高二数学单调性
- 格式:ppt
- 大小:1009.50 KB
- 文档页数:26
函数的单调性知识点一:函数单调性的定义、判定及证明1.单调性的定义:当x ∈ (-∞,0),x逐渐增加时,函数值y逐渐减小;而当x ∈ (0,+∞),x逐渐增加时,函数值y逐渐增加,函数的这两种性质都叫做函数的单调性【注意】函数的单调性是针对函数定义域的某个区间而言的.有些函数在它的整个定义域上不存在单调性,而在定义域的某个区间存在单调性. 如y=x2 ,定义域为R,在R上没有单调性.而在M={x|x>0}上,函数 y=x2递增。
2.增减函数的定义:对于给定区间上的函数f(x),如果对于属于这个区间的任意两个自变量的值x1、x2,当x1< x2时都有f(x1)< f(x2) ( 或f(x1)>f(x2) ) ,那么称f(x)在这个区间上是增(减)函数.3.利用单调性定义证明函数在给定区间上的单调性的一般步骤第一步:取值.即设x1、 x2,是指定区间内的任意两个值,且x1< x2;第二步:作差变形.即作差f(x)-f(x),并通过因式分解、配方、通分、分子有理化等方法,向有利于判断差的符号的方向变形;第三步:定号.确定差的正负,当符号不确定时,要进行分区间讨论;第四步:判断.由定义得出结论.4.判断函数单调性的常见方法(1)定义法(2)直接法运用已知的结论,直接得到函数的单调性,如一次函数、二次函数、反比例函数的单调性均可直接说出.直接判断函数的单调性,可用到以下结论:①函数y=-f(x)与函数y=f(x)的单调性相反.②函数f(x)恒为正或恒为负时,函数y=1/f(x)与y=f(x)的单调性相反.③在公共区间内,增函数+增函数=增函数,增函数-减函数=增函数等.(3)图像法根据函数图像的升、降情况进行判断.【思维拓展】1.一些重要函数的单调性(1)y=x+1/x的单调性:(-∞,-1﹜↗,( -1,0 )↘,(0,1)↘,﹛1,+∞﹚↗ .(2) y=ax+b/x (ab>0) 的单调性:(2.单调性与奇偶性若奇函数f(x)在区间{a,b}上单调递增(减),则f(x)在区间{-b,-a}上单调递增(减);若偶函数f(x)在区间{a,b}上单调递增(减),则f(x)在区间{-b,-a}上单调递减(增).知识点二函数单调区间及图像特点1.定义如果函数y=f(x)在某个区间上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y=f(x) 的单调区间。
高二数学《函数单调性》说课稿高二数学《函数单调性》说课稿(通用10篇)作为一位兢兢业业的人民教师,编写说课稿是必不可少的,借助说课稿可以有效提高教学效率。
说课稿应该怎么写才好呢?以下是小编为大家整理的高二数学《函数单调性》说课稿,供大家参考借鉴,希望可以帮助到有需要的朋友。
高二数学《函数单调性》说课稿篇1我是本科数学xx号选手,今天我要进行说课的课题是高中数学必修一第一章第三节第一课时《函数单调性与最大(小)值》(可以在这时候板书课题,以缓解紧张)。
我将从教材分析;教学目标分析;教法、学法;教学过程;教学评价五个方面来陈述我对本节课的设计方案。
恳请在座的专家评委批评指正。
一、教材分析1、教材的地位和作用(1)本节课主要对函数单调性的学习;(2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)(3)它是历年高考的热点、难点问题(根据具体的课题改变就行了,如果不是热点难点问题就删掉)2、教材重、难点重点:函数单调性的定义难点:函数单调性的证明重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。
(这个必须要有)二、教学目标知识目标:(1)函数单调性的定义(2)函数单调性的证明能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想情感目标:培养学生勇于探索的精神和善于合作的意识(这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)三、教法学法分析1、教法分析“教必有法而教无定法”,只有方法得当才会有效。
新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。
本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法2、学法分析“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。
函数单调性知识点总结高中一、基本概念函数单调性是指在定义域上函数值的变化趋势。
具体来说,如果对于函数f(x),当x1 < x2时有f(x1) < f(x2),则称函数f(x)在区间(x1, x2)上是增函数;如果对于函数f(x),当x1 <x2时有f(x1) > f(x2),则称函数f(x)在区间(x1, x2)上是减函数。
综合起来,可以将函数的单调性分为增函数、减函数和不单调函数。
其次,函数的单调性还与导数的正负有关。
若函数f(x)在区间I上可导,则:1. 若f'(x) > 0对于x∈I,即f(x)严格递增;2. 若f'(x) < 0对于x∈I,即f(x)严格递减;3. 若f'(x) = 0对于x∈I,即f(x)在区间I上是常数函数或拐点函数,不能确定其单调性。
对于定义在闭区间[a, b]上的函数f(x),其单调性还需考虑在端点处的情况。
若f(x)在[a, b]上是增函数,且在a处有定义域,则称f(x)在[a, b]上是关于x的增函数;若f(x)在[a, b]上是减函数,且在a处有定义域,则称f(x)在[a, b]上是关于x的减函数。
二、函数单调性的判定方法1. 利用函数的导数判定单调性函数f(x)在区间I上是增函数,当且仅当f'(x) > 0对于x∈I;函数f(x)在区间I上是减函数,当且仅当f'(x) < 0对于x∈I。
