【高考调研】2016届高三理科数学一轮复习题组层级快练4含答案
- 格式:doc
- 大小:156.20 KB
- 文档页数:8
题组层级快练(四十六)1.如图是2015年元宵节灯展中一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一呈现出来的图形是()答案 A解析该五角星对角上的两盏花灯依次按逆时针方向亮一盏,故下一个呈现出来的图形是A.2.已知a1=3,a2=6,且a n+2=a n+1-a n,则a2 016=()A.3B.-3C.6 D.-6答案 B解析∵a1=3,a2=6,∴a3=3,a4=-3,a5=-6,a6=-3,a7=3,…,∴{a n}是以6为周期的周期数列.又2 016=6×335+6,∴a2 016=a6=-3.选B.3.定义一种运算“*”:对于自然数n满足以下运算性质:①1]()A.n B.n+1C.n-1 D.n2答案 A解析由(n+1)*1=n*1+1,得n*1=(n-1)*1+1=(n-2)*1+2= (1)4.给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集)①“若a,b∈R,则a-b=0⇒a=b”类比推出“若a,b∈C,则a-b=0⇒a=b”.②“若a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”.③“若a,b,c,d∈R,则复数a+b i=c+d i⇒a=c,b=d”类比推出“若a,b,c,d∈Q,则a+b2=c+d2⇒a=c,b=d”.其中类比得到的结论正确的个数是()A.0 B.1C.2 D.3答案 C解析提示:①③正确.5.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=() A.28 B.76C.123 D.199答案 C解析 记a n +b n =f (n ),则f (3)=f (1)+f (2)=1+3=4;f (4)=f (2)+f (3)=3+4=7;f (5)=f (3)+f (4)=11.通过观察不难发现f (n )=f (n -1)+f (n -2)(n ∈N *,n ≥3),则f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29;f (8)=f (6)+f (7)=47;f (9)=f (7)+f (8)=76;f (10)=f (8)+f (9)=123.所以a 10+b 10=123.6.(2015·济宁模拟)在平面几何中有如下结论:正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14,推广到空间可以得到类似结论:已知正四面体P -ABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=( ) A.18 B.19 C.164 D.127答案 D解析 正四面体的内切球与外接球的半径之比为1∶3,故体积之比为V 1V 2=127.7.已知x ∈(0,+∞),观察下列各式: x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3, x +27x 3=x 3+x 3+x 3+27x3≥4,…,类比有x +ax n ≥n +1(n ∈N *),则a =( )A .nB .2nC .n 2D .n n 答案 D解析 第一个式子是n =1的情况,此时a =1,第二个式子是n =2的情况,此时a =4,第三个式子是n =3的情况,此时a =33,归纳可以知道a =n n .8.已知a n =(13)n ,把数列{a n }的各项排成如下的三角形:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9……记A (s ,t )表示第s 行的第t 个数,则A (11,12)=( ) A .(13)67B .(13)68C .(13)111D .(13)112答案 D解析 该三角形所对应元素的个数为1,3,5,…,那么第10行的最后一个数为a 100,第11行的第12个数为a 112,即A (11,12)=(13)112.9.(2015·郑州质检)设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c.类比这个结论可知:四面体ABCD 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球半径为r ,四面体ABCD 的体积为V ,则r =( )A.VS 1+S 2+S 3+S 4 B.2VS 1+S 2+S 3+S 4 C.3VS 1+S 2+S 3+S 4 D.4VS 1+S 2+S 3+S 4答案 C解析 设四面体ABCD 的内切球的球心为O ,则球心O 到四个面的距离都是r ,所以四面体ABCD 的体积等于以O 为顶点,分别以四个面为底面的四个三棱锥的体积的和,则四面体ABCD 的体积为V =13(S 1+S 2+S 3+S 4)r ,所以r =3VS 1+S 2+S 3+S 4,故选C.10.(2015·河北冀州中学期末)如图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{a n }(n ∈N *)的前12项,如下表所示:按如此规律下去,则a 2 013=( ) A .501 B .502 C .503 D .504答案 D解析 由a 1,a 3,a 5,a 7,…组成的数列恰好对应数列{x n },即x n =a 2n -1,当n 为奇数时,x n =n +12.所以a 2 013=x 1 007=504.11.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.答案 1∶8解析 ∵两个正三角形是相似的三角形,∴它们的面积之比是相似比的平方. 同理,两个正四面体是两个相似几何体,体积之比为相似比的立方.∴它们的体积比为1∶8.12.设数列{a n }是以d 为公差的等差数列,数列{b n }是以q 为公比的等比数列.将数列{a n }的相关量或关系式输入“LHQ 型类比器”左端的入口处,经过“LHQ 型类比器”后从右端的出口处输出数列{b n }的相关量或关系式,则在右侧的“?”处应该是________.答案 B n =b 1×(q )n -1解析 注意类比的对应关系:+→×,÷→开方,×→乘方,0→1,所以B n =b 1×(q )n -1.13.已知数列{a n }为等差数列,则有等式a 1-2a 2+a 3=0,a 1-3a 2+3a 3-a 4=0,a 1-4a 2+6a 3-4a 4+a 5=0.(1)若数列{a n }为等比数列,通过类比,则有等式________;(2)通过归纳,试写出等差数列{a n }的前n +1项a 1,a 2,…,a n ,a n +1之间的关系为________.答案 (1)a 1a -22a 3=1,a 1a -32a 33a -14=1,a 1a -42a 63a -44a 5=1(2)C 0n a 1-C 1n a 2+C 2n a 3-…+(-1)n C n n a n +1=0解析 因等差数列与等比数列之间的区别是前者是加法运算,后者是乘法运算,所以类比规律是由第一级运算转化到高一级运算,从而解出第(1)问;通过观察发现,已知等式的系数与二项式系数相同,解出第(2)问.14.已知 2+23=223, 3+38=338, 4+415= 4415,…,若 6+a t =6a t,(a ,t 均为正实数),类比以上等式,可推测a ,t 的值,则a +t =________. 答案 41解析 根据题中所列的前几项的规律可知其通项应为n +nn 2-1=n nn 2-1,所以当n =6时a =6,t =35,a +t =41.15.如图所示,在平面上,用一条直线截正方形的一个角,截下的是一个直角三角形,有勾股定理c 2=a 2+b 2.空间中的正方体,用一平面去截正方体的一角,截下的是一个三条侧棱两两垂直的三棱锥,若这三个两两垂直的侧面的面积分别为S 1,S 2,S 3,截面面积为S ,类比平面的结论有________.答案 S 2=S 21+S 22+S 23解析 建立从平面图形到空间图形的类比,在由平面几何的性质类比推理空间立体几何的性质时,注意平面几何中点的性质可类比推理空间几体中线的性质,平面几何中线的性质可类比推理空间几何中面的性质,平面几何中面的性质可类比推理空间几何中体的性质.所以三角形类比空间中的三棱锥,线段的长度类比图形的面积,于是作出猜想:S 2=S 21+S 22+S 23.16.(2015·山东日照阶段训练)二维空间中圆的一维测度(周长)l =2πr ,二维测度(面积)S =πr 2,观察发现S ′=l ;三维空间中球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3,观察发现V ′=S .已知四维空间中“超球”的三维测度V =8πr 3,猜想其四维测度W =________.答案 2πr 4解析 据归纳猜想可知(2πr 4)′=8πr 3,所以四维测度W =2πr 4. 17.(2014·陕西理)观察分析下表中的数据:答案 F +V -E =2解析 三棱柱中5+6-9=2;五棱锥中6+6-10=2;立方体中6+8-12=2,由此归纳可得F +V -E =2.18.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin13°cos17°; ②sin 215°+cos 215°-sin15°cos15°; ③sin 218°+cos 212°-sin18°cos12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为一个三角恒等式,并证明你的结论. 答案 (1)34 (2)sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34解析 方法一:(1)选择②式,计算如下: sin 215°+cos 215°-sin15°cos15° =1-12sin30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°cos α+sin30°sin α)2-sin α(cos30°cos α+sin30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 方法二:(1)同解法一. (2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α) =1-cos2α2+1+cos (60°-2α)2-sin α·(cos30°cos α+sin30°sin α) =12-12cos2α+12+12(cos60°cos2α+sin60°sin2α)-32sin αcos α-12sin 2α =12-12cos2α+12+14cos2α+34·sin2α-34sin2α-14(1-cos2α) =1-14cos2α-14+14cos2α=34.1.分形几何学是数学家伯努瓦·曼得尔布罗在20世纪70年代创立的一门新的数学学科,它的创立为解决传统科学众多领域的难题提供了全新的思路,按照图甲所示的分形规律可得图乙所示的一个树形图.易知第三行有白圈5个,黑圈4个,我们采用“坐标”来表示各行中的白圈、黑圈的个数.比如第一行记为(1,0),第二行记为(2,1),第三行记为(5,4).(1)第四行的白圈与黑圈的“坐标”为________;(2)照此规律,第n 行中的白圈、黑圈的“坐标”为________. 答案 (1)(14,13) (2)(3n -1+12,3n -1-12)(n ∈N *)解析 (1)从题中的条件易知白圈、黑圈的变化规律:一个白圈的下一行对应两个白圈和一个黑圈,一个黑圈的下一行对应一个白圈和两个黑圈,因此第4行的白圈个数为5×2+4×1=14,黑圈个数为5×1+4×2=13,所以第四行的白圈与黑圈的“坐标”为(14,13).(2)第n 行中的白圈和黑圈总数为3n-1个,设“坐标”为(a n,3n -1-a n ),则第n +1行中的白圈和黑圈总数为3n个,设“坐标”为(a n +1,3n-a n +1)=(a n +3n -1,2×3n -1-a n ),即a 1=1,a n +1=a n +3n -1⇒a n =3n -1+12,从而得到第n 行中的白圈、黑圈的“坐标”为(3n -1+12,3n -1-12)(n ∈N *).2.(2013·湖北理)古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n .记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n ,六边形数 N (n,6)=2n 2-n , ……可以推测N (n ,k )的表达式,由此计算N (10,24)=________. 答案 1 000解析 方法一:已知式了可化为: N (n,3)=12n 2+12n =3-22n 2+4-32n ,N (n,4)=n 2=4-22n 2+4-42n ,N (n,5)=32n 2+-12n =5-22n 2+4-52n ,N (n,6)=2n 2-n =6-22n 2+4-62n ,由归纳推理,可得N (n ,k )=k -22n 2+4-k2n , 故N (10,24)=24-22×102+4-242×10=1 100-100=1 000.方法二:由题意,设N (n ,k )=a k n 2+b k n (k ≥3),其中数列{a k }是以12为首项,12为公差的等差数列,数列{b k }是以12为首项,-12为公差的等差数列,所以N (n,24)=11n 2-10n ,当n =10时,N (10,24)=11×102-10×10=1 000.。
