2019年浙江省杭州市萧山区育中考数学模拟试卷(精品解析)
- 格式:pdf
- 大小:679.32 KB
- 文档页数:21
2019年杭州市中考模拟试卷数学卷考生须知:1. 本试卷分试题卷和答题卷两部分. 满分120分, 考试时间100分钟.2. 答题时, 应该在答题卷指定位置填写校名, 姓名,填涂考试号.3. 所有答案都必须做在答题卷标定的位置上, 请务必注意试题序号和答题序号相对应.试题卷一. 仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,注意可以用多种不同的方法来选取正确答案.1. -8的绝对值是( )【原创】A. -8 B .8 C .-18 D .18【设计意图】求实数的绝对值,难度较低,给学生完成的信心.2. 2018年1月1日,有一道独特的风景,那就是76万人的平安巡防志愿者红袖章.76万用科学计数法表示正确的是( )【原创】A .0.76×106元B .76×105元C .7.6×105元D .7.6×107元 【设计意图】结合社会时事热点,关注生活中的数学,并会用科学记数法表示较大的数. 3.下列图形中,既是轴对称图形又是中心对称图形的是( ) 【原创】A .正三角形B.矩形C .平行四边形D .正五边形【设计意图】本题考查了轴对称图形和中心对称图形的概念. 4.若m n y x123-与35y x m -是同类项,则m ,n 的值分别是( ) 【原创】A .3,-2B .-3,2C .3,2D .-3,-2 【设计意图】根据同类项的定义,列一元一次方程组解决. 5.3.下列分解因式正确的是( ) 【原创】A .-a +a 3=-a (1+a 2)B .a 2-2a +1=(a -1)2C .a 2-4=(a -2)2D .2a -4b +2=2(a -2b ) 【设计意图】因式分解的概念和完全平方公式.6.现有4cm ,5cm ,7 cm ,9 cm 的四根木棒,任取其中三根能组成三角形的概率是( )A.1 2 B. 1 3 C. 14 D. 34【设计意图】考查组成三角形的条件和概率.7. 用直尺和圆规作Rt △AB C 斜边AB 上的高线CD ,以下四个作图中,作法错误的是( )【2017年上海卷原题】A .B .C .D .【设计意图】考查利用尺规作图作高.8. 在同一直角坐标系中,对于以下四个函数①y=-x-1;②y=x+1;③y=-x +1;④y =-2(x +1)的图像,下列说法正确的是 ( )【根据2016年黄冈卷第9题改编】 A. 关于x 轴对称的是②和③ B.在y 轴上交点相同的是②和④ C. 相互平行的是①和③ D .通过点(0,-1)的是①和②【设计意图】考查一次函数的对称性,交点,平行线.9.已知平行四边形相邻两角的角平分线刚好相交在对边上,则该平行四边形的长与宽的比为( ) 【根据杭州市建兰中学2017年中考数学模拟卷第13题改编】A .6:5B .5:2C .2:1D . 3:2 【设计意图】考查平行四边形与角平分线的性质.10.关于二次函数233y x kx k =-+-,以下结论:① 抛物线交x 轴有两个不同的交点;②不论k 取何值,抛物线总是经过一个定点;③设抛物线交x 轴于A 、B 两点,若AB =1,则k =9;;④ 抛物线的顶点在2y 3(1)x =--图像上.其中正确的序号是( ) 【根据2016年城瓜沥片模拟卷第16题改编】A .①②③④B .②③C .②④D .①②④ 【设计意图】考查学生是否会综合应用二次函数、一次函数和矩形等知识. 二. 认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案.11.一组数据2,3,5,4,4,6的中位数是 ,平均数是 .【原创】 【设计意图】考查中位数和平均数概念.12.已知点P (4﹣m ,m )在第二象限,则m 的取值范围是____________________.【原创】 【设计意图】考查点的坐标与象限的关系. 13.若代数式23-x 有意义,则x 的取值范围是 .【原创】 【设计意图】考查分式有意义的概念.14. 一个圆锥的底面直径为6cm ,高为4cm ,则该圆锥的侧面积为 . 【原创】 【设计意图】考查圆锥侧的面积公式.15.在等腰三角形ABC 中,AB=AC ,CD ⊥AB ,垂足为D .若D 恰好为AB 的三等分点,则tanA = .【原创】16.如图,已知ABC ∆和DEC ∆的面积相等,点E 在BC 边上,DE ∥AB 于点F ,3FC CF =.则DFFE= .【根据2016年舟山市中考卷第15题改编】【设计意图】考查学生相似比、三角形面积比的综合应用.三. 全面答一答(本题有7个小题,共66分)解答应写出文字说明、证明过程或推演步骤。