因此,判定函数的单调性,可通过求导数并考察导数的正负来进行。
2. 利用函数的增减表判定单调性若函数f(x)在区间I上可导,则可根据f'(x)的正负或0来构建增减表。
增减表是一个用来判定函数单调性的表格,通过列出各点的f'(x)值,来判断函数在各点的单调性。
三、函数单调性的应用1. 函数的最值问题对于一个定义在区间[a, b]上的函数f(x),若可判定出f(x)在[a, b]上为增函数,则f(x)在[a, b]上的最小值为f(a),最大值为f(b);若可判定出f(x)在[a, b]上为减函数,则f(x)在[a, b]上的最小值为f(b),最大值为f(a)。
函数的单调性知识梳理基础自测1. 判断正误(1) 若定义在R 上的函数f (x )满足f (2)>f (1),则f (x )是R 上的单调增函数. ( )(2) 设f (x )是R 上的单调函数,若f (2)>f (1),则f (x )是R 上的单调增函数. ( )(3) 设f (x )是定义在R 上的函数,若f (2)>f (1),则f (x )不是R 上的单调减函数. ( )2. 函数x y 1=的单调区间为3.(1)若函数y=kx +1在定义域R 上单调递减,则实数k 的取值范围是(2)若函数f (x )=在区间(1,2)上单调递减,则实数a 的取值范围是 (3)若函数k x k x f ++=2)(在区间(1,3)上单调递减,则实数k 的取值范围是知识再现1. 函数单调性的定义:2. 多个单调区间的写法:3. 常见函数的单调性:(1) y=kx +b (k )的单调区间;(2) y =(a )的单调区间; (3)x k y =(k ) 的单调区间.考点突破考点1 函数单调性的判断与证明 例1 试讨论函数1)(-=x ax x f (a )在(-1,1)上的单调性.变式训练 判断函数x x x f 1)(+=的单调性,并证明.方法总结:考点2 由函数的单调性确定参数的取值例2已知函数f (x )=,若y =f (x )在区间[-5,5]上是单调函数,求实数a 的取值范围.变式训练 已知函数)()(R a x a x x f ∈-=,若y =f (x )在上是减函数,则实数a 的取值范围是方法总结:考点3 利用函数的单调性解不等式例3 设函数f (x )是定义在[-1,1]上的奇函数,且在[0,1]上单调递减.若f (a-3) +f (9-a 2)<0,求实数a 的取值范围.变式训练 若函数f (x )是定义在R 上的偶函数,在(-]上是减函数,且f (2)=0,则使得 x f (x )<0的x 的取值范围是方法总结:随堂演练1. 已知函数f (x )=,在区间(-,4)上是减函数,则实数a 的取值范围是.2.函数y =的单调区间是.3. 已知函数f (x )=则满足不等式f (2-)> f (x )的x 的取值范围是.4. 已知函数21)(++=x ax x f 在区间(-2,)上为增函数,则实数a 的取值范围是. 5. 已知函数f (x )在R 上是增函数,且图像过点A(-2,-2),B(1,2),则不等式<2的解集为.。
高二数学复习(八)函数的单调性与奇偶性知识梳理1.函数的单调性自左向右看图象是___________自左向右看图象是__________(2)单调区间的定义若函数()f x 在区间D 上是_______或_____ ___,则称函数()f x 在这一区间上具有(严格的)单调性,________叫做()f x 的单调区间.2.奇函数、偶函数的概念一般地,如果对于函数()f x 的定义域内任意一个x ,都有____________,那么函数()f x 就叫做偶函数. 一般地,如果对于函数()f x 的定义域内任意一个x ,都有___ __________,那么函数()f x 就叫做奇函数。
奇函数的图象关于原点对称;偶函数的图象关于y 轴 对称。
3.判断函数的奇偶性判断函数的奇偶性,一般都按照定义严格进行,一般步骤是: (1)考查定义域是否关于______对称;(2) 若()f x -=______,则()f x 为奇函数; 若()f x -=________,则()f x 为偶函数; 若()f x -=________且()f x -=________,则()f x 既是奇函数又是偶函数;若()f x -)≠-()f x 且()f x -≠()f x ,则()f x 既不是奇函数又不是偶函数,即非奇非偶函数.4.奇、偶函数的性质(1)奇函数在关于原点对称的区间上的单调性_____, 偶函数在关于原点对称的区间上的单调性______(填“相同”、“相反”). (2)在公共定义域内①两个奇函数的和是_____,两个奇函数的积是偶函数; ②两个偶函数的和、积是_________;③一个奇函数,一个偶函数的积是_________.典型例题例1 . 求证:(1)函数2()231f x x x =-+-在区间3(,]4-∞上是单调递增函数; (2)函数21()1x f x x -=+在区间(,1)-∞-和(1,)-+∞上都是单调递增函数.例2.函数()f x =的单调性为________________ 例3.若()x f 是定义在()+∞,0上的增函数,则不等式()()[]28->x f x f 的解集是________ 例4.若()()33212-++-=m mx x m x f 为偶函数,则实数m 的值为_______例5.判断下列函数的奇偶性:(1)2(12)()2x xf x +=_____________;(2)()lg(f x x =_____________;(3)221()lg lgf x x x =+______________;(4)()(1f x x =-; (5)2()11f x x x =+-+_______________;(6)22(0),()(0).x x x f x x x x ⎧-+≥⎪=⎨<+⎪⎩___________例 6. 