题组层级快练 (三十 )1.对于非零向量a,b,“a+b= 0”是“a∥b”的 ()A .充分不用要条件B.必要不充分条件C.充分必要条件D.既不充分也不用要条件答案A剖析若 a+b=0,则 a=- b,因此 a∥b;若 a∥b,则 a=λb,a+b=0不用然成立,故前者是后者的充分不用要条件.2.设a是任向来量,e是单位向量,且a∥e,则以下表示形式中正确的选项是 () aA .e=|a|B.a= |a|eC.a=- |a|e D.a=±|a|e答案D剖析对于 A ,当a= 0 时,a没有意义,错误;|a|对于 B, C, D 当a=0 时,选项 B, C,D 都对;当 a≠0时,由 a∥e 可知, a 与 e 同向或反向,选 D.→→→3.(2015 北·京东城期中 )已知 ABCD 为平行四边形,若向量AB=a, AC=b,则向量 BD 为()A .a-b B.a+bC.b- 2a D.-a-b答案C→ →→4.以下列图,在正六边形ABCDEF 中, BA+ CD + EF= ()→A . 0 B.BE→→C.ADD.CF答案D→→→→→→→→→剖析由于 BA=DE ,故 BA+ CD+ EF= CD + DE+EF =CF .5.(2015 广·东惠州二中模拟)已知点 O, A, B 不在同一条直线上,点P 为该平面上一点,→→→3OA-OB且 OP=,则()2A.点 P 在线段 AB 上B.点 P 在线段 AB 的反向延长线上C.点D.点答案剖析P 在线段 AB 的延长线上P 不在直线 AB 上B→→ →3→1→ →1→→→1→ →→→3OA- OB1 OP2=2OA-2OB = OA+2(OA- OB)= OA+2BA,即 OP- OA = AP=2=→BA,因此点P 在线段 AB 的反向延长线上,应选 B.→→6.在△ ABC 中,点 D 在边 AB 上, CD 均分∠ ACB.若CB=a,CA =b, |a|= 1, |b|= 2,则→CD= ()1221A. 3a+3bB.3a+3b3443C.5a+5bD.5a+5b答案B剖析由内角均分线定理,得|CA| |AD |→→→→2→→2→→|CB|=|DB |=2.∴CD = CA+ AD=CA+3AB=CA+3(CB- CA)=23CB→+13CA→=23a+13b.故B正确.→→7.已知向量i与j不共线,且 AB=i+ m j,AD =n i+j,若 A, B,D 三点共线,则实数m,n 应该满足的条件是 ()A . m+ n= 1B. m+n=- 1C. mn= 1D. mn=- 1答案 C→→剖析由 A, B, D 共线可设 AB=λAD ,于是有i+ m j=λ(n i+j)=λn i+λj.又i,j不共线,λn= 1,因此即有 mn=1.λ= m,→ →8.O 是平面上必然点, A,B,C 是该平面上不共线的三个点,一动点 P 满足: OP=OA +→→λ(AB+ AC),λ∈ (0,+∞ ),则直线 AP 必然经过△ ABC 的 ()A .外心B.内心C.重心D.垂心答案C剖析取BC中点M.→→→ →OP= OA+λ(AB +AC),→→→→OP- OA=λ(AB +AC),→→AP= 2λAD.∴A, P,D 三点共线,∴ AP 必然经过△ ABC 的重心, C 正确.→→→9.在四边形ABCD 中, AB=a+ 2b,BC=- 4a-b,CD =- 5a-3b,则四边形ABCD 的形状是 ()A .矩形B.平行四边形C.梯形D.以上都不对答案C→→→→→剖析由已知 AD= AB+ BC+ CD=- 8a- 2b= 2(-4a-b)= 2BC.→ →→→∴AD ∥BC.又 AB与 CD 不平行,∴四边形 ABCD 是梯形.→10.已知四边形 ABCD 是菱形,点 P 在对角线 AC 上(不包括端点 A,C)的充要条件是 AP=→ →λ(AB+ AD ),则λ的取值范围是 ()A .λ∈ (0,1)B.λ∈ (- 1,0)C.λ∈ (0,2D.λ∈ (-2, 0) 2)2答案A剖析以下列图,∵点 P 在对角线 AC 上 (不包括端点 A, C),→→→→→→→ →∴AP=λAC=λ(AB +AD).由 AP 与 AC同向知,λ>0. 又 |AP|<|AC|,→|AP|=λ<1,∴λ∈(0,1) .反之亦然.∴→|AC|→→→11.设 A1,A2,A3,A4是平面直角坐标系中两两不同样的四点,若A1 A3=λA1A2(λ∈R),A1A4→1+1= 2,则称 A3,A4调停切割 A1, A2.已知平面上的点=μA1 A2(μ∈R ),且C, D 调停切割点λ μA, B,则以下说法正确的选项是()A . C 可能是线段AB 的中点B. D可能是线段AB 的中点C. C,D可能同时在线段AB 上D.C,D不可以能同时在线段AB的延长线上答案D剖析若 A 成立,则λ= 1,而 1= 0,不可以能;同理 2 μB 也不可以能;若C 成立,则0<λ<1,且 0<μ<1,1+ 1>2,与已知矛盾;若λ μC,D同时在线段AB 的延长线上时,λ>1,且μ>1,1+1λ μ<2,与已知矛盾,故C,D 不可以能同时在线段AB 的延长线上,故 D 正确.12.以下列图,以下结论不正确的选项是________.→33①PQ =2a+2b;→3 3②P T =-2a-2b;→31③PS=2a-2b;→3④PR=a+b.2答案②④2→→33剖析由 a+b=3PQ,知PQ=2a+2b,①正确;由→33→ →PT=2a-2b,从而②错误;PS=PT+→ 3 1→ → 3 1b,故PS=2a-2b,③正确;PR=PT+2b=2a+2b,④错误.故正确的为①③.→ →13.以下列图,已知∠B= 30°,∠ AOB= 90°,点 C 在 AB 上, OC⊥AB,用 OA和 OB来表示→→向量 OC,则 OC等于 ________.答案剖析3→1→4OA+ OB4→→→→1→→1→→ 3→1→OC= OA+ AC= OA+4AB= OA+4(OB- OA)=4OA+4OB.→→→14.设a和b是两个不共线的向量,若AB= 2a+k b, CB=a+b, CD= 2a-b,且 A, B,D 三点共线,则实数 k 的值等于 ________.答案- 4→ →→→ → →剖析∵A, B,D 三点共线,∴ AB∥BD .∵AB= 2a+ k b, BD= BC+ CD =a- 2b,∴k=- 4.故填- 4.→→→15.已知 O 为△ ABC 内一点,且 OA+ OC+ 2OB= 0,则△ AOC 与△ ABC 的面积之比是________.答案1∶ 2剖析以下列图,取 AC 中点 D.→→→∴OA+OC= 2OD.→→∴OD= BO.∴O 为 BD 中点,∴面积比为高之比.16.已知向量a= 2e1- 3e2,b= 2e1+ 3e2,其中e1,e2不共线,向量c=2e1- 9e2.问可否存在这样的实数λ,μ,使向量 d=λa+μb 与 c 共线?答案当λ=- 2μ时共线剖析∵d=λ(2 e1-3e2)+μ(2e1+3e2)=(2 λ+ 2μ)e1+ (- 3λ+ 3μ)e2.要使 d 与 c 共线,则应有实数k,使d= k c.即(2 λ+ 2μ)e1+ (- 3λ+ 3μ)e2= 2k e1- 9k e2.2λ+ 2μ=2k,即得λ=- 2μ.- 3λ+ 3μ=- 9k,故存在这样的实数λ,μ,只要λ=- 2μ,就能使 d 与 c 共线.17.以下列图,已知点G 是△ ABO 的重心.→→→(1)求 GA+ GB+GO;→→→→(2)若 PQ 过△ ABO 的重心 G,且 OA=a,OB=b, OP=m a, OQ= n b,求证:m 1+1n= 3.→→→答案(1)GA+ GB+ GO= 0 (2)略剖析(1) 以下列图,延长OG 交 AB 于 M 点,则M 是AB的中点.→→→∴GA+GB= 2GM.∵G 是△ABO 的重心,→→∴GO=- 2GM .→→→∴GA+GB+ GO= 0. (2)∵M 是 AB 边的中点,→ 1 →→1∴OM =2(OA + OB)=2(a+b).→ 2→1又∵G 是△ABO 的重心,∴ OG=3OM=3(a+b).→→→111∴PG=OG- OP=3(a+b) -m a=(3- m)a+3b.→→→而PQ =OQ - OP= n b- m a,∵P, G, Q 三点共线,→→∴有且只有一个实数λ,使得PG=λPQ.∴(1-m)a+1 =λn-λm 33bba.∴(1-m+λm)a+ (1-λn)b=0.3313- m+λm= 0,1 +1= 3.∵a 与 b 不共线,∴消去λ,得1m n3-λn= 0.。
题组层级快练(二十九)1.两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站北偏东40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东10°D .南偏西10°答案 B2.有一长为1千米的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则斜坡长为( ) A .1 千米 B .2sin10° 千米 C .2cos10° 千米 D .cos20° 千米 答案 C解析 由题意知DC =BC =1,∠BCD =160°, ∴BD 2=DC 2+CB 2-2DC ·CB ·cos160°=1+1-2×1×1×cos(180°-20°) =2+2cos20°=4cos 210°. ∴BD =2cos10°.3.一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是( )A .5 海里/时B .5 3 海里/时C .10 海里/时D .10 3 海里/时 答案 C解析 如图,A ,B 为灯塔,船从O 航行到O ′,OO ′BO =tan30°,OO ′AO=tan15°,∴BO =3OO ′,AO =(2+3)OO ′.∵AO -BO =AB =10,∴OO ′·[(2+3)-3]=10. ∴OO ′=5.∴船的速度为512=10海里/时.4.在某次测量中,在A 处测得同一平面方向的B 点的仰角是50°,且到A 的距离为2,C 点的俯角为70°,且到A 的距离为3,则B ,C 间的距离为( )A.16B.17C.18D.19解析∵∠BAC=120°,AB=2,AC=3,∴BC2=AB2+AC2-2AB·AC cos∠BAC=4+9-2×2×3×cos120°=19.∴BC=19.5.某人在地上画了一个角∠BDA=60°,他从角的顶点D出发,沿角的一边DA行走10米后,拐弯往另一边的方向行走14米正好到达∠BDA的另一边BD上的一点,我们将该点记为点N,则N与D之间的距离为()A.14米B.15米C.16米D.17米答案 C解析如图,设DN=x米,则142=102+x2-2×10×x cos60°,∴x2-10x-96=0.∴(x-16)(x+6)=0.∴x=16或x=-6(舍去).∴N与D之间的距离为16米.6.如图所示,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10米到位置D,测得∠BDC=45°,则塔AB的高是()A.10米B.10 2 米C.10 3 米D.10 6 米答案 D解析在△BCD中,CD=10,∠BDC=45°,∠BCD=15°+90°=105°,∠DBC=30°,∵BCsin45°=CDsin30°,∴BC=CD sin45°sin30°=10 2.在Rt△ABC中,tan60°=ABBC,∴AB=BC tan60°=10 6 米.7.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A测得水柱顶端的仰角为45°,沿点A向北偏东30°前进100 m到达点B,在B点测得水柱顶端的仰角为30°,则水柱的高度是()A.50 m B.100 mC.120 m D.150 m解析 设水柱高度是h m ,水柱底端为C ,则在△ABC 中,A =60°,AC =h ,AB =100,BC =3h ,根据余弦定理得(3h )2=h 2+1002-2·h ·100·cos60°,即h 2+50h -5 000=0,即(h -50)(h +100)=0,即h =50,故水柱的高度是50 m.8.一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔M 在北偏东60°方向,行驶4 h 后,船到B 处,看到这个灯塔在北偏东15°方向,这时船与灯塔的距离为________ km.答案 30 2解析 如图所示,依题意有:AB =15×4=60,∠MAB =30°,∠AMB =45°, 在△AMB 中,由正弦定理,得60sin45°=BM sin30°.解得BM =302(km).9.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度15°的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为10 6 米(如图所示),旗杆底部与第一排在一个水平面上.若国歌长度约为50秒,升旗手应以________(米/秒)的速度匀速升旗.答案 0.6解析 在△BCD 中,∠BDC =45°,∠CBD =30°, CD =106,由正弦定理,得BC =CD sin45°sin30°=20 3.在Rt △ABC 中,AB =BC sin60°=203×32=30(米). 所以升旗速度v =AB t =3050=0.6(米/秒).10.在海岸A 处,发现北偏东45°方向,距A 处(3-1)n mile 的B 处有一艘走私船,在A 处北偏西75°的方向,距离A 处2n mile 的C 处的缉私船奉命以103n mile/h 的速度追截走私船.此时,走私船正以10n mile/h 的速度从B 处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?答案 缉私船沿东偏北30°方向能最快追上走私船思路 本例考查正弦、余弦定量的建模应用.如图所示,注意到最快追上走私船且两船所用时间相等,若在D 处相遇,则可先在△ABC 中求出BC ,再在△BCD 中求∠BCD .解析 设缉私船用t h 在D 处追上走私船, 则有CD =103t ,BD =10t ,在△ABC 中,∵AB =3-1,AC =2,∠BAC =120°, ∴由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC cos ∠BAC =(3-1)2+22-2·(3-1)·2·cos120°=6. ∴BC = 6.且sin ∠ABC =AC BC ·sin ∠BAC =26·32=22.