第五讲 matlab符号运算
- 格式:ppt
- 大小:470.00 KB
- 文档页数:28
Matlab运算符运算1.介绍在M at la b中,运算符是用来执行各种数学和逻辑运算的符号。
它们可以用于操作不同类型的数据,如数字、向量、矩阵和逻辑值。
M at la b 提供了一系列的运算符,包括算术运算符、关系运算符、逻辑运算符等。
本文将详细介绍M atl a b中常用的运算符及其使用方法。
2.算术运算符M a tl ab提供了一组算术运算符,用于执行基本的数学运算,如加法、减法、乘法和除法。
下面是一些常用的算术运算符及其使用方法:-加法运算符(`+`):用于执行两个数值的相加操作。
-减法运算符(`-`):用于执行两个数值的相减操作。
-乘法运算符(`*`):用于执行两个数值的相乘操作。
-除法运算符(`/`):用于执行两个数值的相除操作。
-取余运算符(`mo d`):用于计算两个数值的余数。
以下是一些示例代码:a=5;b=3;c=a+b;%计算a和b的和d=a-b;%计算a和b的差e=a*b;%计算a和b的积f=a/b;%计算a和b的商g=mo d(a,b);%计算a除以b的余数3.关系运算符关系运算符用于比较两个数值或变量之间的关系,并返回一个逻辑值(`tr ue`或`f al se`)。
M at la b提供了一组关系运算符,包括等于、不等于、大于、小于、大于等于和小于等于。
下面是一些常用的关系运算符及其使用方法:-等于运算符(`==`):用于比较两个数值是否相等。
-不等于运算符(`~=`):用于比较两个数值是否不相等。
-大于运算符(`>`):用于比较第一个数值是否大于第二个数值。
-小于运算符(`<`):用于比较第一个数值是否小于第二个数值。
-大于等于运算符(`>=`):用于比较第一个数值是否大于等于第二个数值。
-小于等于运算符(`<=`):用于比较第一个数值是否小于等于第二个数值。
以下是一些示例代码:a=5;b=3;c=(a==b);%判断a是否等于b,返回逻辑值d=(a~=b);%判断a是否不等于b,返回逻辑值e=(a>b);%判断a是否大于b,返回逻辑值f=(a<b);%判断a是否小于b,返回逻辑值g=(a>=b);%判断a是否大于等于b,返回逻辑值h=(a<=b);%判断a是否小于等于b,返回逻辑值4.逻辑运算符逻辑运算符用于执行布尔逻辑运算,并返回一个逻辑值。
西南科技大学本科生课程备课教案计算机技术在安全工程中的应用——Matlab入门及应用授课教师:徐中慧班级:专业:安全技术及工程第四章课型:新授课教具:多媒体教学设备,matlab教学软件一、目标与要求掌握矩阵与数组的相关运算,及matlab中矩阵运算的相关函数,包括三角分解、正交变换、奇异值分解、特征值分解、矩阵的秩的运算等。
二、教学重点与难点本堂课教学的重点在于引导学生在编写matlab程序时能够熟练运用矩阵运算的相关函数实现相应的功能。
三、教学方法本课程主要通过讲授法、演示法、练习法等相结合的方法来引导学生掌控本堂课的学习内容。
四、教学内容一、课后习题的解说。
(1)在计算器发明(约1974年)之前,人们需要用数学用表来计算正弦、余弦和对数值。
创建正弦值数学用表的步骤如下:①创建角度矢量、范围在0~3600之间,步长为180。
②计算正弦值,用角度和计算出来的正弦值创建表格。
③分别用两个disp语句给表格加上标题和表头。
④用fprintf显示数据,要求小数点后有两位有效数字。
解:angle=0:18:360; sine=sin(angle/180*pi);disp(' SINE TABLE ')disp(' Angle Sine ')fprintf(' %4.2f %4.2e\n',[angle;sine])(2)使用搜索引擎或浏览器搜索英镑、日元、欧元和人民币对美元的汇率,并把输出结果绘制成表。
要求用disp在表格中添加标题和表头,用fprintf输出格式化数据。
①创建日元和美元的汇率表,表中共有25行,从5日元开始,步长为5日元②创建人民币和美元的汇率表,表中共有30行,从5元开始,步长为5元③创建数据表格,表中有5列,第一列是美元,第二列是欧元,第三列是英镑,第四列是人民币,第五列是日元。
计算与1到10美元等价的其它货币值。
(将结果输出到.txt文件中,此步骤属选做)解:①jpy=5:5:25*5;usd1=jpy*0.01301;disp(' JPY &USD TABLE ')disp(' JPY USD ')fprintf(' %4.2f %4.2f\n',[jpy;usd1])②cny=5:5:30*5;usd2= cny *0.1567;disp(' CNY &USD TABLE ') disp(' RMB USD ') fprintf(' %4.2f %4.2f\n',[cny;usd2])③usd=1:1:10;eur=usd* 0.7323; gbp=usd* 0.6405; cny=usd* 6.3816; jpy=usd*76.358;disp(' AS Exch')disp(' USD EUR GBP RMB JPY')fprintf(' %4.2f %4.2f %4.2f %4.2f %4.2f \n',[ usd;eur;gbp;cny;jpy])二、矩阵的相关知识掌握矩阵与数组的相关运算,及matlab 中矩阵运算的相关函数,包括三角分解、正交变换、奇异值分解、特征值分解、矩阵的秩的运算等。