2019届浙江省杭州市萧山区中考九年级模拟试卷数学(考试时间:120分钟,满分100分)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一.选择题(共10小题,满分27分)1.相反数不大于它本身的数是( )A. 正数B. 负数C. 非正数D. 非负数【答案】D【解析】解:设这个数为a,根据题意,有-a≤a,所以a≥0.故选D.点睛:理解相反数的定义.实数a的相反数为-a;同时要理解不大于、不小于、非负数、非正数的含义.2.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图,则搭成该几何体的小正方体的个数最少是()学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...A. 3B. 4C. 5D. 6【答案】B【解析】试题分析:根据三视图的知识,主视图是由4个小正方形组成,而左视图是由4个小正方形组成,故这个几何体的底层最少有3个小正方体,第2层最少有1个小正方体.解:根据左视图和主视图,这个几何体的底层最少有1+1+1=3个小正方体,第二层最少有1个小正方体,因此组成这个几何体的小正方体最少有3+1=4个.故选:B.点评:本题考查了由几何体判断三视图,意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就容易得到答案.视频3.下列计算中,不正确的是()A. a2•a5=a10B. a2﹣2ab+b2=(a﹣b)2C. ﹣(a﹣b)=﹣a+bD. ﹣3a+2a=﹣a【答案】A【解析】【分析】根据同底数幂的乘法,合并同类项的法则,因式分解的公式法进行判断即可.【详解】A选项:a2•a5=a7,故此选项错误;B选项:a2-2ab+b2=(a-b)2,故此选项正确;C选项:-(a-b)=-a+b,故此选项正确;D选项:-3a+2a=-a,故此选项正确;故选:A.【点睛】考查了同底数幂的乘法,合并同类项,因式分解,熟记这些法则是解题的关键.4.如图直线AB、CD、EF被直线a、b所截,若∠1=100°,∠2=100°,∠3=125°,∠4=55°,下列结论错误的是()A. EF∥CD∥ABB.C.D.【答案】C【解析】【分析】根据平行线的判定得出AB∥CD∥EF,根据平行线分线段成比例解答.【详解】∵∠1=100°,∠2=100°,∠3=125°,∠4=55°,∴AB∥CD∥EF,∴,故选:C.【点睛】考查了平行线分线段成比例的应用,根据平行线的判定得出AB∥CD∥EF是解此题的关键.5.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A. x(x+1)=1035B. x(x﹣1)=1035×2C. x(x﹣1)=1035D. 2x(x+1)=1035【答案】C【解析】∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=1035.故选:C.6.下图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在3 6≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是A. 该学校教职工总人数是50人B. 年龄在40≤x<42小组的教职工人数占该学校总人数的20%C. 教职工年龄的中位数一定落在40≤x<42这一组D. 教职工年龄的众数一定在38≤x<40这一组【答案】D【解析】试题分析:各组的频数的和就是总人数,然后根据百分比、众数、中位数的定义作出判断:A、该学校教职工总人数是4+6+11+10+9+6+4=50(人),故正确;B、在40≤x<42小组的教职工人数占该学校总人数的比例是:,故正确;C、教职工年龄的中位数是25和26人的平均数,它们都落在40≤x<42这一组,故正确;D、教职工年龄的众数不一定在38≤x<40一组不能确定,如若38岁的5人,39岁的6人,40岁的9人,41岁的1人,众数就是40,在40≤x<42这一组,故错误。
2019年浙江省杭州市萧山区中考数学月考试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确的答案1.(3分)(2019•萧山区月考)如图,图中数轴的单位长度为1,若点A 、B 表示的数是互为相反数,则在图中表示的A 、B 、C 、D4个点中,其中表示绝对值最小的数的点是( )223.(3分)(2019•萧山区月考)义务教育阶段学校积极响应教育部要求,认真组织实施“体育、艺术2+1项目”.小明同学报名参加了实心球项目,在一段时间练习后进行了成绩测评,测得5次投掷的成绩(单位:m )为:8,8.5,4.(3分)(2019•萧山区月考)已知实数m 、n 满足关系式:,则平面直角坐标系中点P (m ,n )在( )5.(3分)(2019•萧山区月考)关于x 的分式方程有增根,则m 的值是( )6.(3分)(2019•萧山区月考)如图,直线AB ∥CD ,∠E=30°,∠C=40°,则∠A 等于( )7.(3分)(2019•萧山区月考)如图,若干个小立方体组成的几何体的主视图和俯视图如右图所示,则在给出的下列图形中,肯定不是此几何体的左视图的是( )CD .9.(3分)(2019•萧山区月考)如图,已知⊙O的半径等于5,圆心O到直线a的距离为6;又点P是直线上任意一点,过点P作⊙O的切线PA,切点为A,则切线长PA的最小值为()C10.(3分)(2019•萧山区月考)如图,正方形ABCD中,点E是AD的中点,点P是AB上的动点,PE的延长线与CD的延长线交于点Q,过点E作EF⊥PQ交BC的延长线于点F.给出下列结论:①△APE≌△DQE;②点P在AB上总存在某个位置,使得△PQF为等边三角形;③若tan∠AEP=,则.其中正确的是()二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(4分)(2011•烟台)如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是_________.12.