∴∠ABC =45°.∴BC 与正北方向垂直. ∵∠CBD =90°+30°=120°, 在△BCD 中,由正弦定理,得sin ∠BCD =BD ·sin ∠CBD CD =10t sin120°103t =12.∴∠BCD =30°.即缉私船沿东偏北30°方向能最快追上走私船.11.衡水市某广场有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC ,△ABD ,经测量AD =BD =7米,BC =5米,AC =8米,∠C =∠D .(1)求AB 的长度;(2)若环境标志的底座每平方米造价为5 000元,不考虑其他因素,小李、小王谁的设计使建造费用较低(请说明理由)?较低造价为多少?(3=1.732,2=1.414)答案 (1)7米 (2)小李的设计建造费用低,86 600元 解析 (1)在△ABC 中,由余弦定理,得 cos C =AC 2+BC 2-AB 22AC ·BC =82+52-AB 22×8×5.①在△ABD 中,由余弦定理,得 cos D =72+72-AB 22×7×7.②由∠C =∠D ,得cos C =cos D . ∴AB =7,∴AB 长为7米.(2)小李的设计建造费用较低,理由如下: S △ABD =12AB ·BD ·sin D ,S △ABC =12AC ·BC ·sin C .∵AD ·BD >AC ·BC ,∴S △ABD >S △ABC . 故选择△ABC 建造环境标志费用较低.∵AD =BD =AB =7,∴△ABD 是等边三角形,∠D =60°.∴S △ABC =103=10×1.732=17.32.∴总造价为5 000×17.32=86 600(元).12.(2015·盐城一模)如图所示,经过村庄A 有两条夹角为60°的公路AB ,AC ,根据规划拟在两条公路之间的区域内建一工厂P ,分别在两条公路边上建两个仓库M ,N (异于村庄A ),要求PM =PN =MN =2(单位:千米).如何设计,使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远)?答案 当设计∠AMN =60°时,工厂产生的噪声对居民影响最小 解析 设∠AMN =θ,在△AMN 中,MN sin60°=AM sin (120°-θ).因为MN =2,所以AM =433sin(120°-θ).在△APM 中,cos ∠AMP =cos(60°+θ). AP 2=AM 2+MP 2-2AM ·MP ·cos ∠AMP =163sin 2(120°-θ)+4-2×2×433sin(120°-θ)cos(60°+θ)=163sin 2(θ+60°)-1633sin(θ+60°)cos(θ+60°)+4 =83[1-cos(2θ+120°)]-833sin(2θ+120°)+4 =-83[3sin(2θ+120°)+cos(2θ+120°)]+203=203-163sin(2θ+150°),θ∈(0°,120°). 当且仅当2θ+150°=270°,即θ=60°时,AP 2取得最大值12,即AP 取得最大值2 3. 所以设计∠AMN =60°时,工厂产生的噪声对居民影响最小.1.为了测量两山顶M ,N 之间的距离,飞机沿水平方向在A ,B 两点进行测量.A ,B ,M ,N 在同一个铅垂平面内(如图所示).飞机能够测量的数据有俯角和A ,B 间的距离.请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M ,N 间的距离的步骤.解析 方案一:①需要测量的数据有:A 点到M ,N 点的俯角α1,β1,B 点到M ,N 的俯角α2,β2;A ,B 间的距离d (如图所示).②第一步:计算AM.由正弦定理,得AM=d sinα2sin(α1+α2);第二步:计算AN.由正弦定理,得AN=d sinβ2sin(β2-β1);第三步:计算MN.由余弦定理,得MN=AM2+AN2-2AM×AN cos(α1-β1).方案二:①需要测量的数据有:A到M,N点的俯角α1,β1;B点到M,N点的俯角α2,β2;A,B间的距离d(如图所示).②第一步:计算BM.由正弦定理,得BM=d sinα1sin(α1+α2);第二步:计算BN.由正弦定理,得BN=d sinβ1sin(β2-β1);第三步:计算MN.由余弦定理,得MN=BM2+BN2+2BM×BN cos(β2+α2).2.要测底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,求电视塔的高度.答案40米解析如图设电视塔AB高为x,则在Rt△ABC中,由∠ACB=45°,得BC=x.在Rt△ADB中,∠ADB=30°,∴BD=3x.在△BDC中,由余弦定理,得BD2=BC2+CD2-2BC·CD·cos120°.即(3x)2=x2+402-2·x·40·cos120°,解得x=40,∴电视塔高为40米.。
高考调研数学答案2016【篇一:【高考调研】2016届高三理科数学一轮复习配套题组层级快练82】>(第二次作业)3273a.0 c.2 答案 c111263111111532333692.抛掷两枚骰子,当至少有一枚5点或一枚6点出现时,就说这次实验成功,则在30次实验中成功次数x的均值是( )55a. 650 3答案 c114555解析至少有一枚5点或一枚6点的概率为1-(1-)(1-)=1.∴x~b(30),∴e(x)=30339999=5033.一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a,b,c∈(0,1)),已知他投篮一次得分的数学期望为2(不计其他得分情况),则ab的最大值为( )1a.481 12答案d解析设投篮得分为随机变量x,则x的分布列为6当且仅当3a=2b时,等号成立.4.设等差数列{an}的公差为d,若a1,a2,a3,a4,a5,a6,a7的方差为1,则d=________.12416403d.10 b.1 d.31答案 2解析 a1,a2,a3,a4,a5,a6,a7的均值为 a1+a2+a3+a4+a5+a6+a7a4,则7?a1-a4?2+?a2-a4?2+?+?a7-a4?2711=4d2=1,d=225.设一次试验成功的概率为p,进行100次独立重复试验,当p=______时,成功次数的标准差的值最大,其最大值为______.1答案 252p+1-p22126.某校举行一次以“我为教育发展做什么”为主题的演讲比赛,比赛分为初赛、复赛、决赛三个阶211段,已知某选手通过初赛、复赛、决赛的概率分别为,334(1)求该选手在复赛阶段被淘汰的概率;答案 (1) (2)99解析(1)记“该选手通过初赛”为事件a,“该选手通过复赛”为事件b,“该选手通过决赛”为事211件c,则p(a)p(b)=,p(c)=.33421433214339212399953111211212.1515515338.根据以往的经验,某工程施工期间的降水量x(单位:mm)对工期的影响如下表:求: (1)工期延误天数y的均值与方差;(2)在降水量x至少是300的条件下,工期延误不超过6天的概率. 6答案 (1)均值为3,方差为9.8 7解析 (1)由已知条件和概率的加法公式有:p(x300)=0.3,p(300≤x700)=p(x700)-p(x300)=0.7-0.3=0.4,p(700≤x900)=p(x900)-p(x700)=0.9-0.7=0.2,p(x≥900)=1-p(x900)=1-0.9=0.1. 所以y的分布列为(2)由概率的加法公式,得p(x≥300)=1-p(x300)=0.7. 又p(300≤x900)=p(x900)-p(x300)=0.9-0.3=0.6,由条件概率,得p(y≤6|x≥300)=p(x900|x≥300)=p?300≤x900?0.66=. 0.77p?x≥300?6故在降水量x至少是300的条件下,工期延误不超过6天的概率是. 79.为提高学生学习语文的兴趣,某地区举办了中学生“汉语听写比赛”.比赛成绩只有90分,70分,60分,40分,30分五种,将本次比赛的成绩分为a,b,c,d,e五个等级.从参加比赛的学生中随机抽取了30名,并把他们的比赛成绩按这五个等级进行了统计,得到如下数据表:(1)1人,其成绩等级为“a或b”的概率;(2)根据(1)的结论,若从该地区参加“汉语听写比赛”的学生(参赛人数很多)中任选3人,记x表示抽到成绩等级为“a或b”的学生人数,求x的分布列及数学期望e(x).1答案 (1) (2)1346解析 (1)根据统计数据可知,从这30名学生中任选1人,其成绩等级为“a或b”的频率为=3030101. 3031故从该地区参加“汉语听写比赛”的学生中任意抽取1人,其成绩等级为“a或b”的概率约为3(2)由已知得,随机变量x的可能取值为0,1,2,3, 10238故随机变量x的分布列为279927讲评新课标高考的数学试题对概率与统计内容的考查已经悄然发生了变化,其侧重点由以往的概率及概率分布列的问题,变为统计与概率及分布列知识的综合,包括统计案例分析.书.现某人参加这个选修课的考试,他a级考试成绩合格的概率为,b级考试合格的概率为.假设各级考32试成绩合格与否均互不影响.(1)求他不需要补考就可获得该选修课的合格证书的概率;答案 (1)33解析设“a级第一次考试合格”为事件a1,“a级补考合格”为事件a2;“b级第一次考试合格”为事件b1,“b级补考合格”为事件b2.(1)不需要补考就获得合格证书的事件为a1b1,注意到a1与b1相互独立, 2113231故该考生不需要补考就获得该选修课的合格证书的概率为3即该考生参加考试的次数的期望为3【篇二:2016届浙江省高三调研考试数学(理)试题】>数学(理科)姓名______________ 准考证号______________ 本试题卷分选择题和非选择题两部分。
题组层级快练(五十八)1.直线x cos140°+y sin40°+1=0的倾斜角是( ) A .40° B .50° C .130° D .140°答案 B解析 将直线x cos140°+y sin40°+1=0化成x cos40°-y sin40°-1=0,其斜率为k =cos40°sin40°=tan50°,倾斜角为50°.2.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2 答案 D解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.3.已知直线l 的倾斜角为α,且sin α+cos α=15,则直线l 的斜率是( )A .-43B .-34C .-43或-34D .±43答案 A解析 ∵α为倾斜角,∴0≤α<π. ∵sin α+cos α=15,∴sin α=45,cos α=-35.∴tan α=-43.4.若经过点P (1,4)的直线在两坐标轴上的截距都是正的,且截距之和最小,则直线的方程为( ) A .x +2y -6=0 B .2x +y -6=0 C .x -2y +7=0 D .x -2y -7=0答案 B解析 方法一:直线过P (1,4),代入,排除A ,D ,又在两坐标轴上的截距为正,排除C ,故选B. 方法二:设方程为x a +y b =1,将(1,4)代入得1a +4b =1.a +b =(a +b )(1a +4b )=5+(b a +4ab)≥9,当且仅当b =2a ,即a =3,b =6时,截距之和最小. ∴直线方程为x 3+y6=1,即2x +y -6=0.5.已知直线PQ 的斜率为-3,将直线绕点P 顺时针旋转60°所得的直线的斜率为( ) A. 3 B .- 3 C .0 D .1+ 3答案 A解析 直线PQ 的斜率为-3,则直线PQ 的倾斜角为120°,所求直线的倾斜角为60°,tan60°= 3. 6.若直线l 1,l 2关于x 轴对称,l 1的斜率是-7,则l 2的斜率是( ) A.7 B .-77 C.77D .-7答案 A解析 画出图形,根据对称性分析两直线的倾斜角之间的关系,再判断其斜率之间的关系. 如图所示,显然直线l 2的斜率为7.7.(2015·海淀区)若直线l 经过点A (1,2),且在x 轴上的截距的取值范围是(-3,3),则其斜率的取值范围是( )A .-1<k <15B .k >1或k <12C.15<k <1 D .k >12或k <-1答案 D解析 设直线的斜率为k ,则直线方程为y -2=k (x -1),直线在x 轴上的截距为1-2k ,令-3<1-2k <3,解不等式可得.也可以利用数形结合.8.两直线x m -y n =1与x n -ym=1的图像可能是图中的哪一个( )答案 B9.若直线l 左移3个单位,再上移1个单位时,恰回到原来的位置,则直线的斜率是( ) A .-13B .-3 C.13 D .3答案 A解析 设点P (x 0,y 0)为l 上一点,∴左移3个单位,上移1个单位后变为P ′(x 0-3,y 0+1),而P 与P ′均在l 上,∴k =y 0+1-y 0x 0-3-x 0=-13.10.过点M (1,-2)的直线与x 轴,y 轴分别交于P ,Q 两点,若M 恰为线段PQ 的中点,则直线PQ 的方程为( )A .2x +y =0B .2x -y -4=0C .x +2y +3=0D .x -2y -5=0 答案 B解析 设P (x 0,0),Q (0,y 0),∵M (1,-2)为线段PQ 中点, ∴x 0=2,y 0=-4,∴直线PQ 的方程为x 2+y-4=1.即2x -y -4=0.11.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线的倾斜角的取值范围是( )A .[π6,π3)B .(π6,π2)C .(π3,π2)D .[π6,π2]答案 B解析 ∵直线l 恒过定点(0,-3), 作出两直线的图像,如图所示,从图中看出,直线l 的倾斜角的取值范围应为(π6,π2).12.如果AC <0且BC <0,那么直线Ax +By +C =0不通过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 C解析 由条件知直线在两个轴上的截距为正数易知.13.过点M (3,-4)且在两坐标轴上的截距互为相反数的直线方程为________. 