matlab符号运算符Matlab符号运算符的使⽤⼀、&&/||/&/||:数组逻辑或||:先决逻辑或&:数组逻辑与&&:先决逻辑与&&和||被称为&和|的short circuit形式。
先决逻辑符号含义:先判断左边是否为真;若为真,则不再判断右边;若为假,才继续进⾏或运算先判断左边是否为假;若为假,则不再判断右边;若为真,才继续进⾏与运算两种运算符号的区别:先决逻辑运算的运算对象只能是标量数组逻辑运算可为任何维数组,运算符两边维数要相同举例分析:A&B :⾸先判断A的逻辑值,然后判断B的值,然后进⾏逻辑与的计算。
A&&B:⾸先判断A的逻辑值,如果A的值为假,就可以判断整个表达式的值为假,就可以判断整个表达式的值为假,就不需要再判断B的值。
这种⽤法⾮常有⽤,如果A是⼀个计算量较⼩的函数,B是⼀个计算量较⼤的函数,那么⾸先判断A对减少计算量是有好处的。
另外这也可以防⽌类似被0除的错误。
Matlab中的if和while语句中的逻辑与和逻辑或都是默认使⽤short-circuit形式。
// 这可能就是有时候⽤&和| 会报错的原因。
⼆、系统结构体内的变量⼀般都是⼩写。
matlab区分⼤⼩写。
三、==表⽰逻辑相等,返回结果,相等为1,不等为0。
四、.*(times)点乘timesArray multiply 数组乘Syntaxc = a.*bc = times(a,b)Descriptionc = a.*b multiplies arrays a and b element-by-element and returns the result in c. Inputs a and b must have the same size unless one is a scalar.注释:a、b要同尺⼨,或其中⼀个为标量。
matlab中的数学符号与运算MATLAB(Matrix Laboratory)是一种用于数值计算和科学工程应用的高级编程语言和环境。
MATLAB中包含了丰富的数学符号和运算,用于进行矩阵操作、线性代数、微积分等数学计算。
以下是MATLAB中一些常见的数学符号和运算:1. 数学符号:-矩阵:MATLAB 中的基本数据类型是矩阵,可以使用方括号`[]` 来表示。
例如,`A = [1, 2; 3, 4]` 表示一个2x2的矩阵。
-向量:向量可以表示为一维矩阵,例如,`v = [1, 2, 3]` 表示一个包含3个元素的行向量。
-转置:使用单引号`'` 来进行转置操作。
例如,`A'` 表示矩阵A的转置。
-点乘和叉乘:点乘使用`.*`,叉乘使用`.*`。
例如,`A .* B` 表示矩阵A和B的对应元素相乘,`A * B` 表示矩阵A和B的矩阵乘法。
2. 数学运算:-基本算术运算:MATLAB支持基本的算术运算,如加法、减法、乘法和除法。
例如,`result = 2 + 3`。
-元素-wise 运算:MATLAB 支持元素-wise 的运算,即对矩阵或向量中的每个元素进行运算。
例如,`C = A .* B` 表示矩阵A和B的对应元素相乘。
-矩阵操作:MATLAB 提供了许多用于矩阵操作的函数,如`inv`(求逆矩阵)、`det`(求行列式)、`eig`(求特征值)等。
-积分和微分:MATLAB 提供了`int`(积分)和`diff`(微分)等函数,用于进行积分和微分运算。
-方程求解:MATLAB 提供了`solve` 函数,用于求解方程组。
这些是MATLAB中一些常见的数学符号和运算。
MATLAB 的强大之处在于它的矩阵操作能力,使得它非常适用于数学和工程领域的计算和建模。
如果你有特定的数学运算需求,可以查阅MATLAB 的官方文档或在线资源以获取详细信息。
MATLAB符号运算前⾔有时候,你可能会遇到较复杂的⽅程(组),希望⽤MATLAB来求解。
MATLAB的符号运算正好可⽤于求解⽅程(组)。
此外,它还有许多其他功能。
例如,展开和简化、因式分解以及微积分运算等。
MATLAB的符号运算虽然是数值运算的补充,但是它仍然是科学计算研究中不可替代的重要内容。
与数值运算相⽐,符号运算不需要预先对变量赋值,其运算结果以标准的符号形式表达。
⽐如说计算sin(π),数值运算的结果是1.2246e-16,符号运算的结果是0。
前者是近似的,后者是精确的。
正⽂MATLAB符号运算功能⾮常强⼤,本⽂只介绍⼤部分常⽤的符号运算功能。
注:本⽂代码的运⾏环境是MATLAB R2016b。
1. 创建符号数、符号变量和符号矩阵这⼀步骤是符号运算的第⼀步,后⾯的步骤都是在此基础上进⾏的。