(4分)(2019•萧山区月考)已知x﹣y=﹣3,x2﹣y2=﹣12,则x+y的值为_________.13.(4分)(2019•萧山区月考)已知a是整数,且,则a的值是_________.14.(4分)(2019•萧山区月考)如图,已知小圆的圆心为坐标原点O,半径为3,大圆圆心P的坐标为(a,0),半径为5.如果⊙O与⊙P内含,则字母a的取值范围是_________.15.(4分)(2019•萧山区月考)若关于x的一元二次方程a(x+m)2=3的两个实数根x1=﹣1,x2=3,则抛物线y=a (x+m﹣2)2﹣3与x轴的交点坐标是_________.16.(4分)(2019•萧山区月考)如图,在平面直角坐标系中,点D的坐标为(3,7),过点D的直线y=kx+b交x 轴、y轴于点M、N,四边形ABCD、A1B1C1C、A2B2C2C1,…均为正方形.(1)正方形ABCD的边长为_________;点M的坐标是_________;(2)若如此连续组成正方形,则正方形A n B n C n C n﹣1的边长为_________(用含n的代数式表示)三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)(2019•萧山区月考)如图,从顶点A出发,沿着边长为1的正方形的四个顶点依次跳舞,舞步长为1.第一次顺时针移动1步,第二次逆时针移动2步,第三次顺时针移动3步,…以此类推.(1)移动4次后到达何处?(直接写出答案)(2)移动2019次后到达何处?18.(8分)(2019•萧山区月考)如图△ABC.(1)作∠ABC的平分线交AC于点D,作BD的中垂线分别交AB、BC于点E、F(要求尺规作图,不写作法,保留画图痕迹);(2)试说明线段DE与BF的位置关系.19.(8分)(2019•萧山区月考)为了了解某区2019年初中毕业生的实验考查成绩等级的分布情况,随机抽取了该区若干名学生的实验考查成绩进行统计分析,并根据抽取的成绩绘制了如下的统计图表:(1)求出本次抽查的学生人数和表中x,y和m所表示的值;(2)请补全条形统计图;(3)根据抽样调查结果,请你估计2019年该区14000名初中毕业生实验考查成绩为D类的学生人数.20.(10分)(2019•萧山区月考)已知点A(1,0)、B(0,﹣1)、C(﹣1,2)、D(2,﹣1)、E(4,2),且抛物线y=a(x﹣1)2+k(a>0)经过其中三点.(l)求证:C、E两点不可能同时在抛物线y=a(x﹣1)2+k(a>0)上;(2)试问点A在抛物线y=a(x﹣1)2+k(a>0)上吗?说明理由;(3)直接写出抛物线可能经过的三点.21.(10分)(2019•萧山区月考)某校组织学生到外地进行社会实践活动,共有680名学生参加,并携带300件行李.学校计划租用甲、乙两种型号的汽车共20辆.经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)如何安排甲、乙两种汽车可一次性地将学生和行李全部运走?有哪几种方案?(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.22.(12分)(2019•萧山区月考)如图,△ABC中,∠ABC=Rt∠,AB=BC,点M是BC边上任意一点,点D是AB的延长线上一点,且BM=BD;又点E、F分别是CD、AM边上的中点,连接FE、EB.(1)求证:△AMB≌△CDB;(2)点M在BC边上移动时,试问∠BEF的度数是否会发生变化?若不变,请求出∠BEF的度数;若变化,请说明理由;(3)若,且设∠MAB=α,试求cosα的值.23.(12分)(2019•萧山区月考)已知在平面直角坐标系中,点O是坐标原点,直线y=kx+b与x轴、y轴分别交于点A、B,与双曲线相交于点C、D,且点D的坐标为(1,6).(1)如图1,当点C的横坐标为2时,求点C的坐标和的值;(2)如图2,当点A落在x轴负半轴时,过点C作x轴的垂线,垂足为E,过点D作y轴的垂线,垂足为F,连接EF.①判断△EFC的面积和△EFD的面积是否相等,并说明理由;②当时,求点C的坐标和tan∠OAB的值;(3)若tan∠OAB=,请直接写出的值(不必书写解题过程)2019年浙江省杭州市萧山区中考数学月考试卷参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确的答案1.(3分)(2019•萧山区月考)如图,图中数轴的单位长度为1,若点A、B表示的数是互为相反数,则在图中表示的A、B、C、D4个点中,其中表示绝对值最小的数的点是()223.(3分)(2019•萧山区月考)义务教育阶段学校积极响应教育部要求,认真组织实施“体育、艺术2+1项目”.小明同学报名参加了实心球项目,在一段时间练习后进行了成绩测评,测得5次投掷的成绩(单位:m)为:8,8.5,4.(3分)(2019•萧山区月考)已知实数m、n满足关系式:,则平面直角坐标系中点P(m,n)在()(5.(3分)(2019•萧山区月考)关于x的分式方程有增根,则m的值是()6.(3分)(2019•萧山区月考)如图,直线AB∥CD,∠E=30°,∠C=40°,则∠A等于()7.(3分)(2019•萧山区月考)如图,若干个小立方体组成的几何体的主视图和俯视图如右图所示,则在给出的下列图形中,肯定不是此几何体的左视图的是()C D.,的取值范围是<9.(3分)(2019•萧山区月考)如图,已知⊙O的半径等于5,圆心O到直线a的距离为6;又点P是直线上任意一点,过点P作⊙O的切线PA,切点为A,则切线长PA的最小值为()CAP==10.