已知定义在R 上的函数()f x 是奇函数,且当0x >时,2()22f x x x =-+,求函数()f x 的解析式,并指出它的单调区间.课后练习1.函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( )A .f (x )=1x B .f (x )=(x -1)2 C .f (x )=e x D .f (x )=ln(x +1)2.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )A .)2()1()23(f f f <-<- B .)2()23()1(f f f <-<- C .)23()1()2(-<-<f f f D .)1()23()2(-<-<f f f3.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .R x x y ∈-=,3 B .R x x y ∈-=,1 C .R x x y ∈=, D .R x x y ∈=,)21( 4.下列函数中: ①1()f x x=;②()221f x x x =++;③()f x x =-;④()1f x x =-. 其中,在区间(0,2)上是递增函数的序号有 . 5.函数y x x =的递增区间是___ __.6.函数y =的递减区间是__________.7.已知函数()y f x =在定义域R 上是单调减函数,且(1)(2)f a f a +>,则实数a 的取值范围__________.8.已知函数1()21x f x =+,则该函数在R 上单调递 ,(填“增”“减”)值域为_______. 9.已知函数2()45f x x mx =-+在(,2)-∞-上是减函数,在(2,)-+∞上是增函数,则(1)f = .10.函数2)1(2)(2+-+-=x a x x f 在(4,4)-上是增函数,则实数a 的范围是 .11.给出4个函数:①5()5f x x x =+;②421()x f x x -=;③()25f x x =-+;④()x x f x e e -=-.其中奇函数的有___ ;偶函数的有____ ;非奇非偶的有 . 12. 设函数()()()xa x x x f ++=1为奇函数,则实数=a .13.若f (x )是偶函数,当x ∈[0,+∞)时,f (x )=x -1,求f (x -1)<0的解集________.14.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f _______. 15.若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,则使0)(<x f 的x 的取值范围是 . 16.已知f (x )=ax 2+bx +3a +b 是偶函数,且定义域为[a -1,2a ],则a =______,b =_______.17.已知f(x)=x 5+ax 3-bx-8,f(-2)=10,求f(2)18.已知()f x 是奇函数,在区间(2,2)-上单调递增,且有(2)(12)0f a f a ++->,求实数a 的取值范围。
函数单调性的判定和证明方法(一)、定义法步骤:①取值,设x1<x2, 并是某个区间上任意二值;②作差:;或作商:,≠0;③变形向有利于判断差值符号的方向变形;,≠0向有利于判断商的值是否大于1方向变形;(常用的变形技巧有:1、分解因式,当原函数是多项式时,作差后进行因式分解;2、通分,当原函数是分式函数时,作差后往往进行通分再进行因式分解;3、配方,当原函数是二次函数时,作差后考虑配方便于判定符号;4、分子有理化,当原函数是根式函数时,作差后往往考虑分子有理化等);④定号,判断的正负符号,当符号不确定时,需进行分类讨论;⑤下结论,根据函数单调性的定义下结论。
作差法:例1.判断函数在(-1,+∞)上的单调性,并证明.解:设-1<x1<x2,则f(x1)-f(x2)=-==∵-1<x1<x2,∴x1-x2<0,x1+1>0,x2+1>0.∴当a>0时,f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数y=f(x)在(-1,+∞)上单调递增.当a<0时,f(x1)-f(x2)>0,即f(x1)>f(x2),∴函数y=f(x)在(-1,+∞)上单调递减.例2.证明函数在区间和上是增函数;在上为减函数。
(增两端,减中间)证明:设,则因为,所以,所以,所以所以设则,因为,所以,所以所以同理,可得作商法:例3.设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n)且当x>0时,0<f(x)<1(1)求证:f(0)=1 且当x<0时,f(x)>1(2)求证:f(x)在R上是减函数.证明:(1)∵对于任意实数m,n,恒有f(m+n)=f(m)•f(n),令m=1,n=0,可得f(1)=f(1)•f(0),∵当x>0时,0<f(x)<1,∴f(1)≠0.∴f(0)=1.令m=x<0,n=-x>0,则f(m+n)=f(0)=f(-x)•f(x)=1,∴f(-x)f(x)=1,又∵-x>0时,0<f(-x)<1,∴f(x)=1f(-x)>1.(1)设x1<x2,则x1-x2<0,根据(1)可知 f(x1-x2)>1,f(x2)>0.∵f(x1)=f[(x1-x2)+x2]=f(x1-x2)•f(x2)>f(x2),∴函数f(x)在R上单调递减.(二)、运算性质法.v1.0 可编辑可修改函数函数表达式单调区间特殊函数图像一次函数)0(≠+=kbkxy当0>k时,y在R上是增函数;当0<k时,y在R上是减函数。
高二数学知识点及公式高二数学是整个高中数学学习的关键阶段,知识点和公式繁多,需要我们认真掌握和理解。
以下是对高二数学常见知识点及公式的详细梳理。