答案 y =-43x 或x -y -7=014.已知直线l 的斜率为16,且和坐标轴围成面积为3的三角形,则直线l 的方程为________.答案 x -6y +6=0或x -6y -6=0 解析 设所求直线l 的方程为x a +yb =1.∵k =16,即b a =-16,∴a =-6b .又S △ABC =3=12|a |·|b |,∴|ab |=6.则当b =1时,a =-6;当b =-1时,a =6. ∴所求直线方程为x -6+y 1=1或x 6+y-1=1.即x -6y +6=0或x -6y -6=0.15.已知P (-3,2),Q (3,4)及直线ax +y +3=0.若沿PQ →的方向延长线段PQ 与直线有交点(不含Q 点),则a 的取值范围是________.答案 (-73,-13)解析 直线l :ax +y +3=0是过点A (0,-3)的直线系,斜率为参变数-a ,易知PQ ,QA ,l 的斜率分别为:k PQ =13,k AQ =73,k l =-a .若l 与PQ 延长线相交,由图可知k PQ <k l <k AQ ,解得-73<a <-13.16.已知点M 是直线l :3x -y +3=0与x 轴的交点,将直线l 绕点M 旋转30°,求所得到的直线l ′的方程.答案 x +3=0或x -3y +3=0 解析 在3x -y +3=0中,令y =0,得x =-3, 即M (-3,0). ∵直线l 的斜率k =3, ∴其倾斜角θ=60°.若直线l 绕点M 逆时针方向旋转30°,则直线l ′的倾斜角为60°+30°=90°,此时斜率不存在,故其方程为x =- 3.若直线l 绕点M 顺时针方向旋转30°,则直线l ′的倾斜角为60°-30°=30°,此时斜率为tan30°=33. 故其方程为y =33(x +3),即x -3y +3=0. 综上所述,所求直线方程为x +3=0或x -3y +3=0.17.在△ABC 中,已知A (1,1),AC 边上的高线所在直线方程为x -2y =0,AB 边上的高线所在直线方程为3x +2y -3=0.求BC 边所在直线方程.答案 2x +5y +9=0 解析 k AC =-2,k AB =23.∴AC :y -1=-2(x -1),即2x +y -3=0, AB :y -1=23(x -1),即2x -3y +1=0.由⎩⎪⎨⎪⎧2x +y -3=0,3x +2y -3=0,得C (3,-3). 由⎩⎪⎨⎪⎧2x -3y +1=0,x -2y =0,得B (-2,-1). ∴BC :2x +5y +9=0.18.过点P (1,2)作直线l ,与x 轴,y 轴正半轴分别交于A ,B 两点,求△AOB 面积的最小值及此时直线l 的方程.答案 (S △AOB )min =4,l :2x +y -4=0 解析 设直线l 的方程为y -2=k (x -1), 令y =0,得x =k -2k ,令x =0,得y =2-k .∴A ,B 两点坐标分别为A (k -2k ,0),B (0,2-k ).∵A ,B 是l 与x 轴,y 轴正半轴的交点,∴⎩⎨⎧k <0,k -2k>0,2-k >0.∴k <0.S △AOB =12·|OA |·|OB |=12·k -2k ·(2-k )=12(4-4k -k ).由-4k >0,-k >0,得S △AOB ≥12(4+2(-4k)(-k ))=4. 当且仅当k =-2时取“=”.∴S △AOB 最小值为4,方程为2x+y -4=0.1.若过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为( ) A .1 B .4 C .1或3 D .1或4答案 A解析 ∵k MN =m -4-2-m=1,∴m =1.2.直线x +a 2y -a =0(a >0),当此直线在x ,y 轴上的截距和最小时,a 的值为________. 答案 1解析 方程可化为x a +y 1a =1,因为a >0,所以截距之和t =a +1a ≥2,当且仅当a =1a ,即a =1时取等号,故a 的值为1.3.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为________. 答案 x +y -3=0或x +2y -4=0解析 由题意可设直线方程为x a +yb=1.则⎩⎪⎨⎪⎧a +b =6,2a +1b =1,解得a =b =3,或a =4,b =2. 4.设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若l 在两坐标轴上截距相等,求l 的方程; (2)若l 不经过第二象限,求实数a 的取值范围. 答案 (1)3x +y =0或x +y +2=0 (2)a ≤-1解析 (1)当直线过原点时,在x 轴和y 轴上的截距为零. ∴a =2,方程即为3x +y =0.当直线不过原点时,由截距存在且均不为0, ∴a -2a +1=a -2,即a +1=1. ∴a =0,方程即为x +y +2=0.因此直线l 的方程为3x +y =0或x +y +2=0. (2)将l 的方程化为y =-(a +1)x +a -2,∴⎩⎪⎨⎪⎧-(a +1)≥0,a -2≤0.∴a ≤-1. 综上可知a 的取值范围是a ≤-1.。
题组层级快练(七十八)1.(2015·重庆一中期中)在[-2,3]上随机取一个数x ,则(x +1)(x -3)≤0的概率为( ) A.25 B.14 C.35 D.45答案 D解析 由(x +1)(x -3)≤0,得-1≤x ≤3.由几何概型得所求概率为45.2.在长为12 cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,则这个正方形的面积介于36 cm 2与81 cm 2之间的概率为( )A.14B.13C.427D.415 答案 A解析 面积为36 cm 2时,边长AM =6 cm ; 面积为81 cm 2时,边长AM =9 cm. ∴P =9-612=312=14.3.若在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于S4的概率是( )A.14B.12C.34D.23 答案 C解析 如图,在AB 边上取点P ′,使AP ′AB =34,则P 只能在AP ′上(为包括P ′点)运动,则所求概率为AP ′AB =34. 4.一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( )A.4π81B.81-4π81C.127D.827答案 C解析 由已知条件可知,蜜蜂只能在一个棱长为1的小正方体内飞行,结合几何概型可得蜜蜂“安全飞行”的概率为P =1333=127.5.(2014·湖北理)由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2.在Ω1中随机取一点,则该点恰好在Ω2内的概率为( )A.18 B.14 C.34 D.78答案 D解析 由题意作图,如图所示,Ω1的面积为12×2×2=2,图中阴影部分的面积为2-12×22×22=74,则所求的概率P =742=78,选D.6.已知函数f (x )=x 2+bx +c ,其中0≤b ≤4,0≤c ≤4,记函数f (x )满足条件⎩⎪⎨⎪⎧f (2)≤12,f (-2)≤4为事件A ,则事件A 发生的概率为( )A.14B.58 C.12 D.38 答案 C解析 由题意知,事件A 所对应的线性约束条件为⎩⎪⎨⎪⎧0≤b ≤4,0≤c ≤4,4+2b +c ≤12,4-2b +c ≤4,其对应的可行域如图中阴影部分所示,所以事件A 的概率P (A )=S △OADS 正方形OABC =12,选C.7.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( )A.π12 B .1-π12C.π6 D .1-π6答案 B解析 正方体的体积为2×2×2=8,以O 为球心,1为半径且在正方体内部的半球的体积为12×43πr 3=12×4π3×13=2π3,则点P 到点O 的距离小于或等于1的概率为2π38=π12,故点P 到点O 的距离大于1的概率为1-π12.8.若在区域⎩⎨⎧x +y -2≤0,x -y +2≥0,y ≥0内任取一点P ,则点P 落在单位圆x 2+y 2=1内的概率为( )A.π2B.π8C.π6D.π4答案 D解析 区域为△ABC 内部(含边界),则概率为P =S 半圆S △ABC=π212×22×2=π4,故选D. 9.(2013·四川理)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )A.14B.12C.34D.78答案 C解析 设通电x 秒后第一串彩灯闪亮,y 秒后第二串彩灯闪亮.依题意得0≤x ≤4,0≤y ≤4,∴S =4×4=16.又两串彩灯闪亮的时刻相差不超过2秒,即|x -y |≤2,如图可知,符合要求的S ′=16-12×2×2-12×2×2=12,∴P =S ′S =1216=34.10.已知实数a 满足-3<a <4,函数f (x )=lg(x 2+ax +1)的值域为R 的概率为P 1,定义域为R 的概率为P 2,则( )A .P 1>P 2B .P 1=P 2C .P 1<P 2D .P 1与P 2的大小不确定答案 C解析 若f (x )的值域为R ,则Δ1=a 2-4≥0,得a ≤-2或a ≥2. 故P 1=-2-(-3)4-(-3)+4-24-(-3)=37.若f (x )的定义域为R ,则Δ2=a 2-4<0,得-2<a <2. 故P 2=47.∴P 1<P 2.11.(2014·福建文)如图所示,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.答案 0.18解析 几何概型与随机模拟实验的关系.由题意知,这是个几何概型问题,S 阴S 正=1801 000=0.18.∵S 正=1,∴S 阴=0.18.12.点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧AB 的长度小于1的概率为________.答案 23解析 圆周上使弧AM 的长度为1的点M 有两个,设为M 1,M 2,则过A 的圆弧M 1M 2的长度为2,B 点落在优弧M 1M 2上就能使劣弧AB 的长度小于1,所以劣弧AB 的长度小于1的概率为23.13.若在区间[0,10]内随机取出两个数,则这两个数的平方和也在区间[0,10]内的概率是________. 答案π40解析 将取出的两个数分别用x ,y 表示,则0≤x ≤10,0≤y ≤10.如图所示,当点(x ,y )落在图中的阴影区域时,取出的两个数的平方和也在区间[0,10]内,故所求概率为14π×10102=π40.14.如图所示,图2中实线围成的部分是长方体(图1)的平面展开图,其中四边形ABCD 是边长为1的正方形.若向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是14,则此长方体的体积是________.答案 3解析 设长方体的高为h ,由几何概型的概率计算公式可知,质点落在长方体的平面展开图内的概率P =2+4h (2h +2)(2h +1)=14,解得h =3,故长方体的体积为1×1×3=3.15.(2015·茂名一模)已知一颗粒子等可能地落入如图所示的四边形ABCD 内的任意位置,如果通过大量的试验发现粒子落入△BCD 内的频率稳定在25附近,那么点A 和点C 到直线BD 的距离之比约为________.答案 32解析 由几何概型的概率计算公式,得粒子落在△ABD 与△CBD 中的概率之比等于△ABD 与△CBD 的面积之比,而△ABD 与△CBD 的面积之比又等于点A 和点C 到直线BD 的距离之比,所以点A 和点C 到直线BD 的距离之比约为3525=32,故填32.16.(2015·广东深圳)已知复数z =x +y i(x ,y ∈R )在复平面上对应的点为M .(1)设集合P ={-4,-3,-2,0},Q ={0,1,2},从集合P 中随机抽取一个数作为x ,从集合Q 中随机抽取一个数作为y ,求复数z 为纯虚数的概率;(2)设x ∈[0,3],y ∈[0,4],求点M 落在不等式组: ⎩⎪⎨⎪⎧x +2y -3≤0,x ≥0,y ≥0所表示的平面区域内的概率.答案 (1)16 (2)316解析 (1)记“复数z 为纯虚数”为事件A .∵组成复数z 的所有情况共有12个:-4,-4+i ,-4+2i ,-3,-3+i ,-3+2i ,-2,-2+i ,-2+2i,0,i,2i ,且每种情况出现的可能性相等,属于古典概型, 其中事件A 包含的基本事件共2个:i,2i , ∴所求事件的概率为P (A )=212=16. (2)依条件可知,点M 均匀地分布在平面区域{(x ,y )|⎩⎨⎧0≤x ≤3,0≤y ≤4}内,属于几何概型.该平面区域的图形为右图中矩形OABC 围成的区域,面积为S =3×4=12.而所求事件构成的平面区域为{(x ,y )|⎩⎨⎧x +2y -3≤0,x ≥0,y ≥0},其图形如图中的三角形OAD (阴影部分).又直线x +2y -3=0与x 轴,y 轴的交点分别为A (3,0),D (0,32),∴三角形OAD 的面积为S 1=12×3×32=94.∴所求事件的概率为P =S 1S =9412=316.17.甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的.(1)如果甲船和乙船的停泊的时间都是4小时,求它们中的任何一条船不需要等待码头空出的概率; (2)如果甲船的停泊时间为4小时,乙船的停泊时间为2小时,求它们中的任何一条船不需要等待码头空出的概率.答案 (1)2536 (2)221288解析 (1)设甲、乙两船到达时间分别为x ,y ,则0≤x <24,0≤y <24且y -x >4或y -x <-4. 作出区域⎩⎪⎨⎪⎧0≤x <24,0≤y <24,y -x >4或y -x <-4.设“两船无需等待码头空出”为事件A ,则P (A )=2×12×20×2024×24=2536.(2)当甲船的停泊时间为4小时,两船不需等待码头空出,则满足x -y >2或y -x >4,设在上述条件时“两船不需等待码头空出”为事件B ,画出区域⎩⎪⎨⎪⎧0≤x <24,0≤y <24,y -x >4或x -y >2.P (B )=12×20×20+12×22×2224×24=442576=221288.1.(2015·湖南澧县三校)假设在时间间隔T 内的任何时刻,两条不相关的短信机会均等地进入同一部手机.若这两条短信进入手机的间隔时间不大于t (0<t <T ),则手机受到干扰.手机受到干扰的概率是( )A .(tT )2B .(1-t T )2C .1-(tT )2D .1-(1-tT)2答案 D解析 分别设两个互相独立的信号为X ,Y ,则所有事件集可表示为0≤x ≤T,0≤y ≤T .由题目得,如果手机受到干扰的事件发生,必有|x -y |≤t .这时x ,y 满足⎩⎪⎨⎪⎧0≤x ≤T ,0≤y ≤T ,|x -y |≤t ,约束条件⎩⎪⎨⎪⎧0≤x ≤T ,0≤y ≤T ,|x -y |≤t ,的可行域为如图阴影部分.而所有事件的集合即为正方形面积,阴影区域面积为T 2-2×12(T -t )2=T 2-(T -t )2所以阴影区域面积和正方形面积比值即为干扰发生的概率,即1-(1-tT)2,故选D.2.(2013·陕西理)如图,在矩形区域ABCD 的A ,C 两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是()A .1-π4B.π2-1 C .2-π2D.π4答案 A解析 依题意知,有信号的区域面积为π4×2=π2,矩形面积为2,故无信号的概率P =2-π22=1-π4.3.(2014·辽宁文)若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是()A.π2B.π4C.π6D.π8答案 B解析 由几何概型的概率公式可知,质点落在以AB 为直径的半圆内的概率P =半圆的面积长方形的面积=12π2=π4,故选B.。
