四种回归设计方法的比较
- 格式:doc
- 大小:187.35 KB
- 文档页数:7
回归分析的回归方法
回归分析是一种统计分析方法,用于探索和建立自变量与因变量之间的关系。
在回归分析中,有多种回归方法可以使用,其中常见的包括线性回归、多项式回归、多元线性回归、逐步回归、岭回归和Lasso回归等。
1. 线性回归:最简单也是最常用的回归方法,假设自变量和因变量之间存在线性关系,通过最小化残差平方和来估计模型参数。
2. 多项式回归:在线性回归的基础上,将自变量的高阶项添加进模型,以更好地拟合非线性关系。
3. 多元线性回归:包含多个自变量和一个因变量的回归方法,考虑多个因素对因变量的影响。
4. 逐步回归:通过逐步选择自变量,不断添加或删除变量,以找出最合适的自变量集合。
5. 岭回归:一种通过引入正则化项来控制模型复杂度的回归方法,可以有效应对高维数据和共线性问题。
6. Lasso回归:与岭回归类似,也是一种使用正则化项来约束模型复杂度的方法,与岭回归不同的是,Lasso回归可以自动进行变量选择,倾向于将某些系数设为
零。
这些回归方法各有特点,选择合适的方法取决于具体问题的特点和数据的性质。
统计学中的回归分析方法回归分析是统计学中经常被使用的一种方法,它用于研究两个或多个变量之间的关系。
通过回归分析,我们可以预测一个变量如何随着其他变量的变化而变化,或者确定变量之间的因果关系。
在本文中,我将介绍几种常见的回归分析方法,帮助读者更好地理解和应用这一统计学方法。
一、简单线性回归分析简单线性回归分析是回归分析的最基本形式。
它适用于只涉及两个变量的场景,并且假设变量之间的关系可以用一条直线来描述。
在进行简单线性回归分析时,我们需要收集一组观测数据,并使用最小二乘法来拟合直线模型,从而得到最优的回归方程。
通过该方程,我们可以根据自变量的取值预测因变量的值,或者评估自变量对因变量的影响程度。
二、多元线性回归分析多元线性回归分析扩展了简单线性回归模型,允许多个自变量同时对因变量进行解释和预测。
当我们要考察一个因变量与多个自变量之间的复杂关系时,多元线性回归分析是一种有力的工具。
在进行多元线性回归分析时,我们需收集多组观测数据,并建立一个包含多个自变量的回归模型。
通过拟合最优的回归方程,我们可以分析每个自变量对因变量的影响,进一步理解变量之间的关系。
三、逻辑回归分析逻辑回归分析是回归分析的一种特殊形式,用于处理因变量为二元变量(如真与假)时的回归问题。
逻辑回归分析的目标是根据自变量的取值,对因变量的分类进行概率预测。
逻辑回归模型是通过将线性回归模型的输出映射到一个概率区间(通常为0到1)来实现的。
逻辑回归在实际应用中非常广泛,如市场预测、医学诊断等领域。
四、岭回归分析岭回归是一种用于解决多重共线性问题的回归分析方法。
多重共线性指多个自变量之间存在高度相关性的情况,这会导致回归分析结果不稳定。
岭回归通过在最小二乘法的基础上加入一个惩罚项,使得回归系数的估计更加稳定。
岭回归分析的目标是获得一个优化的回归方程,从而在存在多重共线性的情况下提高预测准确度。
五、非线性回归分析在某些情况下,变量之间的关系不是线性的,而是呈现出曲线或其他非线性形态。
回归分析方法总结全面回归分析是一种常用的统计分析方法,用于建立一个或多个自变量与因变量之间的关系模型,并进行预测和解释。
在许多研究领域和实际应用中,回归分析被广泛使用。
下面是对回归分析方法的全面总结。
1.简单线性回归分析:简单线性回归分析是最基本的回归分析方法之一,用于建立一个自变量和一个因变量之间的线性关系模型。
它的方程为Y=a+bX,其中Y是因变量,X是自变量,a是截距,b是斜率。
通过最小二乘法估计参数a和b,可以用于预测因变量的值。
2. 多元线性回归分析:多元线性回归分析是在简单线性回归的基础上扩展的方法,用于建立多个自变量和一个因变量之间的线性关系模型。
它的方程为Y = a + b1X1 + b2X2 + ... + bnXn,其中n是自变量的个数。