(3分)(2019•萧山区月考)如图,正方形ABCD中,点E是AD的中点,点P是AB上的动点,PE的延长线与CD的延长线交于点Q,过点E作EF⊥PQ交BC的延长线于点F.给出下列结论:①△APE≌△DQE;②点P在AB上总存在某个位置,使得△PQF为等边三角形;③若tan∠AEP=,则.其中正确的是()可以得出=,=,设DRE=,=,=二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(4分)(2011•烟台)如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是.=.故答案为:..12.(4分)(2019•萧山区月考)已知x﹣y=﹣3,x2﹣y2=﹣12,则x+y的值为4.13.(4分)(2019•萧山区月考)已知a是整数,且,则a的值是﹣4.,再根据可得,,(14.(4分)(2019•萧山区月考)如图,已知小圆的圆心为坐标原点O,半径为3,大圆圆心P的坐标为(a,0),半径为5.如果⊙O与⊙P内含,则字母a的取值范围是﹣2<a<2.15.(4分)(2019•萧山区月考)若关于x的一元二次方程a(x+m)2=3的两个实数根x1=﹣1,x2=3,则抛物线y=a (x+m﹣2)2﹣3与x轴的交点坐标是(5,0)和(1,0).,则(,,(,则(16.(4分)(2019•萧山区月考)如图,在平面直角坐标系中,点D的坐标为(3,7),过点D的直线y=kx+b交x 轴、y轴于点M、N,四边形ABCD、A1B1C1C、A2B2C2C1,…均为正方形.(1)正方形ABCD的边长为5;点M的坐标是(0,);(2)若如此连续组成正方形,则正方形A n B n C n C n﹣1的边长为(用含n的代数式表示)MQ=OM=MQ+OQ=+7=,,,即==;===的边长为.)三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)(2019•萧山区月考)如图,从顶点A出发,沿着边长为1的正方形的四个顶点依次跳舞,舞步长为1.第一次顺时针移动1步,第二次逆时针移动2步,第三次顺时针移动3步,…以此类推.(1)移动4次后到达何处?(直接写出答案)(2)移动2019次后到达何处?×=18.(8分)(2019•萧山区月考)如图△ABC.(1)作∠ABC的平分线交AC于点D,作BD的中垂线分别交AB、BC于点E、F(要求尺规作图,不写作法,保留画图痕迹);(2)试说明线段DE与BF的位置关系.19.(8分)(2019•萧山区月考)为了了解某区2019年初中毕业生的实验考查成绩等级的分布情况,随机抽取了该请根据以上统计图表提供的信息,解答下列问题:(1)求出本次抽查的学生人数和表中x,y和m所表示的值;(2)请补全条形统计图;(3)根据抽样调查结果,请你估计2019年该区14000名初中毕业生实验考查成绩为D类的学生人数.×20.(10分)(2019•萧山区月考)已知点A(1,0)、B(0,﹣1)、C(﹣1,2)、D(2,﹣1)、E(4,2),且抛物线y=a(x﹣1)2+k(a>0)经过其中三点.(l)求证:C、E两点不可能同时在抛物线y=a(x﹣1)2+k(a>0)上;(2)试问点A在抛物线y=a(x﹣1)2+k(a>0)上吗?说明理由;(3)直接写出抛物线可能经过的三点.,a=,符合题意;21.(10分)(2019•萧山区月考)某校组织学生到外地进行社会实践活动,共有680名学生参加,并携带300件行李.学校计划租用甲、乙两种型号的汽车共20辆.经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.(1)如何安排甲、乙两种汽车可一次性地将学生和行李全部运走?有哪几种方案?(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.)首先根据题意列出不等式组得由题意得22.(12分)(2019•萧山区月考)如图,△ABC中,∠ABC=Rt∠,AB=BC,点M是BC边上任意一点,点D是AB的延长线上一点,且BM=BD;又点E、F分别是CD、AM边上的中点,连接FE、EB.(1)求证:△AMB≌△CDB;(2)点M在BC边上移动时,试问∠BEF的度数是否会发生变化?若不变,请求出∠BEF的度数;若变化,请说明理由;(3)若,且设∠MAB=α,试求cosα的值.a BF=BE=AM=2BF=3CD AMBF=BE=aAM=2BF=3MAB===23.(12分)(2019•萧山区月考)已知在平面直角坐标系中,点O是坐标原点,直线y=kx+b与x轴、y轴分别交于点A、B,与双曲线相交于点C、D,且点D的坐标为(1,6).(1)如图1,当点C的横坐标为2时,求点C的坐标和的值;(2)如图2,当点A落在x轴负半轴时,过点C作x轴的垂线,垂足为E,过点D作y轴的垂线,垂足为F,连接EF.①判断△EFC的面积和△EFD的面积是否相等,并说明理由;②当时,求点C的坐标和tan∠OAB的值;(3)若tan∠OAB=,请直接写出的值(不必书写解题过程)y=的图象上可求出然后可算出的值;|ab|=3×DB==,再证明OAB==2,二是﹣上,,,得,,=;(﹣=×=2,=,===OAB==2,,,,OAB=,∴直线方程的斜率为,即k=,x+)=x+,解得,=,,所以.OAB=∴直线方程的斜率为,即﹣,,﹣x+,)=x+,解得y=,=,=.综上所述:的值为或.。