题组层级快练(四十)1.(2014·天津文)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和,若S 1,S 2,S 4成等比数列,则a 1=( )A .2B .-2 C.12 D .-12答案 D解析 S 1=a 1,S 2=a 1+a 2=2a 1-1,S 4=4a 1-6. ∵S 22=S 1S 4,∴(2a 1-1)2=a 1(4a 1-6). ∴4a 21-4a 1+1=4a 21-6a 1⇒a 1=-12.2.在等差数列{a n }中,a 3+a 11=8,数列{b n }是等比数列,且b 7=a 7,则b 6·b 8的值为( ) A .2 B .4 C .8 D .16答案 D解析 ∵{a n }为等差数列,∴a 7=a 3+a 112=4=b 7.又{b n }为等比数列,b 6·b 8=b 27=16,故选D.3.已知等比数列{a n }中的各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8等于( )A .1+ 2B .1-2C .3+2 2D .3-22答案 C解析 记等比数列{a n }的公比为q ,其中q >0, 则有a 3=a 1+2a 2,即a 1q 2=a 1+2a 1q ,q 2-2q -1=0,q =1± 2. 又q >0,因此q =1+ 2.所以a 9+a 10a 7+a 8=a 7q 2+a 8q 2a 7+a 8=q 2=(1+2)2=3+2 2.选C.4.已知{a n },{b n }均为等差数列,且a 2=8,a 6=16,b 2=4,b 6=a 6,则由{a n },{b n }的公共项组成的新数列{c n }的通项公式c n =( )A .3n +4B .6n +2C .6n +4D .2n +2答案 C解析 设{a n }的公差为d 1,{b n }的公差为d 2, 则d 1=a 6-a 26-2=84=2,d 2=b 6-b 26-2=124=3. ∴a n =a 2+(n -2)×2=2n +4,b n =b 2+(n -2)×3=3n -2.∴数列{a n }为6,8,10,12,14,16,18,20,22,…,数列{b n }为1,4,7,10,13,16,19,22,…. ∴{c n }是以10为首项,以6为公差的等差数列. ∴c n =10+(n -1)×6=6n +4.5.已知数列{a n },{b n }知足a 1=1,且a n ,a n +1是函数f (x )=x 2-b n x +2n的两个零点,则b 10等于( )A .24B .32C .48D .64答案 D解析 依题意有a n a n +1=2n,所以a n +1a n +2=2n +1.两式相除,得a n +2a n=2. 所以a 1,a 3,a 5,…成等比数列,a 2,a 4,a 6,…也成等比数列. 而a 1=1,a 2=2,所以a 10=2·24=32,a 11=1·25=32. 又因为a n +a n +1=b n , 所以b 10=a 10+a 11=64.6.在如图的表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则a +b +c 的值为( )A.1 C .3 D .4答案 A解析 由题意知,a =12,b =516,c =316.故a +b +c =1,故选A.7.数列{a n }是等差数列,若a 1,a 3,a 4是等比数列{b n }中的持续三项,则数列{b n }的公比为________.答案 12或1解析 设数列{a n }的公差为d ,由题可知,a 23=a 1·a 4,可得(a 1+2d )2=a 1(a 1+3d ),整理得(a 1+4d )d =0,解得d =0或a 1=-4d .当d =0时,等比数列{b n }的公比为1;当a 1=-4d 时,a 1,a 3,a 4别离为-4d ,-2d ,-d ,所以等比数列{b n }的公比为12.8.等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则等比数列{a n }的公比为________.答案 13解析 设等比数列{a n }的公比为q (q ≠0),由4S 2=S 1+3S 3,得4(a 1+a 1q )=a 1+3(a 1+a 1q +a 1q 2),即3q 2-q =0.∴q =13.9.一个数字生成器,生成规则如下:第1次生成一个数x ,以后每次生成的结果可将上一次生成的每一个数x 生成两个数,一个是-x ,另一个是x +3.设第n 次生成的数的个数为a n ,则数列{a n }的前n 项和S n =________;若x =1,前n 次生成的所有数...中不同的数的个数为T n ,则T 4=________.答案 2n-1,10解析 由题意可知,依次生成的数字个数是首项为1,公比为2的等比数列,故S n =1-2n1-2=2n-1.当x =1时,第1次生成的数为1,第2次生成的数为-1,4,第3次生成的数为1,2;-4,7,第4次生成的数为-1,4;-2,5;4,-1;-7,10.故T 4=10.10.(2015·吉林实验中学一模)在直角坐标平面内,已知点P 1(1,2),P 2(2,22),P 3(3,23),…,P n (n,2n),….若n 为正整数,则向量P 1P 2→+P 3P 4→+P 5P 6→+…+P 2n -1P 2n 的纵坐标为________.答案 23(4n-1)解析 P k P k +1=(k +1-k,2k +1-2k )=(1,2k),于是P 1P 2→+P 3P 4→+P 5P 6→+…+P 2n -1P 2n 的纵坐标为2+23+25+…+22n -1=21-4n1-4=23(4n-1). 11.在等差数列{a n }和等比数列{b n }中,a 1=b 1=1,b 4=8.{a n }的前10项和S 10=55. (1)求a n 和b n ;(2)现别离从{a n }和{b n }的前3项中各随机抽取一项,写出相应的大体事件,并求这两项的值相等的概率.答案 (1)a n =n ,b n =2n -1(2)29解析 (1)设{a n }的公差为d ,{b n }的公比为q .依题意得S 10=10+10×92d =55,b 4=q 3=8, 解得d =1,q =2,所以a n =n ,b n =2n -1.(2)别离从{a n }和{b n }的前3项中各随机抽取一项,取得的大体事件有9个:(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(3,1),(3,2),(3,4).符合题意的大体事件有2个:(1,1),(2,2).故所求的概率P =29.12.(2014·湖北)已知等差数列{a n }知足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式;(2)记S n 为数列{a n }的前n 项和,是不是存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.答案 (1)a n =2或a n =4n -2 (2)当a n =2时,不存在,当a n =4n -2时,存在,n 最小值为41解析 (1)设数列{a n }的公差为d ,依题意,2,2+d,2+4d 成等比数列,故有(2+d )2=2(2+4d ).化简得d 2-4d =0,解得d =0或d =4. 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2.从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n .显然2n <60n +800, 现在不存在正整数n ,使得S n >60n +800成立. 当a n =4n -2时,S n =n [2+4n -2]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去).现在存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在知足题意的n ;当a n =4n -2时,存在知足题意的n ,其最小值为41.13.某林场为了保护生态环境,制定了植树造林的两个五年计划,第一年植树16a 亩,以后每一年植树面积都比上一年增加50%,但从第六年开始,每一年植树面积都比上一年减少a 亩.(1)求该林场第6年植树的面积;(2)设前n (1≤n ≤10且n ∈N )年林场植树的总面积为S n 亩,求S n 的表达式. 答案 (1)该林场第6年植树的面积为80a 亩 (2)S n=⎩⎪⎨⎪⎧32a [32n-1],1≤n ≤5,n ∈N ,211a +166a -nan -52,6≤n ≤10,n ∈N解析 (1)该林场前5年的植树面积别离为16a,24a,36a,54a,81a . ∴该林场第6年植树的面积为80a 亩. (2)设第n 年该林场植树的面积为a n 亩, 则a n =⎩⎪⎨⎪⎧32n -1×16a ,1≤n ≤5,n ∈N ,86-n a ,6≤n ≤10,n ∈N .∴当1≤n ≤5时,S n =16a +24a +…+(32)n -1×16a=16a [1-32n]1-32=32a [(32)n-1](亩).当6≤n ≤10时,S n =16a +24a +36a +54a +81a +80a +…+(86-n )a =211a +80a +…+(86-n )a =211a +[80a +86-n a ]n -52=211a +166a -nan -52(亩).∴所求S n 的表达式为 S n=⎩⎪⎨⎪⎧32a [32n-1],1≤n ≤5,n ∈N ,211a +166a -nan -52,6≤n ≤10,n ∈N .14.已知在正项数列{a n }中,a 1=2,点A n (a n ,a n +1)在双曲线y 2-x 2=1上,数列{b n }中,点(b n ,T n )在直线y =-12x +1上,其中T n 是数列{b n }的前n 项和.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列; (3)若c n =a n ·b n ,求证:c n +1<c n . 答案 (1)a n =n +1 (2)略 (3)略解析 (1)由已知点A n 在y 2-x 2=1上知,a n +1-a n =1. ∴数列{a n }是一个以2为首项,以1为公差的等差数列. ∴a n =a 1+(n -1)d =2+n -1=n +1. (2)∵点(b n ,T n )在直线y =-12x +1上,∴T n =-12b n +1.①∴T n -1=-12b n -1+1(n ≥2).②①②两式相减,得b n =-12b n +12b n -1(n ≥2).∴32b n =12b n -1,∴b n =13b n -1. 由①,令n =1,得b 1=-12b 1+1,∴b 1=23.∴{b n }是以23为首项,以13为公比的等比数列.(3)由(2)可知b n =23·⎝ ⎛⎭⎪⎫13n -1=23n .∴c n =a n ·b n =(n +1)·23n .∴c n +1-c n =(n +2)·23n +1-(n +1)·23n=23n +1[(n +2)-3(n +1)] =23n +1(-2n -1)<0.∴c n +1<c n .1.若正项数列{a n }知足lg a n +1=1+lg a n ,且a 2 001+a 2 002+a 2 003+…+a 2 010=2 013,则a 2 011+a 2 012+a 2 013+…+a 2 020的值为( )A .2 013·1010B .2 013·1011C .2 014·1010D .2 014·1011答案 A解析 由条件知lg a n +1-lg a n =lga n +1a n =1,即a n +1a n=10,所以{a n }为公比是10的等比数列.因为(a 2 001+…+a 2 010)·q 10=a 2 011+…+a 2 020,所以a 2 011+…+a 2 020=2 013·1010,选A.2.