通过最小二乘法估计参数a和bi,可以用于预测因变量的值。
3.对数线性回归分析:对数线性回归分析是在简单线性回归或多元线性回归的基础上,将自变量或因变量取对数后建立的模型。
这种方法适用于因变量和自变量之间呈现指数关系的情况。
对数线性回归分析可以通过最小二乘法进行参数估计,并用于预测因变量的对数。
4.多项式回归分析:多项式回归分析是在多元线性回归的基础上,将自变量进行多项式变换后建立的模型。
它可以用于捕捉自变量和因变量之间的非线性关系。
多项式回归分析可以通过最小二乘法估计参数,并进行预测。
5.非线性回归分析:非线性回归分析是一种更一般的回归分析方法,用于建立自变量和因变量之间的非线性关系模型。
这种方法可以适用于任意形式的非线性关系。
非线性回归分析可以通过最小二乘法或其他拟合方法进行参数估计,用于预测因变量的值。
6.逐步回归分析:逐步回归分析是一种变量选择方法,用于确定最重要的自变量对因变量的解释程度。
它可以帮助选择最佳的自变量组合,建立最合适的回归模型。
逐步回归分析可以根据其中一种准则(如逐步回归F检验、最大似然比等)逐步添加或删除自变量,直到最佳模型被找到为止。
常用的回归算法
回归算法是一种机器学习算法,用于预测数值型变量的值。
在实际应用中,回归算法被广泛应用于金融、医学、工业等领域中。
常用的回归算法包括线性回归、岭回归、lasso回归、弹性网络回归、多项式回归等。
线性回归是最简单的回归算法之一,它使用线性函数来拟合目标变量和独立变量之间的关系。
线性回归最常用的方法是最小二乘法,它试图找到最小化误差平方和的直线。
岭回归是一种正则化线性回归方法,它通过增加正则化项来减少过拟合问题。
这个正则化项是L2范数,它通过限制系数的大小来控制过拟合。
lasso回归也是一种正则化线性回归方法,它使用L1范数作为正则化项,它的优点是可以自动选择特征,缺点是它无法处理具有共线性的特征。
弹性网络回归结合了岭回归和lasso回归的优点,同时使用L1和L2范数作为正则化项。
多项式回归适用于非线性数据集。
它使用多项式函数来拟合目标变量
和独立变量之间的关系。
在选择适合的回归算法时,需要考虑目标变量和独立变量之间的关系,以及数据的特点和要求。
同时,还需要进行交叉验证和调参来提高模
型的准确性和稳定性。
总之,回归算法是机器学习中重要的技术之一,可以应用于多个领域中。
机器学习从业者需要掌握各种回归算法的原理和应用,以提高模
型的准确性和稳定性。
机器学习中的五种回归模型及其优缺点1.线性回归模型:线性回归模型是最简单和最常用的回归模型之一、它通过利用已知的自变量和因变量之间的线性关系来预测未知数据的值。
线性回归模型旨在找到自变量与因变量之间的最佳拟合直线。
优点是简单易于实现和理解,计算效率高。
缺点是假设自变量和因变量之间为线性关系,对于非线性关系拟合效果较差。
2.多项式回归模型:多项式回归模型通过添加自变量的多项式项来拟合非线性关系。
这意味着模型不再只考虑自变量和因变量之间的线性关系。
优点是可以更好地拟合非线性数据,适用于复杂问题。
缺点是容易过度拟合,需要选择合适的多项式次数。
3.支持向量回归模型:支持向量回归模型是一种非常强大的回归模型,它通过在数据空间中构造一个最优曲线来拟合数据。
支持向量回归模型着眼于找到一条曲线,使得在该曲线上离数据点最远的距离最小。
优点是可以很好地处理高维数据和非线性关系,对离群值不敏感。
缺点是模型复杂度高,计算成本也较高。
4.决策树回归模型:决策树回归模型将数据集划分为多个小的决策单元,并在每个决策单元中给出对应的回归值。
决策树由一系列节点和边组成,每个节点表示一个特征和一个分割点,边表示根据特征和分割点将数据集分配到下一个节点的规则。
优点是容易理解和解释,可处理离散和连续特征。
缺点是容易过度拟合,对噪声和离群值敏感。
5.随机森林回归模型:随机森林回归模型是一种集成学习模型,它基于多个决策树模型的预测结果进行回归。
随机森林通过对训练数据进行有放回的随机抽样来构建多个决策树,并利用每个决策树的预测结果进行最终的回归预测。
