假设在加上外磁场以及外磁场反向时,氢核的位置、电子运动的轨道平面以及轨道半径都不变,求外磁场反向前后电子运动的等效电流的差,即| I 1— I 2 |等于多少?用m 和e 表示电子的质量和电量。
a8.如图3-4-7所示,质量为m ,电量为Q 的金属滑块以某一初速度沿水平放置的木板进入电磁场空间,匀强磁场的方向垂直纸面向里,匀强电场的方向水平且平行纸面;滑块和木板间的动摩擦因数为 ,已知滑块由A 点至B 点是匀速的,且在B 点与提供电场的电路的控制开关K 相碰,使电场立即消失,滑块也由于碰撞动能减为碰前的1/4,其返回A 点的运动恰好也是匀速的,若往返总时间为T ,AB 长为L ,求:(1)滑块带什么电?场强E 的大小和方向?(2)磁感应强度的大小为多少?(3)摩擦力做多少功?9.如图3-4-8所示,在xoy 竖直平面内,有沿+x 方向的匀强电场和垂直xoy 平面指向纸内的匀强磁场,匀强电场的场强E =12N/C ,匀强磁场的磁感应强度B =2T 。
一质量m =4×10-5㎏、电量q =2.5×10-5C 的带电微粒,在xoy 平面内作匀速直线运动,当它过原点O 时,匀强磁场撤去,经一段时间到达x 轴上P 点,求P 点到原点O 的距离和微粒由O 到P 的运动时间。
10.如图3-4-9所示,矩形管长为L ,宽为d ,高为h ,上下两平面是绝缘体,相距为d 的两个侧面为导体,并用粗导线MN 相连,令电阻率为ρ的水银充满管口,源源不断地流过该矩形管。
若水银在管中流动的速度与加在管两端的压强差成正比,且当管的两端的压强差为p 时,水银的流速为v 0。
今在矩形管所在的区域加一与管子的上下平面垂直的匀强磁场,磁感应强度为B (图中未画出)。
稳定后,试求水银在管子中的流速。
11.如图3-4-10所示,两水平放置的金属板间存在一竖直方向的匀强电场和垂直纸面向里的匀强磁场,磁感应强度为B ,一质量为4m 带电量为-2q 的微粒b 正好悬浮在板间正中央O 点处,另一质量为m 的带电量为q 的微粒a ,从P 点以一水平速度v 0(v 0未知)进入两板间正好做匀速直线运动,中途与B 像碰。
⑴碰撞后a 和b 分开,分开后b 具有大小为0.3 v 0的水平向右的速度,且电量为-q/2。
分开后瞬间a 和b 的加速度为多大?分开后a 的速度大小如何变化?假如O 点左侧空间足够大,则分开后a 微粒运动轨迹的最高点和O 点的高度差为多少?(分开后两微粒间的相互作用的库仑力不计)⑵若碰撞后a 、b 两微粒结为一体,最后以速度0.4 v 0从H 穿出,求H 点与O 点的高度差。
复合场(答案)【例题】例1.由题意知重力、电场力和洛仑兹力的合力为零,则有22)()(Eq Bq mg +=υ=q222E B +υ,则222EB g mq+=υ,代入数据得,=m q / 1.96C/㎏,又==E B /tan υθ0.75,可见磁场是沿着与重力方向夹角为75.0arctan =θ,且斜向下方的一切方向.例2.(1)Eq=mg ,知液滴带负电,q=mg/E ,Rm Bq 2υυ=,EBRgm BqR ==υ.(2)设半径为3R 的速率为v 1,则Rm qB 32/2211υυ=,知υυ3331===EBgRm BqR ,由动量守恒,212121υυυm m m +=,得v 2=—v .则其半径为R Bqm Bq m r ==⋅=υυ2222/.例3.(1)设小球运动到C 处v c 为最大值,此时OC 与竖直方向夹角为α,由动能定理得:ααυsin )cos 1(212EqR mgR m c ++=.而,mg Eq =故有[])45sin(21)cos sin 1(212οαααυ++=++=mgR mgR m c .当045=α时.动能有最大值)21(+mgR ,v c 也有最大值为)21(2+Rg ,)21(2+=Rg Bq f m 。
(2)设小球在最高点的速度为v 0,到达C的对称点D点的速度为v d ,由动能定理知:)21(45sin )451(2121202-=--=-mgR EqR mgR m m o o d υυ,以0>d υ代入,可得:Rg)12(20->υ。
例 4.(1)由mgBq =0υ,得Bq m g =0υ。
(2).设υυυ∆+=00m,rm Bq 2)(υυ∆=∆,2d r =,得mBqd2=∆υ,故最大值mBqdBq mg m20+=υ【练习】1、ABC .2、D. 3、BC. 4、D. 5、mEq mg R BqEq mg )(223-+-. 6、qB Eml d 223=Eq ml T 8=+Bq m37π. 7、|I 1-I 2|=πm Be 22. 8、(1)负电,q mg E μ3=,向左 (2)qlmgTB 32= mgl Eql W f μ3-=-= 9、OP=15m ,t = 1.2s 10、LB p p 02υρρυυ+=11、(1)103g a a=,向上;8069ga b =,向下。
a 作匀速圆周运动,速度大小不变。
最高点和O 点的高度差为222512q B g m 。
(2)H 点与O 点的高度差为222109qB gm。