一、函数部分1、函数的单调性设函数 f(x)的定义域为 I,如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x₁、x₂,当 x₁< x₂时,都有 f(x₁) < f(x₂)(或f(x₁) > f(x₂)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。
函数单调性的判定方法:(1)定义法:设 x₁、x₂是给定区间上的任意两个自变量的值,且 x₁< x₂,函数 f(x)在给定区间上具有单调性时,作差 f(x₂) f(x₁),然后判断其正负。
(2)导数法:若函数 f(x)在区间 D 内可导,当 f'(x) > 0 时,f(x)在区间 D 上单调递增;当 f'(x) < 0 时,f(x)在区间 D 上单调递减。
2、函数的奇偶性对于函数 f(x),如果对于定义域内任意一个 x,都有 f(x) = f(x),那么函数 f(x)就叫做奇函数;如果对于定义域内任意一个 x,都有 f(x) =f(x),那么函数 f(x)就叫做偶函数。
判断函数奇偶性的步骤:(1)求出函数的定义域,判断定义域是否关于原点对称。
(2)计算 f(x),并与 f(x)进行比较。
3、指数函数指数函数的一般形式为 y = a^x(a > 0 且a ≠ 1)。
指数函数的性质:(1)当 a > 1 时,函数在定义域内单调递增;当 0 < a < 1 时,函数在定义域内单调递减。
(2)函数的图像恒过点(0, 1)。
4、对数函数对数函数的一般形式为 y =logₐx(a > 0 且a ≠ 1)。
对数函数的性质:(1)当 a > 1 时,函数在定义域内单调递增;当 0 < a < 1 时,函数在定义域内单调递减。
(2)函数的图像恒过点(1, 0)。
5、幂函数幂函数的一般形式为 y =x^α ,其中α 为常数。
1.增函数、减函数的定高中数学函数的单调性(解析版)义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的2.单调性、单调区间的定义若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.单调区间是定义域的子集,故求单调区间时应树立“定义域优先”的原则.单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分开写,不能用并集符号“∪”连接,也不能用“或”连接,只能用“,”或“和”隔开.2.常用结论结论1:增函数与减函数形式的等价变形y=f(x)在区间D上是增函数⇔对∀x1<x2,都有f(x1)<f(x2)⇔(x1-x2)[f(x1)-f(x2)]>0⇔f(x1)-f(x2)x1-x2>0;y=f(x)在区间D上是减函数⇔对∀x1<x2,都有f(x1)>f(x2)⇔(x1-x2)[f(x1)-f(x2)]<0⇔f(x1)-f(x2)x1-x2<0.结论2:单调性的运算性质(1)函数y=f(x)与函数y=f(x)+C(C为常数)具有相同的单调性.(2)若k>0,则kf(x)与f(x)单调性相同;若k<0,则kf(x)与f(x)单调性相反.(3)在公共定义域内,函数y=f(x)(f(x)>0)与()ny f x=和y(4)在公共定义域内,函数y=f(x)(f(x)≠0)与y=1f(x)单调性相反.(5)若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数.(6)若f(x),g(x)均为区间A上的增(减)函数,且f(x)>0,g(x)>0,则f(x)•g(x)也是区间A上的增(减)函数.结论3:复合函数的单调性复合函数y=f[g(x)]的单调性与y=f(u)和u=g(x)的单调性有关.若两个简单函数的单调性相同,则它们的复合函数为增函数;若两个简单函数的单调性相反,则它们的复合函数为减函数.简记:“同增异减”.结论4:奇函数与偶函数的单调性奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反.结论5:对勾函数与飘带函数的单调性对勾函数:f(x)=ax+bx(ab>0)(1)当a >0,b >0时,f (x )在(-∞,-b a ],b a ,+∞)上是增函数,在[-b a ,0),(0b a ]上是减函数;(2)当a <0,b <0时,f (x )在(-∞,-b a ],b a ,+∞)上是减函数,在[-b a ,0),(0b a]上是增函数;飘带函数:f (x )=ax +bx(ab <0)(1)当a >0,b <0时,f (x )在(-∞,0),(0,+∞)上都是增函数;(2)当a <0,b >0时,f (x )在(-∞,0),(0,+∞)上都是减函数;考点一确定函数的单调性或单调区间【方法总结】确定函数的单调性或单调区间的常用方法(1)利用已知函数的单调性,即转化为已知函数的和、差或复合函数确定函数的单调性或单调区间.(2)定义法:先求定义域,再利用单调性的定义确定函数的单调性或单调区间.(3)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,可由图象的直观性确定函数的单调性或单调区间.【例题选讲】[例1](1)下列函数中,在区间(0,+∞)内单调递减的是()A .y =1x -xB .y =x 2-xC .y =ln x -xD .y =e x -x答案A解析对于选项A ,y 1=1x 在(0,+∞)内是减函数,y 2=x 在(0,+∞)内是增函数,则y =1x-x 在(0,+∞)内是减函数,故选A .