优点是可以处理高维数据和非线性关系,对噪声和离群值不敏感。
缺点是模型较为复杂,训练时间较长。
总之,每种回归模型都有其独特的优点和缺点。
选择适当的模型取决于数据的特点、问题的要求和计算资源的可用性。
在实际应用中,研究人员需要根据具体情况进行选择,并对模型进行评估和调整,以获得最佳的回归结果。
其主要思路是将对异常值十分敏感的经典最小二乘回归中的目标函数进行修改。
经典最小二乘回归以使误差平方和达到最小为其目标函数。
因为方差为一不稳健统计量,故最小二乘回归是一种不稳健的方法。
为减少异常点的作用,对不同的点施加不同的权重,残差小的点权重大,残差大的店权重小。
2、变系数回归地理位置加权3、偏最小二乘回归长期以来,模型式的方法和认识性的方法之间的界限分得十分清楚。
而偏最小二乘法则把它们有机的结合起来了,在一个算法下,可以同时实现回归建模(多元线性回归)、数据结构简化(主成分分析)以及两组变量之间的相关性分析(典型相关分析)。
偏最小二乘法在统计应用中的重要性体现在以下几个方面:偏最小二乘法是一种多因变量对多自变量的回归建模方法。
偏最小二乘法可以较好的解决许多以往用普通多元回归无法解决的问题。
偏最小二乘法之所以被称为第二代回归方法,还由于它可以实现多种数据分析方法的综合应用。
能够消除自变量选取时可能存在的多重共线性问题。
普通最小二乘回归方法在自变量间存在严重的多重共线性时会失效。
自变量的样本数与自变量个数相比过少时仍可进行预测。
4、支持向量回归能较好地解决小样本、非线性、高维数和局部极小点等实际问题。
传统的化学计量学算法处理回归建模问题在拟合训练样本时,要求“残差平方和”最小,这样将有限样本数据中的误差也拟合进了数学模型,易产生“过拟合”问题,针对传统方法这一不足之处,SVR采用“ε不敏感函数”来解决“过拟合”问题,即f(x)用拟合目标值yk时,取:f(x)=∑SVs(αi-α*i)K(xi,x)上式中αi和α*i为支持向量对应的拉格朗日待定系数,K(xi,x)是采用的核函数[18],x为未知样本的特征矢量,xi为支持向量(拟合函数周围的ε“管壁”上的特征矢量),SVs为支持向量的数目.目标值yk拟合在yk-∑SVs(αi-α*i)K(xi,xk)≤ε时,即认为进一步拟合是无意义的。
5、核回归核函数回归的最初始想法是用非参数方法来估计离散观测情况下的概率密度函数(pdf)。
统计学中的回归分析方法回归分析是一种常用的统计学方法,旨在分析变量之间的关系并预测一个变量如何受其他变量的影响。
回归分析可以用于描述和探索变量之间的关系,也可以应用于预测和解释数据。
在统计学中,有多种回归分析方法可供选择,本文将介绍其中几种常见的方法。
一、简单线性回归分析方法简单线性回归是最基本、最常见的回归分析方法。
它探究了两个变量之间的线性关系。
简单线性回归模型的方程为:Y = β0 + β1X + ε,其中Y是因变量,X是自变量,β0和β1是回归系数,ε是残差项。
简单线性回归的目标是通过拟合直线来最小化残差平方和,从而找到最佳拟合线。
二、多元线性回归分析方法多元线性回归是简单线性回归的扩展形式,适用于多个自变量与一个因变量之间的关系分析。
多元线性回归模型的方程为:Y = β0 +β1X1 + β2X2 + ... + βnXn + ε,其中X1, X2, ..., Xn是自变量,β0, β1,β2, ..., βn是回归系数,ε是残差项。
多元线性回归的目标是通过拟合超平面来最小化残差平方和,从而找到最佳拟合超平面。
三、逻辑回归分析方法逻辑回归是一种广义线性回归模型,主要用于处理二分类问题。
逻辑回归将线性回归模型的输出通过逻辑函数(如Sigmoid函数)映射到概率范围内,从而实现分类预测。
逻辑回归模型的方程为:P(Y=1|X) =1 / (1 + exp(-β0 - β1X)),其中P(Y=1|X)是给定X条件下Y=1的概率,β0和β1是回归系数。