2019年浙江省杭州市萧山区中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.如果|a|=a,下列各式成立的是()A.a>0 B.a<0 C.a≥0 D.a≤02.下列各式从左到右的变形正确的是()A.﹣2x+4y=﹣2(x﹣4y)B.a2﹣6=(a+2)(a﹣3)C.(a+b)2=a2+b2D.x2﹣y2=(x﹣y)(x+y)3.如图,先将正方形纸片对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上的对应点为H,沿AH和DH剪下,这样剪得的三角形中()A.AH=DH≠AD B.AH=DH=AD C.AH=AD≠DH D.AH≠DH≠AD4.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A .B .C .D .5.某车间20名工人每天加工零件数如表所示:45678每天加工零件数人数36542这些工人每天加工零件数的众数、中位数分别是()A.5,5 B.5,6 C.6,6 D.6,56.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为()A.2 B.﹣1 C.D.47.下面平面图形中能围成三棱柱的是()A.B.C.D.8.如图,在6×6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则tan∠BAC的值是()A.B.C.D.9.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,下列结论:①<0;②a ﹣b+c=﹣9a;③若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2;④将抛物线沿x轴向右平移一个单位后得到的新抛物线的表达式为y=a(x2﹣9).其中正确的是()A.①②③B.①③④C.①②④D.①②③④10.如图,将矩形ABCD沿AE折叠,点D的对应点落在BC上点F处,过点F作FG∥CD,连接EF,DG,下列结论中正确的有()①∠ADG=∠AFG;②四边形DEFG是菱形;③DG2=AE•EG;④若AB=4,AD=5,则CE=1.A.①②③④B.①②③C.①③④D.①②二.填空题(共6小题,满分24分,每小题4分)11.有10个正实数,这些数中每两个乘积恰好为1,这时甲同学断言,任何9个数的和不小于;乙同学断言:任何9个数的和小于,则两位同学正确.12.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.13.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.14.若关于x的一元二次方程(k﹣1)x2+2x﹣1=0有两个不相等的实数根,则k的取值范围是.15.如图,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC内部,且AD=CD,∠ADC=90°,连接BD,若△BCD的面积为10,则AD的长为.16.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE=40°,则∠DBC=.三.解答题(共7小题,满分66分)17.(6分)定义的运算符号“@”的运算法则为X@Y=,试求(2@6)@8的值.18.(8分)为了解本校九年级学生期末数学考试情况,小亮在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A(100﹣90分)、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?19.(8分)我们学习了因式分解之后可以解某些高次方程,例如,一元二次方程x2+x﹣2=0可以通过因式分解化为:(x﹣1)(x+2)=0,则方程的两个解为x=1和x=﹣2.反之,如果x=1是某方程ax2+bx+c=0的一个解,则多项式ax2+bx+c必有一个因式是(x﹣1),在理解上文的基础上,试找出多项式x3+x2﹣3x+1的一个因式,并将这个多项式因式分解.20.(10分)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE,求∠AEB的度数.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请求∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.21.(10分)有这样一个问题:探究函数y=的图象与性质.小彤根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小彤探究的过程,请补充完整:(1)函数y=的自变量x的取值范围是;(2)下表是y与x的几组对应值:x…﹣2﹣101245678…y…m0﹣132…则m的值为;(3)如图所示,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象;(4)观察图象,写出该函数的一条性质;(5)若函数y=的图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),且x1<3<x2<x3,则y1、y2、y3之间的大小关系为;22.