例、在光滑的水平桌面上有一小孔0,一细绳穿过小孔, 其一端系一小球放在桌面上,另一端用手拉绳, 开始时小球绕孔运动,速率为 v1 ,半径为 r1 ,当半径变 为 r2 时 r2 f拉 求小球的速率 v2 解:小球受力:
f拉
L2 = L1
因f 拉为有心力
r r L2 = L1
r1 mv 1 = r2 mv 2 r1 v 2 = v1 显然 v 2 v1 r2
' 2
m
.
R
m1 Mf
' T1
m2
m
如图
T2'
T2
对m2: m 2 g - T2 = m 2 a
- m1 g = m1a
' 1
T1
m1 g
T 对m: R - T R - M f = J
m2 g
1 2 ' ' a = R , J = mR , T1 = T1 , T2 = T2 2
联立求得: = a
r M
M = rF sin = Fd
o
r r
r M
r F
r F应理解为在垂直于转轴的平面内。 r o 若不在,则将 F 分解为平行 于转轴的分量和垂直于转轴 的分量.只有垂直于转轴的力 的分量才对转轴有力矩.
r 20 F 的方向与转轴平行.
r F
r r
合外力矩 M = r1 F1 sin 1 - r2 F2 sin 2 r3 F3 sin 3
r Fi = m
r dv c
dt
注意各量的 物理意义
质心运动定理说明:不管物体的质量如何分布、外力作用 在什么地方,质心的运动就象物体的全部质量都集中于此, 而且所有的外力都作用于其上的一个质点的运动一样。 (例:炮弹在飞行轨道上爆炸 ……见教材p98--例3)