逻辑回归的目标是通过最大似然估计来拟合回归系数,从而实现对未知样本的分类预测。
四、岭回归分析方法岭回归是一种用于处理多重共线性问题的回归分析方法。
多重共线性是指自变量之间存在高度相关性,这会导致估计出的回归系数不稳定。
岭回归通过在最小二乘法的目标函数中引入一个正则化项(L2范数),从而降低回归系数的方差。
岭回归模型的方程为:Y = β0 +β1X1 + β2X2 + ... + βnXn + ε + λ∑(β^2),其中λ是正则化参数,∑(β^2)是回归系数的平方和。
回归分析方法总结全面回归分析是一种统计分析方法,用于研究变量之间的作用关系。
它由一个或多个自变量和一个或多个因变量组成。
回归分析的目的是通过收集样本数据,探讨自变量对因变量的影响关系,即原因对结果的影响程度。
建立一个适当的数学模型来反映变量之间关系的统计分析方法称为回归方程。
回归分析可以分为一元回归分析和多元回归分析。
一元回归分析是对一个因变量和一个自变量建立回归方程。
多元回归分析是对一个因变量和两个或两个以上的自变量建立回归方程。
回归方程的表现形式不同,可以分为线性回归分析和非线性回归分析。
线性回归分析适用于变量之间是线性相关关系的情况,而非线性回归分析适用于变量之间是非线性相关关系的情况。
回归分析的主要内容包括建立相关关系的数学表达式、依据回归方程进行回归预测和计算估计标准误差。
建立适当的数学模型可以反映现象之间的相关关系,从数量上近似地反映变量之间变动的一般规律。
依据回归方程进行回归预测可以估计出因变量可能发生相应变化的数值。
计算估计标准误差可以分析回归估计值与实际值之间的差异程度以及估计值的准确性和代表性。
一元线性回归分析是对一个因变量和一个自变量建立线性回归方程的方法。
它的特点是两个变量不是对等关系,必须明确自变量和因变量。
如果x和y两个变量无明显因果关系,则存在着两个回归方程:一个是以x为自变量,y为因变量建立的回归方程;另一个是以y为自变量,x为因变量建立的回归方程。
若绘出图形,则是两条斜率不同的回归直线。
回归方程的估计值;n——样本容量。
在计算估计标准误差时,需要注意样本容量的大小,样本容量越大,估计标准误差越小,反之亦然。
5.检验回归方程的显著性建立回归方程后,需要对其进行显著性检验,以确定回归方程是否具有统计学意义。
常用的检验方法是F检验和t检验。
F检验是通过比较回归平方和与残差平方和的大小关系,来判断回归方程的显著性。
若F值大于临界值,则拒绝原假设,认为回归方程显著。
t检验则是通过对回归系数进行假设检验,来判断回归方程中各回归系数的显著性。
常⽤回归分析⽅法⼤荟萃(⼀)常⽤回归分析⽅法⼤荟萃(⼀)logistic回归、poission回归、probit回归、cox回归回归分析可以说是统计学中内容最丰富、应⽤最⼴泛的分⽀。
这⼀点⼏乎不带夸张。
包括最简单的t检验、⽅差分析也都可以归到线性回归的类别。
⽽卡⽅检验也完全可以⽤logistic回归代替。
众多回归的名称张⼝即来的就有⼀⼤⽚,线性回归、logistic回归、cox回归、poission回归、probit回归等等等等,可以⼀直说的你头晕。
为了让⼤家对众多回归有⼀个清醒的认识,这⾥简单地做⼀下总结:1,先说线性回归,这是我们学习统计学时最早接触的回归,就算其它的你都不明⽩,最起码你⼀定要知道,线性回归的因变量是连续变量,⾃变量可以是连续变量,也可以是分类变量。
如果只有⼀个⾃变量,且只有两类,那这个回归就等同于t检验。
如果只有⼀个⾃变量,且有三类或更多类,那这个回归就等同于⽅差分析。
如果有2个⾃变量,⼀个是连续变量,⼀个是分类变量,那这个回归就等同于协⽅差分析。
所以线性回归⼀定要认准⼀点,因变量⼀定要是连续变量。
当然还有其它条件,⽐如独⽴性、线性、等⽅差性、正态性,这些说起来就话长了,⽽且在前⾯的⼏篇⽂章中我已经逐个介绍了,这⾥就不罗嗦了。
2, logistic回归,与线性回归并成为两⼤回归,应⽤范围⼀点不亚于线性回归,甚⾄有青出于蓝之势。
因为logistic回归太好⽤了,⽽且太有实际意义了。