(12分)在正方形ABCD中,AB=8,点P在边CD上,tan∠PBC=,点Q是在射线BP上的一个动点,过点Q作AB的平行线交射线AD于点M,点R在射线AD上,使RQ始终与直线BP垂直.(1)如图1,当点R与点D重合时,求PQ的长;(2)如图2,试探索:的比值是否随点Q的运动而发生变化?若有变化,请说明你的理由;若没有变化,请求出它的比值;(3)如图3,若点Q在线段BP上,设PQ=x,RM=y,求y关于x的函数关系式,并写出它的定义域.23.(12分)抛物线y1=ax2+c与x轴交于A、B两点,与y轴交于点C,点P在抛物线上,过P(1,﹣3),B(4,0)两点作直线y2=kx+b.(1)求a、c的值;(2)根据图象直接写出y1>y2时,x的取值范围;(3)在抛物线上是否存在点M,使得S△ABP=5S△ABM,若存在,求出点M的坐标,若不存在,请说明理由.2019年浙江省杭州市萧山区中考数学二模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】由条件可知a是绝对值等于本身的数,可知a为0或正数,可得出答案.【解答】解:∵|a|=a,∴a为绝对值等于本身的数,∴a≥0,故选:C.【点评】本题主要考查绝对值的计算,掌握绝对值等于它本身的数有0和正数(即非负数)是解题的关键.2.【分析】分别利用因式分解,完全平方公式和平方差公式进行分析即可.【解答】解:A、﹣2x+4y=﹣2(x+2y),故原题计算错误;B、a2﹣6≠(a+2)(a﹣3),故原题计算错误;C、(a+b)2=a2+2ab+b2,故原题计算错误;D、x2﹣y2=(x﹣y)(x+y),故原题计算正确;故选:D.【点评】此题主要考查了分解因式和完全平方公式和平方差公式,关键是掌握完全平方公式:(a ±b)2=a2±2ab+b2.3.【分析】利用图形的对称性特点解题.【解答】解:由图形的对称性可知:AB=AH,CD=DH,∵正方形ABCD,∴AB=CD=AD,∴AH=DH=AD.故选:B.【点评】解决本题的关键是利用图形的对称性把所求的线段进行转移.4.【分析】有工作总量180或120,求的是工作效率,那么一定是根据工作时间来列等量关系的.关键描述语是:“小明打120个字所用的时间和小张打180个字所用的时间相等”.等量关系为:小明打120个字所用的时间=小张打180个字所用的时间.【解答】解:小明打字速度为x个/分钟,那么小明打120个字所需要的时间为:;易得小张打字速度为(x+6)个/分钟,小张打180个字所需要的时间为:;∴可列方程为:,故选:C.【点评】解决本题的关键是根据不同的工作量用的时间相等得到相应的等量关系.5.【分析】根据众数、中位数的定义分别进行解答即可.【解答】解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.【分析】根据垂径定理得到CE=DE,∠CEO=90°,根据圆周角定理得到∠COE=30°,根据直角三角形的性质得到CE=OC=1,最后由垂径定理得出结论.【解答】解:∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°,∵∠A=15°,∴∠COE=30°,在Rt△OCE中,OC=2,∠COE=30°,∴CE=OC=1,(直角三角形中,30度角所对的直角边是斜边的一半)∴CD=2CE=2,故选:A.【点评】本题是圆的计算题,考查了垂径定理和勾股定理的运用,是常考题型;熟练掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧;在圆中的计算问题中,因为常有直角三角形存在,常利用勾股定理求线段的长.7.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:A、能围成三棱柱,故选项正确;B、折叠后有两个面重合,不能围成三棱柱,故选项错误;C、不能围成三棱柱,故选项错误;D、折叠后有两个侧面重合,不能围成三棱柱,故选项错误.故选:A.【点评】考查了展开图折叠成几何体,解题时勿忘记三棱柱的特征及正方体展开图的各种情形.8.【分析】过点B作BD⊥AC,交AC延长线于点D,利用正切函数的定义求解可得.【解答】解:如图,过点B作BD⊥AC,交AC延长线于点D,则tan∠BAC==,故选:C.【点评】本题主要考查三角函数的定义,解题的关键是掌握正切函数的定义:锐角A的对边a与邻边b的比叫做∠A的正切.9.【分析】根据开口方向得出a<0,抛物线与y轴的交点得出c>0,对称轴x=﹣=﹣1,得出b=2a,当x=2时,y=0,得出4a+2b+c=0,根据抛物线的增减性得出y>y2;根据上加下减左1加右减的原则得出平移后的解析式.【解答】解:∵开口向下,∴a<0,∵抛物线与y轴的正半轴相交,∴c>0,∴<0,故①正确;∵对称轴x=﹣=﹣1,∴b=2a,当x=2时,y=0,∴4a+2b+c=0,∴4a+4a+c=0,∴c=﹣8a,∴a﹣b+c=﹣9a,故②正确;∵对称轴为x=﹣1,当x=﹣1时,抛物线有最大值,﹣3距离﹣1有2个单位长度,距离﹣1有个单位长度,∴y1>y2,故③正确;∵抛物线过(﹣4,0)(2,0),对称轴为x=﹣1,∴设抛物线的解析式为y=a(x+1)2+k,将抛物线沿x轴向右平移一个单位后得出平移后的解析式y=ax2+k,∵c=﹣8a,∴k=﹣9a,∴将抛物线沿x轴向右平移一个单位后得到的新抛物线的表达式为y=a(x2﹣9),故④正确;正确结论有①②③④;故选:D.