气象局用3.2万元买了一台天文观测仪,已知这台观测仪从启用的第一天起持续利用,第n 天的维修保养费为n +4910(n ∈N *)元,利用它直至报废最合算(所谓报废最合算是指利用的这台仪器的平均耗资最少),一共利用了( )A .600天B .800天C .1 000天D .1 200天答案 B解析 由第n 天的维修保养费为n +4910(n ∈N *)元,能够得出观测仪的整个耗资费用,由平均费用最少而求得最小值成立时的相应n 的值.设一共利用了n 天,则利用n 天的平均耗资为3.2×104+5+n +4910n2n =3.2×104n+n20+9920,当且仅当3.2×104n =n 20时取得最小值,现在n =800,故选B. 3.一个蜂巢有1只蜜蜂,第一天,它飞出去找回了2个伙伴;第二天3只密蜂飞出去,各自找回了2个伙伴,…,若是那个找伙伴的进程继续下去且都能找回2个伙伴,第五天所有蜜蜂都归巢后,蜂巢中一共有________只蜜蜂.答案 243解析 第一天有1+2只,第二天有a 2=3a 1=9只,第三天有a 3=3a 2=27只,……,故第n 天为a n =3n ,则a 5=35=243只.4.设关于x 的不等式x 2-x <2nx (n ∈N *)的解集中整数的个数为a n ,数列{a n }的前n 项和为S n ,则S 100的值为________.答案 10 100解析 由x 2-x <2nx (n ∈N *),得0<x <2n +1,因此a n =2n ,所以数列{a n }是一个等差数列,所以S 100=100×2+2002=10 100.5.为了增强环保建设,提高社会效益和经济效益,郑州市计划用若干年改换10 000辆燃油型公交车,每改换一辆新车,则淘汰一辆旧车,改换的新车为电力型车和混合动力型车.今年初投入了电力型公交车128辆,混合动力型公交车400辆,计划以后电力型车每一年的投入量比上一年增加50%,混合动力型车每一年比上一年多投入a 辆.(1)求通过n 年,该市被改换的公交车总数S (n );(2)若该市计划用7年的时刻完成全数改换,求a 的最小值. 答案 (1)S (n )=S n +T n =256[(32)n -1]+400n +nn -12a (2)147解析 (1)设a n ,b n 别离为第n 年投入的电力型公交车、混合动力型公交车的数量, 依题意知,数列{a n }是首项为128,公比为1+50%=32的等比数列,数列{b n }是首项为400,公差为a 的等差数列.所以数列{a n }的前n 项和S n =128×[1-32n]1-32=256[(32)n-1].数列{b n }的前n 项和T n =400n +n n -12a .所以通过n 年,该市被改换的公交车总数 S (n )=S n +T n =256[(32)n -1]+400n +n n -12a .(2)若用7年的时刻完成全数改换,则S (7)≥10 000,即256×[(32)7-1]+400×7+7×62a ≥10 000,即21a ≥3 082,所以a ≥3 08221.又a ∈N *,所以a 的最小值为147.。
题组层级快练(二十七)1.函数y =cos(x +π6),x ∈[0,π2]的值域是( )A .(-32,12] B .[-12,32]C .[12,32]D .[-32,-12] 答案 B解析 x ∈[0,π2],x +π6∈[π6,23π],∴y ∈[-12,32].2.如果|x |≤π4,那么函数f (x )=cos 2x +sin x 的最小值是( )A.2-12B .-2+12C .-1 D.1-22答案 D解析 f (x )=-sin 2x +sin x +1=-(sin x -12)2+54,当sin x =-22时,有最小值,y min =24-22=1-22. 3.函数f (x )=sin x -cos(x +π6)的值域为( )A .[-2,2]B .[-3,3]C .[-1,1]D .[-32,32] 答案 B解析 ∵f (x )=sin x -cos(x +π6)=sin x -32cos x +12sin x =32sin x -32cos x =3sin(x -π6),∴f (x )的值域为[-3,3].4.函数y =2sin(πx 6-π3)(0≤x ≤9)的最大值与最小值之和为( )A .2- 3B .0C .-1D .-1- 3 答案 A解析 当0≤x ≤9时,-π3≤πx 6-π3≤7π6,-32≤sin(πx 6-π3)≤1,所以函数的最大值为2,最小值为-3,其和为2- 3.5.函数y =sin x +sin|x |的值域是( ) A .[-1,1] B .[-2,2] C .[0,2] D .[0,1]答案 B解析 当x >0时,y =2sin x ,y ∈[-2,2],x ≤0时,y =0. 6.函数y =12sin(2x +π6)+5sin(π3-2x )的最大值是( )A .6+532B .17C .13D .12 答案 C解析 y =12sin(2x +π6)+5cos[π2-(π3-2x )]=12sin(2x +π6)+5cos(2x +π6)=13sin(2x +π6+φ),故选C.7.当0<x <π4时,函数f (x )=cos 2xcos x sin x -sin 2x 的最小值是( )A.14 B.12 C .2 D .4 答案 D解析 f (x )=1-tan 2x +tan x=1-(tan x -12)2+14, 当tan x =12时,f (x )的最小值为4,故选D.8.已知f (x )=sin x +1sin x ,x ∈(0,π).下列结论正确的是( )A .有最大值无最小值B .有最小值无最大值C .有最大值且有最小值D .既无最大值又无最小值答案 B解析 令t =sin x ,t ∈(0,1],则y =1+1t ,t ∈(0,1]是一个减函数,则f (x )只有最小值而无最大值.另外还可通过y =1+1sin x ,得出sin x =1y -1,由sin x ∈(0,1]也可求出,故选B. 9.若函数y =sin 2x +2cos x 在区间[-23π,α]上最小值为-14,则α的取值范围是________.答案 (-2π3,2π3]解析 y =2-(cos x -1)2,当x =-23π时,y =-14,根据函数的对称性x ∈(-2π3,2π3].10.(2014·新课标全国Ⅱ理)函数f (x )=sin(x +2φ)-2sin φcos(x +φ)的最大值为________. 答案 1解析 f (x )=sin[(x +φ)+φ]-2sin φcos(x +φ)=sin(x +φ)cos φ-cos(x +φ)sin φ=sin(x +φ-φ)=sin x ,因为x ∈R ,所以f (x )的最大值为1.11.若函数f (x )=(sin x +cos x )2-2cos 2x -m 在[0,π2]上有零点,则实数m 的取值范围是________.答案 [-1,2]解析 f (x )=1+2sin x cos x -2cos 2x -m =0有解,x ∈[0,π2].即sin2x -cos2x =m 有解.2sin(2x -π4)=m 有解.∵x ∈[0,π2],∴2x -π4∈[-π4,3π4].∴2sin(2x -π4)∈[-1,2].12.函数y =1sin 2x +2cos 2x 的最小值是________.答案 3+2 2解析 y =1sin 2x +2cos 2x =sin 2x +cos 2x sin 2x +2sin 2x +2cos 2x cos 2x =3+cos 2x sin 2x +2sin 2xcos 2x ≥3+22,∴y min =3+2 2.13.(2015·湖北武汉调研)已知函数f (x )=3sin2x +2cos 2x +m 在区间[0,π2]上的最大值为3,则:(1)m =________;(2)对任意a ∈R ,f (x )在[a ,a +20π]上的零点个数为________. 答案 (1)0 (2)40或41解析 (1)f (x )=3sin2x +2cos 2x +m =3sin2x +1+cos2x +m =2sin(2x +π6)+m +1,因为0≤x ≤π2,所以π6≤2x +π6≤7π6.所以-12≤sin(2x +π6)≤1,f (x )max =2+m +1=3+m =3,所以m =0.(2)由(1)f (x )=2sin(2x +π6)+1,T =2π2=π,在区间[a ,a +20π]上有20个周期,故零点个数为40或41. 14.已知函数f (x )=cos(π3+x )cos(π3-x ),g (x )=12sin2x -14.(1)求函数f (x )的最小正周期;(2)求函数h (x )=f (x )-g (x )的最大值,并求使h (x )取得最大值的x 的集合. 答案 (1)π (2)22 {x |x =k π-π8,k ∈Z } 解析 (1)f (x )=cos(π3+x )cos(π3-x )=(12cos x -32sin x )(12cos x +32sin x )=14cos 2x -34sin 2x =1+cos2x 8-3-3cos2x 8=12cos2x -14, ∴f (x )的最小正周期为2π2=π.(2)h (x )=f (x )-g (x )=12cos2x -12sin2x =22cos(2x +π4),当2x +π4=2k π(k ∈Z )时,h (x )取得最大值22.h (x )取得最大值时,对应的x 的集合为{x |x =k π-π8,k ∈Z }.15.(2015·江西百强中学月考)设函数f (x )=3sin x cos x +cos 2x +a . (1)求函数f (x )的最小正周期及单调递增区间;(2)当x ∈[-π6,π3]时,函数f (x )的最大值与最小值的和为32,求实数a 的值.答案 (1)T =π,[-π3+k π,π6+k π](k ∈Z )(2)a =0解析 (1)∵f (x )=3sin x cos x +cos 2x +a =32sin2x +12(1+cos2x )+a =32sin2x +12cos2x +a +12=sin(2x +π6)+a +12, ∴函数f (x )的最小正周期T =2π2=π. 令-π2+2k π≤2x +π6≤π2+2k π(k ∈Z ),解得-π3+k π≤x ≤π6+k π(k ∈Z ).故函数f (x )的单调递增区间为[-π3+k π,π6+k π](k ∈Z ).(2)∵-π6≤x ≤π3,∴-π6≤2x +π6≤5π6.当2x +π6=-π6时,函数f (x )取最小值,即f (x )min =-12+a +12=a ;当2x +π6=π2时,函数f (x )取最大值,即f (x )max =1+a +12=a +32.∴a +a +32=32,∴a =0.16.(2014·江西理)已知函数f (x )=sin(x +θ)+a cos(x +2θ),其中a ∈R ,θ∈⎝⎛⎭⎫-π2,π2. (1)当a =2,θ=π4时,求f (x )在区间[0,π]上的最大值与最小值;(2)若f ⎝⎛⎭⎫π2=0,f (π)=1,求a ,θ的值. 答案 (1)最大值为22,最小值为-1 (2)a =-1,θ=-π6解析 (1)f (x )=sin ⎝⎛⎭⎫x +π4+2cos ⎝⎛⎭⎫x +π2 =22(sin x +cos x )-2sin x =22cos x -22sin x =sin ⎝⎛⎭⎫π4-x . 因为x ∈[0,π],所以π4-x ∈⎣⎡⎦⎤-3π4,π4. 故f (x )在[0,π]上的最大值为22,最小值为-1. (2)由⎩⎪⎨⎪⎧f ⎝⎛⎭⎫π2=0,f (π)=1,得⎩⎪⎨⎪⎧cos θ(1-2a sin θ)=0,2a sin 2θ-sin θ-a =1. 由θ∈⎝⎛⎭⎫-π2,π2知cos θ≠0,解得⎩⎪⎨⎪⎧a =-1,θ=-π6.。
题组层级快练(四十七)1.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证:b 2-ac <3a ”“索”的“因”应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0答案 C 解析b 2-ac <3a ⇔b 2-ac <3a 2⇔(a +c )2-ac <3a 2⇔a 2+2ac +c 2-ac -3a 2<0⇔-2a 2+ac +c 2<0 ⇔2a 2-ac -c 2>0⇔(a -c )(2a +c )>0⇔(a -c )(a -b )>0.2.(2015·浙江名校联考)设a =lg2+lg5,b =e x (x <0),则a 与b 的大小关系为( ) A .a >b B .a <b C .a =b D .a ≤b答案 A解析 ∵a =lg2+lg5=lg10=1,而b =e x <e 0=1,故a >b . 3.要证明a 2+b 2-1-a 2b 2≤0,只要证明( ) A .2ab -1-a 2b 2≤0 B .a 2+b 2-1-a 4+b 42≤0C.(a +b )22-1-a 2b 2≤0D .(a 2-1)(b 2-1)≥0答案 D解析 a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0. 4.若实数a ,b 满足a +b <0,则( )A .a ,b 都小于0B .a ,b 都大于0C .a ,b 中至少有一个大于0D .a ,b 中至少有一个小于0 答案 D解析 假设a ,b 都不小于0,即a ≥0,b ≥0,则a +b ≥0,这与a +b <0相矛盾,因此假设错误,即a ,b 中至少有一个小于0.5.若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系是( ) A .P >QB .P =QC .P <QD .由a 的取值确定答案 C解析 要比较P ,Q 的大小关系,只要比较P 2,Q 2的大小关系,只要比较 2a +7+2a (a +7)与2a +7+2(a +3)(a +4)的大小,只要比较a (a +7)与(a +3)(a +4)的大小,即比较a 2+7a 与a 2+7a +12的大小, 只要比较0与12的大小,∵0<12,∴P <Q .6.