解释起来直接就可以说,如果具有某个危险因素,发病风险增加2.3倍,听起来多么地让⼈通俗易懂。
线性回归相⽐之下其实际意义就弱了。
logistic回归与线性回归恰好相反,因变量⼀定要是分类变量,不可能是连续变量。
分类变量既可以是⼆分类,也可以是多分类,多分类中既可以是有序,也可以是⽆序。
⼆分类logistic回归有时候根据研究⽬的⼜分为条件logistic回归和⾮条件logistic回归。
条件logistic回归⽤于配对资料的分析,⾮条件logistic回归⽤于⾮配对资料的分析,也就是直接随机抽样的资料。
你应该要掌握的7种回归分析方法回归分析是一种常用的数据分析方法,用于研究自变量与因变量之间的关系。
在实际应用中,有许多不同的回归分析方法可供选择。
以下是应该掌握的7种回归分析方法:1. 简单线性回归分析(Simple Linear Regression):简单线性回归是回归分析中最简单的方法之一、它是一种用于研究两个变量之间关系的方法,其中一个变量是自变量,另一个变量是因变量。
简单线性回归可以用来预测因变量的值,基于自变量的值。
2. 多元线性回归分析(Multiple Linear Regression):多元线性回归是在简单线性回归的基础上发展起来的一种方法。
它可以用来研究多个自变量与一个因变量之间的关系。
多元线性回归分析可以帮助我们确定哪些自变量对于因变量的解释最为重要。
3. 逻辑回归(Logistic Regression):逻辑回归是一种用于预测二分类变量的回归分析方法。
逻辑回归可以用来预测一个事件发生的概率。
它的输出是一个介于0和1之间的概率值,可以使用阈值来进行分类。
4. 多项式回归(Polynomial Regression):多项式回归是回归分析的一种扩展方法。
它可以用来研究变量之间的非线性关系。
多项式回归可以将自变量的幂次作为额外的变量添加到回归模型中。
5. 岭回归(Ridge Regression):岭回归是一种用于处理多重共线性问题的回归分析方法。
多重共线性是指自变量之间存在高度相关性的情况。
岭回归通过对回归系数进行惩罚来减少共线性的影响。
6. Lasso回归(Lasso Regression):Lasso回归是另一种可以处理多重共线性问题的回归分析方法。
与岭回归不同的是,Lasso回归通过对回归系数进行惩罚,并使用L1正则化来选择最重要的自变量。
7. Elastic Net回归(Elastic Net Regression):Elastic Net回归是岭回归和Lasso回归的结合方法。
四种回归设计方法比较表试验设计方法一次回归正交二次回归正交二次回归正交旋转二次回归通用旋转特点正交性在p维因素空间内,如果试验方案使所有j个因素的不同水平x ij 满足:);,...,2,1;,...,2,1;,...,2,1(11jtNtxxNjNixNiitijNiij≠=====∑∑==则该方案具有正交性。
则,一次回归正交、二次回归正交,及二次回归正交旋转试验均具有正交性,具有以下特点:1.利用正交试验设计安排试验,运用回归分析方法处理数据;2.减少试验次数,适用于因素水平不太多的多因素试验;3.“均匀分散,整齐可比”;4.由于试验设计的正交性,消除回归系数之间的相关性,使其具有独立性。
注:二次回归正交旋转中,由公式pmmc2)1(42/1-+=计算出m0为整数时,则旋转组合设计是完全正交的;当m0不为整数时,则旋转组合设计是近似正交的。
一次项系数b j与交互项系数b ij具有正交性,但常数项b0与平方项回归系数b jj,以及各平方项回归系数b jj之间均存在相关,因此不具有正交性。
旋转性具有旋转性无具有旋转性(在p维因素空间中,若使用方案使得试验指标预测值ŷ的预测方差仅与试验点到试验中心的距离ρ有关,而与方向无关,因此具有旋转性。
)通用性无具有通用性(各试验点与中心的距离ρ在因子空间编码值区间0< ρ<1范围内,其预测值ŷ的方差基本相等,即具有通用性。