【点评】本题考查了二次函数的图象与几何变换以及二次函数的图象与系数的关系,掌握二次函数的性质是解题的关键.10.【分析】依据全等三角形的性质即可得到∠ADG=∠AFG;依据DG=GF=DE=EF,即可得到四边形DEFG为菱形;依据相似三角形的对应边成比例,即可得到DG2=AE•EG;依据Rt △CEF中,CE2+CF2=EF2,即可得到方程x2+22=(4﹣x)2,求得x的值即可得出结论.【解答】解:①由折叠可得,AD=AF,DG=FG,在△ADG和△AFG中,,∴△ADG≌△AFG(SSS),∴∠ADG=∠AFG,故①正确;②∵GF∥DC,∴∠EGF=∠DEG,由翻折的性质可知:GD=GF,DE=EF,∠DGE=∠EGF,∴∠DGE=∠DEG,∴GD=DE,∴DG=GF=DE=EF,∴四边形DEFG为菱形,故②正确;③如图所示,连接DF交AE于O,∵四边形DEFG为菱形,∴GE⊥DF,OG=OE=GE,∵∠DOE=∠ADE=90°,∠OED=∠DEA,∴△DOE∽△ADE,∴=,即DE2=EO•AE,∵EO=GE,DE=DG,∴DG2=AE•EG,故③正确;④由折叠可得,AF=AD=5,∴Rt△ABF中,BF==3,∴CF=5﹣3=2,设CE=x,则DE=EF=4﹣x,∵Rt△CEF中,CE2+CF2=EF2,∴x2+22=(4﹣x)2,解得x=,∴CE=,故④错误;故选:B.【点评】本题属于折叠问题,主要考查了矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到对应边成比例,依据勾股定理列出关于x的方程是解题答问题的关键.二.填空题(共6小题,满分24分,每小题4分)11.【分析】由每两个乘积恰好为1,判断任意两数互为倒数,任意9数的和列出代数式,根据a2+b2≥2ab从而确定和的范围.【解答】解:∵这些数中每两个乘积恰好为1,且都是正数,∴任意两个数互为倒数,故可设这两数分别为x,(x>0,>0),且x•=1;根据题意,任意9个数的和为:①=5x+≥2=4;②=4x+≥2=4;∵4>,∴任意9个数的和不小于.故答案为:甲.【点评】本题主要考查倒数的性质及a2+b2≥2ab的应用,根据题意列出代数式并确定范围是关键.12.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.13.【分析】根据若从中任摸一个球,恰好是黑球的概率为,列出关于n的方程,解方程即可.【解答】解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为,∴=,解得:n=2.故答案为:2.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.注意方程思想的应用.14.【分析】根据该方程是关于x得一元二次方程,得到关于k得一个不等式,根据该方程有两个不相等的实数根,结合根的判别式公式,得到一个关于k得不等式,分别解两个不等式,解之取公共部分即可得到答案.【解答】解:∵原方程是关于x得一元二次方程,∴k﹣1≠0解得:k≠1,又∵原方程有两个不相等的实数根,∴△=4+4(k﹣1)>0,解得:k>0,即k得取值范围是:k>0且k≠1,故答案为:k>0且k≠1.【点评】本题考查了根的判别式和一元二次方程的定义,正确掌握根的判别式公式和一元二次方程的定义是解题的关键.15.【分析】作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH(AAS),可得DG=DH=MG=,AG=CH=a+,根据AM=AG+MG,列方程可得结论.【解答】解:过D作DH⊥BC于H,过A作AM⊥BC于M,过D作DG⊥AM于G,设CM=a,∵AB=AC,∴BC=2CM=2a,∵tan∠ACB=2,∴=2,∴AM=2a,由勾股定理得:AC=a,S=BC•DH=10,△BDC=10,DH=,∵∠DHM=∠HMG=∠MGD=90°,∴四边形DHMG为矩形,∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,∵∠ADC=90°=∠ADG+∠CDG,∴∠ADG=∠CDH,在△ADG和△CDH中,∵,∴△ADG≌△CDH(AAS),∴DG=DH=MG=,AG=CH=a+,∴AM=AG+MG,即2a=a++,a2=20,在Rt△ADC中,AD2+CD2=AC2,∵AD=CD,∴2AD2=5a2=100,∴AD=5或﹣5(舍),故答案为:5..【点评】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、三角形面积的计算;证明三角形全等得出AG=CH是解决问题的关键,并利用方程的思想解决问题.16.【分析】根据线段垂直平分线的概念得到∠AED=90°,进一步求出∠ABD=∠A=50°,根据三角形内角和定理和等腰三角形的性质计算即可.【解答】解:∵DE是AB的垂直平分线,∴DE⊥AB,∴∠AED=90°,又∵∠ADE=40°,∴∠ABD=∠A=50°,又∵AB=AC,∴∠ABC=65°,∴∠DBC=15°.故答案为:15°.【点评】本题考查的是线段垂直平分线的概念和等腰三角形的性质,掌握三角形内角和等于180°、等腰三角形等边对等角是解题的关键.三.解答题(共7小题,满分66分)17.【分析】根据新定义先运算2@6,得到2@6=4,然后再运算4@8.【解答】解:(2@6)@8=@8=4@8==6.