(2)下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是()A .f (x )=2xB .f (x )=|x -1|C .f (x )=1x-xD .f (x )=ln(x +1)答案C解析由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A 、D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1x 与y =-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.(3)函数f (x )=|x 2-3x +2|的单调递增区间是()A .32,+B .1,32和[2,+∞)C .(-∞,1]和32,2D ∞,32和[2,+∞)答案B解析y =|x 2-3x +2|2-3x +2,x ≤1或x ≥2,x 2-3x +2),1<x <2.如图所示,函数的单调递增区间是1,32和[2,+∞).(4)函数y =x 2+x -6的单调递增区间为__________,单调递减区间为____________.答案[2,+∞)(-∞,-3]解析令u =x 2+x -6,则y =x 2+x -6可以看作是由y =u 与u =x 2+x -6复合而成的函数.令u =x 2+x -6≥0,得x ≤-3或x ≥2.易知u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在[0,+∞)上是增函数,∴y =x 2+x -6的单调递减区间为(-∞,-3],单调递增区间为[2,+∞).(5)函数y =log 12(x 2-3x +2)的单调递增区间为__________,单调递减区间为____________.答案(-∞,1)(2,+∞)解析令u =x 2-3x +2,则原函数是y =log 12u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2.所以函数y =log 12(x 2-3x +2)的定义域为(-∞,1)∪(2,+∞).又u =x 2-3x +2的对称轴为x =32,且开口向上,所以u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数,而y =log 12u 在(0,+∞)上是单调减函数,所以y =log 12(x 2-3x +2)的单调递减区间为(2,+∞),单调递增区间为(-∞,1).【对点训练】1.给定函数①y =x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1.其中在区间(0,1)上单调递减的函数序号是()A .①②B .②③C .③④D .①④1.答案B解析①y =x 12在(0,1)上递增;②∵t =x +1在(0,1)上递增,且0<12<1,故y =log 12(x +1)在(0,1)上递减;③结合图象可知y =|x -1|在(0,1)上递减;④∵u =x +1在(0,1)上递增,且2>1,故y =2x +1在(0,1)上递增.故在区间(0,1)上单调递减的函数序号是②③.2.下列四个函数中,在x ∈(0,+∞)上为增函数的是()A .f (x )=3-xB .f (x )=x 2-3xC .f (x )=-1x +1D .f (x )=-|x |2.答案C解析当x >0时,f (x )=3-x 为减函数;当xf (x )=x 2-3x 为减函数,当x时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数.3.若函数f (x )满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”,则f (x )的解析式可以是()A .f (x )=(x -1)2B .f (x )=e xC .f (x )=1xD .f (x )=ln(x +1)3.答案C解析根据条件知,f (x )在(0,+∞)上单调递减.对于A ,f (x )=(x -1)2在(1,+∞)上单调递增,排除A ;对于B ,f (x )=e x 在(0,+∞)上单调递增,排除B ;对于C ,f (x )=1x 在(0,+∞)上单调递减,C 正确;对于D ,f (x )=ln(x +1)在(0,+∞)上单调递增,排除D .4.函数f (x )=|x -2|x 的单调减区间是()A .[1,2]B .[-1,0]C .[0,2]D .[2,+∞)4.答案A解析由于f (x )=|x -2|x2-2x ,x ≥2,x 2+2x ,x <2,结合图象可知函数的单调减区间是[1,2].5.设函数f (x ),x >0,,x =0,1,x <0,g (x )=x 2f (x -1),则函数g (x )的单调递减区间是()A .(-∞,0]B .[0,1)C .[1,+∞)D .[-1,0]5.答案B解析由题知,g (x )2,x >1,,x =1,x 2,x <1,可得函数g (x )的单调递减区间为[0,1).故选B .6.函数y =22311(3x x -+的单调递增区间为()A .(1,+∞)B ∞,34CD .34,+6.答案B 解析令u =2x 2-3x+1=-18.因为u =-18在∞,34上单调递减,函数y在R 上单调递减.所以yx 2-3x +1∞,34上单调递增,即该函数的单调递增区间为∞,34.7.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为()A .(-∞,1]B .[3,+∞)C .(-∞,-1]D .[1,+∞)7.答案B 解析设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3.所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞).8.函数f (x )=ln(x 2-2x -8)的单调递增区间是()A .(-∞,-2)B .(-∞,1)C .