)优点科学地安排实验,用最少的试验次数,获得最全面的试验信息,并对试验结果进行科学分析,从而得到最佳实验条件,迅速建立经验公式,简化计算。
1.中心点试验次数m0有所减少。
2.试验方案具有通用性与旋转性。
消除回归系数之间的相关性,使其具有独立性,剔除回归方程某一变量时,其余变量的回归系数不变。
1.可直接比较各点预测值的好坏,找出预测值相对较优的区域;2.有助于寻找最优生产的过程中排除误差的干扰。
缺点1.只适用于因素水平不太多的多因素试验,且水平数一般不大于3;2.适用性具有局限,一次回归方程经检验可能在区域内部拟合不好。
试验指标预测值ŷ的方差依靠试验点在p维空间的位置,影响不同回归值之间的直接比较。
1.中心试验次数明显增加,对于试验费用昂贵或试验数据难以取得的研究不利。
2.在不同半径球面上各试验点的预测值ŷ的方差不等,不便于比较。
常数项b0与平方项回归系数b jj、以及各平方项回归系数b jj 存在相关,牺牲了部分正交性而达到一致精度的要求。
因素水平编码试验次数NN(不包括零水平试验次数) 222+=≥++=pcCqNmpmNm0根据试验设计需求而定pmmmpmNc2)1(422/1-+=++=m0由公式求得2mpmNc++=m0查相关工具表或由公式求得确定星号臂r无2)2(2cccmmmpmr-++=⎪⎩⎪⎨⎧==-实施实施全面实施4/1,22/1,1,0,24irip中心化处理无),...,2,1;,...,2,1(,1122pjNixNxxNiijjj==-='∑=无编 码 公 式jjj j jjj j j j z z x p j z z p j z z z ∆-==-=∆=+=012210),...,2,1(,2),...,2,1(,2jjj j jjj j j j z z x p j r z z p j z z z ∆-==-=∆=+=002210),...,2,1(,),...,2,1(,2回 归 方 程 的 计 算回 归 系 数 计 算),...,2,1(1,1;111100p j y x x N N B b y x N N B b y y N N B b Nk i i ij ik kj kj Ni i ij j j Ni i ========∑∑∑====其中,),...,2,1;,...,2,1;,...,2,1(,,,110N k N j N i y kx x B y x B y B i ij i kj Ni i ij j Ni i ======∑∑∑==),...,2,1;,...,2,1()(,)(,;1121211121100p j p k x y x S B b j k x x y x x S B b x y x S B b y y N N B b Ni ijNi i ij jjjj jj Nk i ij ik Nk i iij ik ij kj kj N i ij N i i ij j jj Ni i ==''==≠===='===∑∑∑∑∑∑∑=========其中,),...,2,1;,...,2,1(,,)(,)(,)(,,,121212111210p j p k y x B x S j k y x x B j k x x S y x B x S y B i Ni ij jj Ni ij jj Ni i ij ik kj Ni ij ik kj Ni i ij j Ni ij j Ni i =='='=≠=≠====∑∑∑∑∑∑∑=======pj BG B G F EB b pk j k j m B b pj h B b BE KB b pk kkjj jj cjk jk j j pj j,...,2,1)(,...,2,1,,...,2,110100=+-+==<===+=∑∑==其中,ini ij jj ni iik ij jk n i ii j ni iy xB y x x B yx B yB ∑∑∑∑========121110K 、E 、F 、G ……可通过均匀二次回归旋转设计表查得,也可通过公式求得。