已知函数f (x )满足:f (a +b )=f (a )·f (b ),f (1)=2,则f 2(1)+f (2)f (1)+f 2(2)+f (4)f (3)+f 2(3)+f (6)f (5)+f 2(4)+f (8)f (7)=( ) A .4 B .8 C .12 D .16答案 D解析 根据f (a +b )=f (a )·f (b ),得f (2n )=f 2(n ). 又f (1)=2,则f (n +1)f (n )=2.由f 2(1)+f (2)f (1)+f 2(2)+f (4)f (3)+f 2(3)+f (6)f (5)+f 2(4)+f (8)f (7)=2f (2)f (1)+2f (4)f (3)+2f (6)f (5)+2f (8)f (7)=16.7.已知a >0,b >0,如果不等式2a +1b ≥m 2a +b 恒成立,那么m 的最大值等于( )A .10B .9C .8D .7 答案 B解析 ∵a >0,b >0,∴2a +b >0.∴不等式可化为m ≤(2a +1b )(2a +b )=5+2(b a +a b ).∵5+2(b a +ab )≥5+4=9,即其最小值为9,∴m ≤9,即m 的最大值等于9.8.已知命题:“在等差数列{a n }中,若4a 2+a 10+a ( )=24,则S 11为定值”为真命题,由于印刷问题,括号处的数模糊不清,可推得括号内的数为________.答案 18解析 S 11=11(a 1+a 11)2=11a 6,由S 11为定值,可知a 6=a 1+5d 为定值.设4a 2+a 10+a n =24,整理得a 1+n +126d =4,可知n =18.9.(2015·江苏盐城一模)已知x 1,x 2,x 3为正实数,若x 1+x 2+x 3=1,求证:x 22x 1+x 23x 2+x 21x 3≥1.答案 略解析 ∵x 22x 1+x 1+x 23x 2+x 2+x 21x 3+x 3≥2x 22+2x 23+2x 21=2(x 1+x 2+x 3)=2,∴x 22x 1+x 23x 2+x 21x 3≥1.10.(1)设x 是正实数,求证:(x +1)(x 2+1)(x 3+1)≥8x 3.(2)若x ∈R ,不等式(x +1)(x 2+1)(x 3+1)≥8x 3是否仍然成立?如果成立,请给出证明;如果不成立,请举出一个使它不成立的x 的值.答案 (1)略 (2)成立,证明略解析 (1)证明:x 是正实数,由均值不等式,得 x +1≥2x ,x 2+1≥2x ,x 3+1≥2x 3.故(x +1)(x 2+1)(x 3+1)≥2x ·2x ·2x 3=8x 3(当且仅当x =1时等号成立). (2)解:若x ∈R ,不等式(x +1)(x 2+1)(x 3+1)≥8x 3仍然成立. 由(1)知,当x >0时,不等式成立; 当x ≤0时,8x 3≤0,而(x +1)(x 2+1)(x 3+1)=(x +1)2(x 2+1)(x 2-x +1)=(x +1)2(x 2+1)[(x -12)2+34]≥0,此时不等式仍然成立.11.已知函数f (x )=a x +x -2x +1(a >1),(1)证明:函数f (x )在(-1,+∞)上为增函数; (2)用反证法证明f (x )=0没有负实数根. 答案 (1)略 (2)略解析 (1)任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0,ax 2-x 1>1,且ax 1>0,所以ax 2-ax 1=ax 1(ax 2-x 1-1)>0.又因为x 1+1>0,x 2+1>0, 所以x 2-2x 2+1-x 1-2x 1+1=(x 2-2)(x 1+1)-(x 1-2)(x 2+1)(x 2+1)(x 1+1)=3(x 2-x 1)(x 2+1)(x 1+1)>0.于是f (x 2)-f (x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0.故函数f (x )在(-1,+∞)上为增函数. (2)设存在x 0<0(x 0≠-1),满足f (x 0)=0, 则ax 0=-x 0-2x 0+1.又0<ax 0<1,所以0<-x 0-2x 0+1<1,即12<x 0<2,与x 0<0(x 0≠-1)假设矛盾.故f (x )=0没有负实数根.12.已知等比数列{a n }的前n 项和为S n ,若a m ,a m +2,a m +1(m ∈N *)成等差数列,试判断S m ,S m +2,S m +1是否成等差数列,并证明你的结论.答案 q =1时,不成等差数列;q =-12时,成等差数列 证明略解析 设等比数列{a n }的首项为a 1,公比为q (a 1≠0,q ≠0), 若a m ,a m +2,a m +1成等差数列,则2a m +2=a m +a m +1. ∴2a 1q m +1=a 1q m -1+a 1q m . ∵a 1≠0,q ≠0,∴2q 2-q -1=0. 解得q =1或q =-12.当q =1时,∵S m =ma 1,S m +1=(m +1)a 1, S m +2=(m +2)a 1,∴2S m +2≠S m +S m +1.∴当q =1时,S m ,S m +2,S m +1不成等差数列. 当q =-12时,S m ,S m +2,S m +1成等差数列.下面给出证明:证法一:∵(S m +S m +1)-2S m +2=(S m +S m +a m +1)-2(S m +a m +1+a m +2) =-a m +1-2a m +2=-a m +1-2a m +1q =-a m +1-2a m +1(-12)=0,∴2S m +2=S m +S m +1.∴当q =-12时,S m ,S m +2,S m +1成等差数列.证法二:∵2S m +2=2a 1[1-(-12)m +2]1+12=43a 1[1-(-12)m +2], 又S m +S m +1=a 1[1-(-12)m ]1+12+a 1[1-(-12)m +1]1+12=23a 1[2-(-12)m -(-12)m +1] =23a 1[2-4(-12)m +2+2(-12)m +2] =43a 1[1-(-12)m +2], ∴2S m +2=S m +S m +1.∴当q =-12时,S m ,S m +2,S m +1成等差数列.13.设f (x )=ln x ,g (x )=f (x )+f ′(x ). (1)求g (x )的单调区间和最小值; (2)讨论g (x )与g (1x)的大小关系;(3)求实数a 的取值范围,使得g (a )-g (x )<1a 对任意x >0成立.答案 (1)单调递减区间(0,1),单调递增区间(1,+∞) (2)当0<x <1时,g (x )>g (1x );当x >1时,g (x )<g (1x )(3)0<a <e解析 (1)由题设知f (x )=ln x ,g (x )=ln x +1x ,∴g ′(x )=x -1x2.令g ′(x )=0,得x =1.当x ∈(0,1)时,g ′(x )<0,故(0,1)是g (x )的单调减区间;当x ∈(1,+∞)时,g ′(x )>0,故(1,+∞)是g (x )的单调增区间.因此x =1是g (x )的唯一极值点,且为极小值点,从而是最小值点,所以g (x )的最小值为g (1)=1.(2)g (1x)=-ln x +x ,设h (x )=g (x )-g (1x )=2ln x -x +1x ,则h ′(x )=-(x -1)2x 2.当x =1时,h (1)=0,即g (x )=g (1x);当x ∈(0,1)∪(1,+∞)时,h ′(x )<0,h ′(1)=0, 因此h (x )在(0,+∞)上单调递减. 当0<x <1时,h (x )>h (1)=0, 即g (x )>g (1x);当x >1时,h (x )<h (1)=0, 即g (x )<g (1x).(3)由(1)知g (x )的最小值为1,所以g (a )-g (x )<1a对任意x >0成立⇔g (a )-1<1a ,即ln a <1,从而得0<a <e.。
题组层级快练(八十一)(第一次作业)1.随机变量X 的分布列为则E (5X +4)等于( ) A .15 B .11 C .2.2 D .2.3 答案 A解析 ∵E (X )=1×0.4+2×0.3+4×0.3=2.2, ∴E (5X +4)=5E (X )+4=11+4=15.2.若X 是离散型随机变量,P (X =x 1)=23,P (X =x 2)=13,且x 1<x 2,又已知E (X )=43,D (X )=29,则x 1+x 2的值为( )A.53 B.73 C .3 D.113 答案 C解析 由已知得⎩⎨⎧x 1·23+x 2·13=43,(x 1-43)2·23+(x 2-43)2·13=29,解得⎩⎨⎧x 1=53,x 2=23或⎩⎪⎨⎪⎧x 1=1,x 2=2.又∵x 1<x 2,∴⎩⎪⎨⎪⎧x 1=1,x 2=2,∴x 1+x 2=3.3.设投掷1颗骰子的点数为ξ,则( ) A .E (ξ)=3.5,D (ξ)=3.52 B .E (ξ)=3.5,D (ξ)=3512C .E (ξ)=3.5,D (ξ)=3.5 D .E (ξ)=3.5,D (ξ)=3516答案 B4.某运动员投篮命中率为0.6,他重复投篮5次,若他命中一次得10分,没命中不得分;命中次数为X ,得分为Y ,则E (X ),D (Y )分别为( )A .0.6,60B .3,12C .3,120D .3,1.2答案 C解析 X ~B (5,0.6),Y =10X ,∴E (X )=5×0.6=3,D (X )=5×0.6×0.4=1.2.D (Y )=100D (X )=120. 5.已知随机变量X +Y =8,若X ~B (10,0.6),则E (Y ),D (Y )分别是( ) A .6和2.4 B .2和2.4 C .2和5.6 D .6和5.6答案 B解析 由已知随机变量X +Y =8,所以Y =8-X .因此,求得E (Y )=8-E (X )=8-10×0.6=2,D (Y )=(-1)2D (X )=10×0.6×0.4=2.4.6.若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3·2-2B .2-4C .3·2-10D .2-8答案 C解析 ∵E (X )=np =6,D (X )=np (1-p )=3,∴p =12,n =12,则P (X =1)=C 112·12·(12)11=3·2-10. 7.签盒中有编号为1,2,3,4,5,6的六支签,从中任意取3支,设X 为这3支签的号码之中最大的一个,则X 的数学期望为( )A .5B .5.25C .5.8D .4.6答案 B解析 由题意可知,X 可以取3,4,5,6,P (X =3)=1C 36=120,P (X =4)=C 23C 36=320,P (X =5)=C 24C 36=310,P (X=6)=C 25C 36=12.由数学期望的定义可求得E (X )=5.25.8.有一批产品,其中有12件正品和4个次品,从中任取3件,若ξ表示取到次品的个数,则E (ξ)=________.答案 34解析 次品个数ξ的可能取值为0,1,2,3,P (ξ=0)=C 312C 316=1128,P (ξ=1)=C 212C 14C 316=3370,P (ξ=2)=C 112C 24C 316=970,P (ξ=3)=C 34C 316=1140.ξ的分布列为E (ξ)=0×1128+1×3370+2×970+3×1140=66+36+3140=34.9.(2014·浙江理)随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.答案 25解析 设出ξ=1,ξ=2时的概率,利用分布列中概率之和为1及期望的公式求解. 设P (ξ=1)=a ,P (ξ=2)=b , 则⎩⎪⎨⎪⎧15+a +b =1,a +2b =1,解得⎩⎨⎧a =35,b =15.所以D (ξ)=15+35×0+15×1=25.10.某项游戏活动的奖励分成一、二、三等奖且相应获奖概率是以a 1为首项,公比为2的等比数列,相应资金是以700元为首项,公差为-140元的等差数列,则参与该游戏获得资金的期望为________元.答案 500解析 ∵a 1+2a 1+4a 1=1,∴a 1=17,E (ξ)=17×700+27×560+47×420=500元.11.体育课的排球发球项目考试的规则是每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p (p ≠0),发球次数为X ,若X 的数学期望E (X )>1.75,则p 的取值范围.答案 (0,12)解析 由已知条件可得P (X =1)=p ,P (X =2)=(1-p )p ,P (X =3)=(1-p )2p +(1-p )3=(1-p )2,则E (X )=P (X =1)+2P (X =2)+3P (X =3)=p +2(1-p )p +3(1-p )2=p 2-3p +3>1.75,解得p >52或p <12.又由p ∈(0,1),可得p ∈(0,12).12.(2014·重庆理)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望. (注:若三个数a ,b ,c 满足a ≤b ≤c ,则称b 为这三个数的中位数.) 答案 (1)584 (2)4728解析 (1)由古典概型的概率计算公式知所求概率为p =C 34+C 33C 39=584. (2)X 的所有可能值为1,2,3,且P (X =1)=C 24C 15+C 34C 39=1742,P (X =2)=C 13C 14C 12+C 23C 16+C 33C 39=4384, P (X =3)=C 22C 17C 39=112.故X 的分布列为从而E (X )=1×1742+2×4384+3×112=4728.13.(2015·山东潍坊一模)某次数学测验共有10道选择题,每道题共有四个选项,且其中只有一个选项是正确的,评分标准规定;每选对1道题得5分,不选或选错得0分.某考生每道题都选并能确定其中有6道题能选对,其余4道题无法确定正确选项,但这4道题中有2道题能排除两个错误选项,另2道只能排除一个错误选项,于是该生做这4道题时每道题都从不能排除的选项中随机选一个选项作答,且各题作答互不影响.