(1,+∞)D .(4,+∞)8.答案D解析由x 2-2x -8>0,得x >4或x <-2.因此,函数f (x )=ln(x 2-2x -8)的定义域是(-∞,-2)∪(4,+∞).又函数y =x 2-2x -8在(4,+∞)上单调递增,由复合函数的单调性知,f (x )=ln(x 2-2x -8)的单调递增区间是(4,+∞).考点二比较函数值或自变量的大小【方法总结】比较函数值大小的思路:比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.【例题选讲】[例2](1)设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是()A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)答案A 解析因为f (x )是偶函数,所以f (-3)=f (3),f (-2)=f (2).又因为函数f (x )在[0,+∞)上是增函数.所以f (π)>f (3)>f (2),即f (π)>f (-3)>f (-2).(2)已知奇函数f (x )在R 上是增函数.若a =-f b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为()A .a <b <cB .b <a <cC .c <b <aD .c <a <b答案C解析由f (x )是奇函数可得a =-f f (log 25).因为log 25>log 24.1>log 24=2>20.8,且函数f (x )是增函数,所以c <b <a .(3)已知函数f (x )=log 2x +11-x ,若x 1∈(1,2),x 2∈(2,+∞),则()A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0答案B解析因为函数f (x )=log 2x +11-x在(1,+∞)上为增函数,且f (2)=0,所以当x 1∈(1,2)时,f (x 1)<f (2)=0,当x 2∈(2,+∞)时,f (x 2)>f (2)=0,即f (x 1)<0,f (x 2)>0.故选B .(4)已知函数y =f (x )是R 上的偶函数,当x 1,x 2∈(0,+∞),x 1≠x 2时,都有(x 1-x 2)·[f (x 1)-f (x 2)]<0.设a =ln 1π,b =(ln π)2,c =ln π,则()A .f (a )>f (b )>f (c )B .f (b )>f (a )>f (c )C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )答案C解析由题意可知f (x )在(0,+∞)上是减函数,且f (a )=f (|a |),f (b )=f (|b |),f (c )=f (|c |),又|a |=ln π>1,|b |=(ln π)2>|a |,|c |=12ln π,且0<12ln π<|a |,故|b |>|a |>|c |>0,∴f (|c |)>f (|a |)>f (|b |),即f (c )>f (a )>f (b ).(5)若2x +5y ≤2-y +5-x ,则有()A .x +y ≥0B .x +y ≤0C .x -y ≤0D .x -y ≥0答案B解析设函数f (x )=2x -5-x ,易知f (x )为增函数,又f (-y )=2-y -5y ,由已知得f (x )≤f (-y ),∴x ≤-y ,∴x +y ≤0.【对点训练】9.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =b =f (2),c =f (3),则a ,b ,c 的大小关系为()A .c >a >bB .c >b >aC .a >c >bD .b >a >c9.答案D解析由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象关于直线x =1对称,所以a =x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .10.已知函数f (x )在R 上单调递减,且a =33.1,b ,c =ln 13,则f (a ),f (b ),f (c )的大小关系为()A .f (a )>f (b )>f (c )B .f (b )>f (c )>f (a )C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )10.答案D解析因为a =33.1>30=1,0<b =1,c =ln 13<ln 1=0,所以c <b <a ,又因为函数f (x )在R 上单调递减,所以f (c )>f (b )>f (a ),故选D .考点三解函数不等式【方法总结】含“f ”不等式的解法:首先根据函数的性质把不等式转化为f (g (x ))>f (h (x ))的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意g (x )与h (x )的取值应在外层函数的定义域内.【例题选讲】[例3](1)已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f x 的取值范围是()A B .13,C D .12,答案D解析因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<0≤2x -1<13,解得12≤x <23.