= C119 + C118 + ⋯ + C112 = 124. (3)原式 = C44 + C43 + C53 + ⋯ + C130
= C54 + C53 + C63 + ⋯ + C130 = C64 + C63 + ⋯ + C130 = C74 + C73 + C83 + C93 + C130 = C84 + C83 + C93 + C130
(4)规定每两人相互通话一次,5人共通了多少次电话? (5)5个人相互各写一封信,共写了多少封信?
典例透析
题型一
题型二
题型三
题型四
解:(1)取出3个数字后,如果改变3个数字的顺序,会得到不同的三 位数,此问题不但与取出元素有关,而且与元素的安排顺序有关,是 排列问题.
(2)取出3个数字之后,无论怎样改变这3个数字之间的顺序,其和 均不变,此问题只与取出元素有关,而与元素的安排顺序无关,是组 合问题.
活动,则至多有2名男运动员的选法有
.
解析:(1)第一步选男运动员有C41种选法,第二步选女运动员有C61
种选法.所以共有C41C61 = 24 种选法. (2)“至多有 2 名”包括“没有”“有 1 名”“有 2 名”三种情况.
①没有男运动员时,有C63种选法; ②有 1 名男运动员时,有C41C62种选法; ③有 2 名男运动员时,有C42C61种选法.
所以共有C63 + C41C62 + C42C61 = 20 + 60 + 36 = 116 种选法.
答案:(1)D (2)116种