(1)求该考生本次测验选择题得50分的概率;(2)求该考生本次测验选择题所得分数的分布列和数学期望. 答案 (1)136 (2)1153解析 (1)设选对一道“能排除2个选项的题目”为事件A ,选对一道“能排除1个选项的题目”为事件B ,则P (A )=12,P (B )=13.该考生选择题得50分的概率为P (A )·P (A )·P (B )·P (B )=(12)2×(13)2=136.(2)该考生所得分数X =30,35,40,45,50, P (X =30)=(12)2×(1-13)2=19,P (X =35)=C 12(12)2·(23)2+(12)2·C 12·13×23=13, P (X =40)=(12)2×(23)2+C 12·(12)2·C 12·13×23+(12)2×(13)2=1336,P (X =45)=C 12(12)2·(13)2+(12)2·C 12·13×23=16,该考生所得分数X 的分布列为所以E (X )=30×19+35×13+40×1336+45×16+50×136=1153.14.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球自由下落,小球在下落的过程中,将遇到黑色障碍物3次,最后落入A 袋或B 袋中.已知小球每次遇到障碍物时,向左、右两边下落的概率分别是13,23.(1)分别求出小球落入A 袋或B 袋中的概率;(2)在容器的入口处依次放入4个小球;记ξ为落入B 袋中的小球个数.求ξ的分布列和数学期望. 答案 (1)13,23 (2)E (ξ)=83解析 (1)记“小球落入A 袋中”为事件M ,“小球落入B 袋中”为事件N ,则事件M 的对立事件为事件N ,而小球落入A 袋中当且仅当小球一直向左落下或一直向右落下,故P (M )=(13)3+(23)3=127+827=13.从而P (N )=1-P (M )=1-13=23.(2)显然,随机变量ξ的所有可能取值为0,1,2,3,4. 且ξ~B (4,23),故P (ξ=0)=C 04(23)0×(13)4=181, P (ξ=1)=C 14(23)1×(13)3=881, P (ξ=2)=C 24(23)2×(13)2=827, P (ξ=3)=C 34(23)3×(13)1=3281,则ξ的分布列为故ξ的数学期望为E(ξ)=4×23=83.。
题组层级快练(四)1.下列表格中的x 与y 能构成函数的是()答案 C解析 A 中0既是非负数又是非正数;B 中0又是偶数;D 中自然数也是整数,也是有理数.2.对于集合A ={x |0≤x ≤2},B ={y |0≤y ≤3},则由下列图形给出的对应f 中,能构成从A 到B 的函数的是()答案 D解析 对于B ,C 两图可以找到一个x 与两个y 对应的情形,对于A 图,当x =2时,在B 中找不到与之对应的元素.3.若二次函数g (x )满足g (1)=1,g (-1)=5,且图像过原点,则g (x )的解析式为( ) A .g (x )=2x 2-3x B .g (x )=3x 2-2x C .g (x )=3x 2+2x D .g (x )=-3x 2-2x答案 B解析 用待定系数法,设g (x )=ax 2+bx +c (a ≠0), ∵g (1)=1,g (-1)=5,且图像过原点, ∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3b =-2,c =0,∴g (x )=3x 2-2x ,选B.4.已知a ,b 为实数,集合M ={ba ,1},N ={a,0},若f 是M 到N 的映射,f (x )=x ,则a+b 的值为( )A .-1B .0C .1D .±1答案 C解析 由f (x )=x ,知f (1)=a =1. ∴f (ba )=f (b )=0,∴b =0. ∴a +b =1+0=1.5.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤1,-x ,x >1,若f (x )=2,则x 等于( )A .log 32B .-2C .log 32或-2D .2答案 A解析 当x ≤1时,3x =2,∴x =log 32; 当x >1时,-x =2,∴x =-2(舍去). ∴x =log 32.6.(2015·江西吉安四校联考)已知函数f (x )=⎩⎪⎨⎪⎧1-x 2(x ≤1),x 2+x -2 (x >1),则f [1f (2)]的值为( )A.1516 B.89 C .-2716D .18答案 A解析 f (2)=4,f [1f (2)]=f (14)=1-(14)2=1516.7.已知f :x →2sin x 是集合A (A ⊆[0,2π])到集合B 的一个映射,若B ={0,1,2},则A 中的元素个数最多为( )A .6B .5C .4D .3答案 A解析 ∵A ⊆[0,2π],由2sin x =0,得x =0,π,2π;由2sin x =1,得x =π6,5π6;由2sin x =2,得x =π2.故A 中最多有6个元素.故选A.8.图中的图像所表示的函数的解析式为()A .y =32|x -1|(0≤x ≤2)B .y =32-32|x -1|(0≤x ≤2)C .y =32-|x -1|(0≤x ≤2)D .y =1-|x -1|(0≤x ≤2) 答案 B解析 当x ∈[0,1]时,y =32x =32-32(1-x )=32-32|x -1|;当x ∈[1,2]时,y =32-01-2(x -2)=-32x+3=32-32(x -1)=32-32|x -1|.因此,图中所示的图像所表示的函数的解析式为y =32-32|x -1|.9.已知函数f (x ),g (x )分别由下表给出则f [g (1)]的值为________;满足f [g (x )]>g [f (x )]的x 的值是________. 答案 1,210.(2015·河南洛阳统考)设函数f (x )满足f (x )=1+f (12)log 2x ,则f (2)=________.答案 32解析 由已知得f (12)=1-f (12)·log 22,则f (12)=12,则f (x )=1+12·log 2x ,故f (2)=1+12×log 22=32. 11.已知集合M ={-1,1,2,4},N ={0,1,2},给出下列四个对应法则:①y =x 2,②y =x +1,③y =2x ,④y =log 2|x |.其中能构成从M 到N 的函数的是________.答案 ④解析 对于①,②,M 中的2,4两元素在N 中找不到象与之对应,对于③,M 中的-1,2,4在N 中没有象与之对应.12.已知f (x -1x )=x 2+1x 2,则f (3)=______.答案 11解析 ∵f (x -1x )=(x -1x )2+2,∴f (x )=x 2+2(x ∈R ),∴f (3)=32+2=11.13.已知x ∈N *,f (x )=⎩⎪⎨⎪⎧x 2-35,x ≥3,f (x +2),x <3,其值域设为D .给出下列数值:-26,-1,9,14,27,65,则其中属于集合D 的元素是________.(写出所有可能的数值)答案 -26,14,65解析 注意函数的定义域是N *,由分段函数解析式可知,所有自变量的函数值最终都是转化为大于等于3的对应自变量函数值计算的f (3)=9-35=-26,f (4)=16-35=-19,f (5)=25-35=-10,f (6)=36-35=1,f (7)=49-35=14,f (8)=64-35=29,f (9)=81-35=46,f (10)=100-35=65.故正确答案应填-26,14,65.14.函数f (x )=ax 3+bx 2+cx +d 的部分数值如下表:答案 (-1,1)∪(2,+∞)解析 结合三次函数的图像和已知表可知f (x )>0的解集为(-1,1)∪(2,+∞),即为y =lg f (x )的定义域.15.设函数f (x )=⎩⎨⎧-x -1,x ≤0,x ,x >0.若f (x 0)>1,则实数x 0的取值范围是________.答案 (-∞,-2)∪(1,+∞)解析 当x 0≤0时,由-x 0-1>1,得x 0<-2. ∴x 0<-2;当x 0>0时,由x 0>1,得x 0>1. ∴x 0的取值范围为(-∞,-2)∪(1,+∞).16.(2015·衡水调研卷)具有性质:f (1x )=-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是________. 答案 ①③解析 对于①,f (x )=x -1x ,f (1x )=1x -x =-f (x ),满足;对于②,f (1x )=1x+x =f (x ),不满足;对于③,f (1x)=⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f (1x)=⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1.故f (1x)=-f (x ),满足.综上可知,满足“倒负”变换的函数是①③.17.一个圆柱形容器的底面直径为d cm ,高度为h cm ,现以S cm 3/s 的速度向容器内注入某种溶液,求容器内溶液高度y (cm)与注入时间t (s)的函数关系式及定义域.答案 y =4S πd 2·t ,t ∈[0,πhd 24S]解析 依题意,容器内溶液每秒升高4Sπd 2 cm.于是y =4Sπd2·t .又注满容器所需时间h ÷(4S πd 2)=πhd 24S (秒),故函数的定义域是t ∈[0,πhd 24S].18.(2015·四川泸州摸底)设集合A ={x |x ∈N ,且1≤x ≤26},B ={a ,b ,c ,…,z},对应关系f :A →B 如下表(即1到26按由小到大顺序排列的自然数与按照字母表顺序排列的26个英文小写字母之间的一一对应):又知函数g (x )=⎩⎪⎨⎪⎧log 2(32-x ),22<x <32,x +4,0≤x ≤22,若f [g (x 1)],f [g (20)],f [g (x 2)],f [g (9)]所表示的字母依次排列恰好组成的英文单词为“exam”,求x 1+x 2的值.答案 31解析 由题设知f [g (x 1)]=e ,f [g (x 2)]=a ,所以g (x 1)=5,g (x 2)=1.由log 2(32-x )=5,得x =0(舍去);由log 2(32-x )=1,得x =30;由x +4=5,得x =1;由x +4=1,得x =-3(舍去).所以x 1+x 2=30+1=31.1.若f (x +1x )=x 2+1x 2+1,则函数f (x )的解析式为( )A .f (x )=x 2-1B .f (x )=x 2-1(x ≥2)C .f (x )=x 2-1(x ≤-2)D .f (x )=x 2-1(x ≥2或x ≤-2) 答案 D解析 因为f (x +1x )=(x +1x)2-1,所以f (x )=x 2-1,x ≥2或x ≤-2,选D.2.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16答案 D解析 因为组装第A 件产品用时15分钟,所以c A =15①,所以必有4<A ,且c 4=c2=30②,联立①②解得c =60,A =16,故选D.3.若定义x ⊙y =3x -y ,则a ⊙(a ⊙a )等于( ) A .-a B .3a C .a D .-3a答案 C解析 由题意知:a ⊙a =3a -a ,则a ⊙(a ⊙a )=3a -(a ⊙a )=3a -(3a -a )=a .选C.4.对于函数f (n )=1+(-1)n2(n ∈N *),我们可以发现f (n )有许多性质,如:f (2k )=1(k ∈N *)等.下列关于f (n )的性质中一定成立的是( )A .f (n +1)-f (n )=1B .f (n +k )=f (n )(n ∈N *)C .a f (n )=f (n +1)+af (n )(a ≠0)D .a f (n+1)=a -(a +1)f (n )(a ≠0)答案 C解析 因为f (2k )=1,f (2k +1)=0(k ∈N *),所以f (n )=1或0,f (n +1)=0或1,因此f (n +1)-f (n )=±1,A 错误;当k 为奇数时,f (n +k )≠f (n ),B 错误;对于a f (n )与f (n +1)+af (n ),不论n 为偶数还是奇数均有a 1=0+a 或a 0=1+a ×0,C 正确;当n 为奇数时,a f (n +1)=a -(a +1)f (n ),当n 为偶数时,等式不成立,故D 错误.5.如图,设点A 是单位圆上的一定点,动点P 从点A 出发在圆上按逆时针方向旋转一周,点P 所旋转过的AP 的长为l ,弦AP 的长为d ,则函数d =f (l )的图像大致是( )答案 C解析 函数在[0,π]上的解析式为 d =12+12-2×1×1×cos l =2-2cos l =4sin 2l 2=2sin l2.在[π,2π]上的解析式为d =2-2cos (2π-l )=2sin l 2,故函数的解析式为d =2sin l2,l ∈[0,2π].点评 这类题目也是近年来的一个小热点.解决的基本方法有二:一是通过分析变化趋势或者一些特殊的点,采用排除法;二是求出具体的函数解析式.6.设a 在映射f 下的象为2a +a ,则20在映射f 下的原象为________. 答案 4解析 2a +a =20,当a =4时,24+4=20. 又函数y =2x +x 为单调递增函数, ∴方程2a +a =20有且只有一个解4. ∴20在映射f 下的原象为4.7.已知f (lg x )=1x ,则f (1)=________.答案110解析 f (1)=f (lg10)=110.8.如图所示,△AOB 是边长为2的正三角形,设直线x =t 截这个三角形所得到的位于此直线左方的图形的面积为y ,求函数y =f (t )的解析式.解析 当t ∈[0,1]时,y =12t ·t ·tan60°=32t 2;当t ∈(1,2]时,y =34·22-12(2-t )2tan60°=3-32(2-t )2, ∴y =f (t )=⎩⎨⎧32t 2, t ∈[0,1],3-32(2-t )2, t ∈(1,2].。