(2)已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集的补集是(全集为R )()A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1]∪[2,+∞)答案D解析由函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,知不等式-3<f (x +1)<1即为f (0)<f (x +1)<f (3),所以0<x +1<3,所以-1<x <2,故不等式-3<f (x +1)<1的解集的补集是(-∞,-1]∪[2,+∞).(3)定义在[-2,2]上的函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,且f (a 2-a )>f (2a -2),则实数a 的取值范围为________.答案[0,1)解析因为函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,所以函数在[-2,2]上单调递增,所以-2≤2a -2<a 2-a ≤2,解得0≤a <1.(4)f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是()A.(8,+∞)B.(8,9]C.[8,9]D.(0,8)答案B解析2=1+1=f(3)+f(3)=f(9),由f(x)+f(x-8)≤2,可得f[x(x-8)]≤f(9),因为f(x)是定义在(0,+∞)>0,-8>0,(x-8)≤9,解得8<x≤9.(5)设函数f(x)=ln(1+|x|)-11+x2,则使得f(x)>f(2x-1)成立的x的取值范围是()AB∞(1,+∞)C-13,D∞答案A解析∵f(-x)=ln(1+|-x|)-11+(-x)2=f(x),∴函数f(x)为偶函数.∵当x≥0时,f(x)=ln(1+x)-11+x2,在(0,+∞)上y=ln(1+x)递增,y=-11+x2也递增,根据单调性的性质知,f(x)在(0,+∞)上单调递增.综上可知:f(x)>f(2x-1)⇔f(|x|)>f(|2x-1|)⇔|x|>|2x-1|⇔x2>(2x-1)2⇔3x2-4x+1<0⇔13<x<1.故选A.【对点训练】11.定义在R上的奇函数y=f(x)在(0,+∞)上单调递增,且0,则满足f log19x>0的x的集合为________.11.答案(1,3)解析由题意,y=f(x)为奇函数且0,所以0,又y=f(x)在(0,+∞)上单调递增,则y=f(x)在(-∞,0)上单调递增,于是x>0,x>或x<0,x>x>0,x>12x<0,x>-12,解得0<x<13或1<x<3.12.已知函数f(x)=ln x+x,若f(a2-a)>f(a+3),则正数a的取值范围是________.12.答案(3,+∞)解析因为f(x)=ln x+x在(0,+∞)上是增函数,2-a>a+3,2-a>0,+3>0,解得-3<a<-1或a>3.又a>0,所以a>3.13.设函数f(x)x,x<2,2,x≥2.若f(a+1)≥f(2a-1),则实数a的取值范围是(B)A.(-∞,1]B.(-∞,2]C.[2,6]D.[2,+∞)13.答案B解析易知函数f(x)在定义域(-∞,+∞)上是增函数,∵f(a+1)≥f(2a-1),∴a+1≥2a-1,解得a≤2.故实数a的取值范围是(-∞,2].14.设函数f(x)-x,x≤0,,x>0,则满足f(x+1)<f(2x)的x的取值范围是()A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)14.答案D解析因为f (x )-x ,x ≤0,,x >0,所以函数f (x )的图象如图所示.由图可知,当x +1≤0且2x ≤0时,函数f (x )为减函数,故f (x +1)<f (2x )转化为x +1>2x ,此时x ≤-1;当2x <0且x +1>0时,f (2x )>1,f (x +1)=1,满足f (x +1)<f (2x ),此时-1<x <0.综上,不等式f (x +1)<f (2x )的解集为(-∞,-1]∪(-1,0)=(-∞,0).故选D .15.已知f (x )2-4x +3,x ≤0,x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是________.15.答案(-∞,-2)解析作出函数f (x )的图象的草图如图所示,易知函数f (x )在R 上为单调递减函数,所以不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立等价于x +a <2a -x ,即x <a2在[a ,a +1]上恒成立,所以只需a +1<a2,即a <-2.考点四求参数的取值范围【方法总结】求参数的值或取值范围的思路:根据其单调性直接构建参数满足的方程(组)(不等式(组))或先得到其图象的升降,再结合图象求解.求参数时需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子区间上也是单调的.【例题选讲】[例4](1)如果二次函数f (x )=3x 2+2(a -1)x +b 在区间(-∞,1)上是减函数,那么a 的取值范围是________.答案(-∞,-2]解析二次函数的对称轴方程为x =-a -13,由题意知-a -13≥1,即a ≤-2.(2)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a 的取值范围是________.答案[-1,+∞)解析设1<x 1<x 2,∴x 1x 2>1.∵函数f (x )在(1,+∞)上是增函数,∴f (x 1)-f (x 2)=x 1-a x 1+a 2-2-a x 2+(x 1-x 2.∵x 1-x 2<0,∴1+ax 1x 2>0,即a >-x 1x 2.∵1<x 1<x 2,x 1x 2>1,∴-x 1x 2<-1,∴a ≥-1.∴a 的取值范围是[-1,+∞).