%创建符号数 (只能⽤sym函数)s0 = 1 / sym(7) %符号数,不适合⼤型符号数s1 = sym('1/7') %符号数s2 = sym('3 + 4i') %符号复数%创建符号变量 (sym函数和syms函数都⾏)%--sym函数s3 = sym('x') %符号变量%--syms函数syms a b c %创建多个符号变量,值为本⾝syms(sym('[d e; e d]')) %⽤已存在的符号变量矩阵创建多个符号变量%创建符号矩阵 (sym函数和syms函数都⾏)s4 = sym('[2 5 6; 9 8 6]') %符号数矩阵s5 = sym('x', [2 3]) %符号变量矩阵,矩阵内的元素不会被创建为符号变量A = [a b c; c b a] %⽤已存在的符号变量创建符号变量矩阵% syms A B [2 3] %仅2017及以上版本⽀持,同时创建多个符号矩阵代码运⾏结果如下。
可以看到s5是⼀个2x3的符号变量矩阵,但矩阵内元素不会被创建成符号变量。
MATLAB符号运算运用MATLAB 是一种数值计算和编程环境,它可以进行符号运算,即对代数表达式进行操作和计算。
在 MATLAB 中,符号运算的主要工具是符号计算工具箱(Symbolic Math Toolbox),它提供了一系列函数和命令,用于处理和求解符号表达式。
1.创建符号表达式首先,我们可以通过使用符号变量来创建符号表达式。
符号变量可以使用 sym 函数定义。
例如,创建一个符号变量 x:```syms x```然后,可以使用这个符号变量来创建符号表达式。
例如,创建一个简单的二次多项式表达式:```f=x^2+2*x+1;```2.符号表达式运算一旦有了符号表达式,就可以对其进行各种运算,包括求导、积分、求解方程等。
- 求导:使用 diff 函数可以对符号表达式进行求导。
例如,对上述的 f 求导:```df = diff(f, x);```- 积分:使用 int 函数可以对符号表达式进行积分。
例如,对 f 在区间 [0, 1] 上进行积分:```I = int(f, 0, 1);```- 求解方程:使用 solve 函数可以对符号表达式进行求解。
例如,求解方程 f = 0:```sol = solve(f == 0, x);```3.简化符号表达式有时,符号表达式可能过于复杂,可以使用 simplify 函数对其进行简化。
例如,简化一个复杂的三角函数表达式:```syms xf = sin(x)^2 + cos(x)^2;sf = simplify(f);```4.数值近似符号表达式可以通过使用 vpa 函数进行数值近似。
例如,将一个符号表达式近似为 5 位小数:```syms xf = exp(x);f_num = vpa(f, 5);```在MATLAB中,符号运算可以应用于各种数学问题,包括求解方程、微积分、矩阵计算等。
它提供了一种便捷的方式来处理代数表达式,而不需要将其转化为数值形式进行计算。
符号运算 matlab符号运算是一种在数学上进行推导和计算的重要方法,在Matlab 中也有相应的符号运算功能。
通过符号运算,可以进行高精度计算、求解方程、求导积分、代数化简等操作。
本文将介绍 Matlab 中符号运算的基本使用方法和相关函数。
1. 符号变量的定义和赋值在 Matlab 中,可以使用 syms 函数定义符号变量,并使用等号将其赋值。
例如,定义符号变量 x 和 y:syms x yx = 2;y = x + 3;这里,定义了两个符号变量 x 和 y,并将 x 赋值为 2,y 赋值为 x+3。
需要注意的是,符号变量和数值变量在 Matlab 中是不同的类型,不能直接进行运算。
2. 符号表达式的运算在 Matlab 中,可以使用符号表达式进行各种运算,包括加减乘除、幂运算、三角函数、指数函数等。
例如,定义符号表达式 f(x) = 2*x^3 + 3*x^2 - 5*x + 1:syms xf(x) = 2*x^3 + 3*x^2 - 5*x + 1;然后可以对 f(x) 进行各种运算,如求导、积分、代数化简等。
例如,求 f(x) 的一阶导数:diff(f(x), x)这里使用 diff 函数求 f(x) 的一阶导数,结果为 6*x^2 + 6*x - 5。
3. 方程求解在 Matlab 中,可以使用 solve 函数求解方程。
例如,求解方程 x^2 + 3*x + 2 = 0:syms xsolve(x^2 + 3*x + 2 == 0)solve 函数返回的是符号变量的解,需要使用 double 函数将其转换为数值变量。
4. 代数化简在 Matlab 中,可以使用 simplify 函数对符号表达式进行代数化简。
例如,代数化简表达式 (x^2 + 2*x + 1)/(x + 1):syms xsimplify((x^2 + 2*x + 1)/(x + 1))simplify 函数会自动将表达式化简为最简形式。