[][])c 2121412442m -()1()2(2)1(222N e H G e p Nm p Nf H F er H E pe Nm p Nf r H r m f r m e c c c c ---=---+=-=--+=+=+=回 归 方 程 的 确 定pp x b x b x b b y++++=......ˆ22110∑∑∑=<='+++'=p j jk pj j jj j i ij j j x b x x b x b b y110ˆ , 其中,),...,2,1;,...,2,1(,1122p j N i x N x x N i ij j j ==-='∑=带入上式,得:∑∑∑=<=+++=p j ji pj jjjjiijjjx bx x b x b b y1120ˆ∑∑∑=<=+++=pj jjj ji j i ij j j jj x bx x b x b b y 12120ˆ 回 归 方 程总偏差平方和及总自由度1,)(12112-=-=∑∑==N f y N y S T Ni i Ni iT及其系数的检验回归偏差平方和及其自由度2/)1(,)1-(1+===∑=ppfQSbBQQppjjQjjj1-1-)(,,2211222+==<==++==<==∑∑∑pcQpjjjpj jiijjQjjjjjjijijijjjjCmfQQQSSBQqpSBQSBQ,1-122+=-=-=pcQeTQCmfSSS注:通过S e求解S Q剩余偏差平方和及其自由度1--=-=QeQTefNfSSS,1,112--=---=∑∑∑∑=<==QepjjjjjjiijijpjjjNiiefNfBbBbBbyS显著性检验),(eQeeQQ ffFfSfSFα>=, 表明回归方程在α平上显著。
回归系数的显著性检验),(ejjffFFα>, 表明该因素的回归系数在α水平上显著;反之,则表明该因素的回归系数在α水平上不显著。
)(//,/,/11误误误误误误误误误fttfFSbtfSmbtfSebtfKSbtjjjjeijijjjα>====--也可采用F检验。
失拟性检验用t检验法:MNSSffybtMfyySeeMjj11,1,)(1+++-=-=-=∑=若t < tα(f e,f0),则认为系数b0与无显著差异,说明回归方程在被研究区域中心拟合很好;若t >tα(f e,f0),则表明区域中心拟合采用F检验:误误误剩误剩误误fSfSFfffSSSmfymyyySlflflflfmiimiimii//-1)(1)(211221=-==-=-=-=∑∑∑===若F < Fα(f i,f误),表示回归方程不失拟,拟合效果好,具有预测意义;若F > Fα(fi,f误),表示回归方程失拟,拟合效果不好。
情况不符,则需要考虑在回归方程中引入二次或高次项。
注意事项1.零水平试验需不小于3次,使得回归方程的失拟检验时具有足够的灵敏度。
零水平试验次数必须根据公式求得或通过查询相关使用表而得,不得随意选择。
2. N不包括零水平试验次数N包括零水平试验次数3.回归系数经F检验不显著的因素,可同时剔除,其余因素回归系数不受影响。
若系数检验不显著,二次项和常数项一次只能剔除一项,但一次项和交互项可以直接一次性剔除,剔除后需重新建立回归方程并检验。
4.先对回归方程进行F检验,剔除不显著项后,再对方程用编码公式进行回代。
5.正交设计求得的回归方程中,回归系数的绝对值大小反应了对应变量在回归方程中的作用大小。
结果与讨论1.对回归方程预测值ŷ(x) 和ŷ(z) 进行比较,以检验回归方程回代过程是否正确。
2.对试验结果y、回归方程预测值ŷ(z) 和论文中回归方程预测值ŷ'(z) 进行比较,并求出相对误差。
3.对求得的回归方程求偏导,以求得试验最佳条件及此条件下的预测结果,并与文献中的试验结果进行比较,检验是否为最佳结果。
若不是,分析问题所在。
4.若回归方程有剔除不显著项,对剔除前后的回归方程预测值进行对比分析,检验剔除后的回归方程优化效果。