(3)若函数f (x )=a |b -x |+2的单调递增区间是[0,+∞),则实数a ,b 的取值范围分别为__________.答案(0,+∞),0解析因为|b -x |=|x -b |,y =|x -b |的图象如下:因为f (x )的单调递增区间为[0,+∞),所以b =0,a >0.(4)已知函数f (x )ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是()A .14,12B .14,12C .0,12D .12,1答案B解析由对数函数的定义可得a >0,且a ≠1.又函数f (x )在R 上单调,而二次函数y =ax 2-x -14的图象开口向上,所以函数f (x )在R 0<<1,12a ≥1,a ×12-1-14≥log a 1-1,即0<a <1,0<a ≤12,a ≥14.所以a ∈14,12.(5)已知函数f (x )=log 12(x 2-ax +3a )在[1,+∞)上单调递减,则实数a 的取值范围是________.答案-12,2解析令t =g (x )=x 2-ax +3a ,易知f (t )=log 12t 在其定义域上单调递减,要使f (x )=log 12(x 2-ax +3a )在[1,+∞)上单调递减,则t =g (x )=x 2-ax +3a 在[1,+∞)上单调递增,且t =g (x )=x 2-ax +3a >0,--a 2≤1,g 1>0,a ≤2,a >-12,即-12<a ≤2.【对点训练】16.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是()A -14,+∞B .-14,+∞C .-14,0D .-14,016.答案D解析当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,得-14≤a <0.综上所述,得-14≤a ≤0.故选D .17.若f (x )=x +a -1x +2(-2,+∞)上是增函数,则实数a 的取值范围是________.17.答案(-∞,3)解析f (x )=x +a -1x +2=x +2+a -3x +2=1+a -3x +2,要使函数在区间(-2,+∞)上是增函数,需使a -3<0,解得a <3.18.若f (x )=-x 2+4mx 与g (x )=2mx +1在区间[2,4]上都是减函数,则m 的取值范围是(D)A .(-∞,0)∪(0,1]B .(-1,0)∪(0,1]C .(0,+∞)D .(0,1]18.答案D解析函数f (x )=-x 2+4mx 的图象开口向下,且以直线x =2m 为对称轴,若在区间[2,4]上是减函数,则2m ≤2,解得m ≤1;g (x )=2m x +1的图象由y =2mx 的图象向左平移一个单位长度得到,若在区间[2,4]上是减函数,则2m >0,解得m >0.综上可得,m 的取值范围是(0,1].19.已知f (x )-a )x +1,x <1,x ,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.19.答案32,解析由已知条件得f (x )为增函数,-a >0,>1,2-a×1+1≤a ,解得32≤a <2,∴a 的取值范围是32,20.已知函数f (x )x 2-ax -5,x ≤1,x >1是R 上的增函数,则实数a 的取值范围是()A .[-3,0)B .(-∞,-2]C .[-3,-2]D .(-∞,0)20.答案C解析若f (x )是R -a2≥1,<0,12-a ×1-5≤a1,解得-3≤a ≤-2.21.设函数f (x )x 2+4x ,x ≤4,2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是()A .(-∞,1]B .[1,4]C .[4,+∞)D .(-∞,1]∪[4,+∞)21.答案D解析作出函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a≥4或a +1≤2,即a ≤1或a ≥4,故选D .22.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.22.解析(1)证明:当a =-2时,f (x )=xx +2.任取x 1,x 2∈(-∞,-2),且x 1<x 2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x1+2)(x2+2)>0,x1-x2<0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以f(x)在(-∞,-2)内单调递增.(2)任取x1,x2∈(1,+∞),且x1<x2,则f(x1)-f(x2)=x1x1-a-x2x2-a=a(x2-x1)(x1-a)(x2-a).因为a>0,x2-x1>0,又由题意知f(x1)-f(x2)>0,所以(x1-a)(x2-a)>0恒成立,所以a≤1.所以0<a≤1.所以a的取值范围为(0,1].23.已知定义在R上的函数f(x)满足:①f(x+y)=f(x)+f(y)+1,②当x>0时,f(x)>-1.(1)求f(0)的值,并证明f(x)在R上是单调增函数.(2)若f(1)=1,解关于x的不等式f(x2+2x)+f(1-x)>4.23.解析(1)令x=y=0,得f(0)=-1.在R上任取x1>x2,则x1-x2>0,f(x1-x2)>-1.又f(x1)=f[(x1-x2)+x2]=f(x1-x2)+f(x2)+1>f(x2),所以函数f(x)在R上是单调增函数.(2)由f(1)=1,得f(2)=3,f(3)=5.由f(x2+2x)+f(1-x)>4得f(x2+x+1)>f(3),又函数f(x)在R上是增函数,故x2+x+1>3,解得x<-2或x>1,故原不等式的解集为{x|x<-2或x>1}.。