【点评】本题考查了实数的运算:先进行实数的乘方或开方运算,再进行乘除运算,然后进行实数的加减运算.也考查了阅读理解能力.18.【分析】(1)根据C等级的人数和所占的百分比求出这次随机抽取的学生数;(2)用抽取的总人数乘以B等级所占的百分比,从而补全统计图;(3)用该校九年级的总人数乘以优秀的人数所占的百分比,即可得出答案.【解答】解:(1)这次随机抽取的学生共有:20÷50%=40(人);(2)B等级的人数是:40×27.5%=11人,如图:(3)根据题意得:×1200=480(人),答:这次九年级学生期末数学考试成绩为优秀的学生人数大约有480人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.19.【分析】由已知得出多项式x3+x2﹣3x+1的一个因式是x﹣1,设x3+x2﹣3x+1=(x﹣1)(x2+ax ﹣1),展开后根据对应系数相等得出1=a﹣1,﹣3=﹣a﹣1,求出a即可.【解答】解:∵x=1是方程x3+x2﹣3x+1=0的一个解,∴多项式x3+x2﹣3x+1的一个因式是x﹣1,设x3+x2﹣3x+1=(x﹣1)(x2+ax﹣1),∴x3+x2﹣3x+1=x3+ax2﹣x2﹣ax﹣x+1=x3+(a﹣1)x2+(﹣a﹣1)x+1,∴1=a﹣1,﹣3=﹣a﹣1,解得:a=2,∴x3+x2﹣3x+1=(x﹣1)(x2+2x﹣1),即多项式x3+x2﹣3x+1的另一个因式是x2+2x﹣1,这个多项式因式分解为x3+x2﹣3x+1=(x﹣1)(x2+2x﹣1).【点评】本题考查了解一元二次方程﹣因式分解法和因式分解的应用,主要考查学生的理解能力和阅读能力,题目比较好,但有一定的难度.20.【分析】(1)先证出∠ACD=∠BCE,那么△ACD≌△BCE,根据全等三角形证出∠ADC=∠BEC,求出∠ADC=120°,得出∠BEC=120°,从而证出∠AEB=60°;(2)证明△ACD≌△BCE,得出∠ADC=∠BEC,最后证出DM=ME=CM即可.【解答】解:(1)∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=60°﹣∠CDB=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.(2)∠AEB=90°,AE=BE+2CM.理由:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°,∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.【点评】此题考查了全等三角形的判定与性质和等腰三角形的判定与性质以及等腰三角形的性质;证明三角形全等是解决问题的关键.21.【分析】(1)依据函数表达式中分母不等于0,即可得到自变量x的取值范围;(2)把x=﹣1代入函数解析式,即可得到m的值;(3)依据各点的坐标描点连线,即可得到函数图象;(4)依据函数图象,即可得到函数的增减性;(5)依据函数图象,即可得到当x1<3时,y1<1;当0<x2<x3时,1<y3<y2.【解答】解:(1)∵x﹣3≠0,∴x≠3;(2)当x=﹣1时,y===;(3)如图所示:(4)由图象可得,当x>3时,y随x的增大而减小(答案不唯一);(5)由图象可得,当x1<3时,y1<1;当0<x2<x3时,1<y3<y2.∴y1、y2、y3之间的大小关系为y1<y3<y2.故答案为:x≠3;;当x>3时,y随x的增大而减小;y1<y3<y2.【点评】本题主要考查了反比例函数的图象与性质,用描点法画反比例函数的图象,步骤:列表﹣﹣﹣描点﹣﹣﹣连线.连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.22.【分析】(1)先求出PC=6、PB=10、RP=2,再证△PBC∽△PRQ得,据此可得;(2)证△RMQ∽△PCB得,根据PC=6、BC=8知,据此可得答案;(3)由PD∥AB知,据此可得、PN=,由、RM=y知,根据PD∥MQ得,即,整理可得函数解析式,当点R与点A重合时,PQ取得最大值,根据△ABQ∽△NAB知=,求得x=,从而得出x的取值范围.【解答】解:(1)由题意,得AB=BC=CD=AD=8,∠C=∠A=90°,在Rt△BCP中,∠C=90°,∴,∵,∴PC=6,∴RP=2,∴,∵RQ⊥BQ,∴∠RQP=90°,∴∠C=∠RQP,∵∠BPC=∠RPQ,∴△PBC∽△PRQ,∴,∴,∴;(2)的比值随点Q的运动没有变化,如图1,∵MQ∥AB,∴∠1=∠ABP,∠QMR=∠A,∵∠C=∠A=90°,∴∠QMR=∠C=90°,∵RQ⊥BQ,∴∠1+∠RQM=90°、∠ABC=∠ABP+∠PBC=90°,∴∠RQM=∠PBC,∴△RMQ∽△PCB,∴,∵PC=6,BC=8,∴,∴的比值随点Q的运动没有变化,比值为;(3)如图2,延长BP交AD的延长线于点N,∵PD∥AB,∴,∵NA=ND+AD=8+ND,∴,∴,∴,∵PD∥AB,MQ∥AB,∴PD∥MQ,∴,∵,RM=y,∴又PD=2,,∴,∴,如图3,当点R与点A重合时,PQ取得最大值,∵∠ABQ=∠NBA、∠AQB=∠NAB=90°,∴△ABQ∽△NAB,∴=,即=,解得x=,则它的定义域是.【点评】本题主要考查相似三角形的综合题,解题的关键是熟练掌握正方形的性质、勾股定理及相似三角形的判定与性质.23.【分析】(1)把P点和B点的坐标代入抛物线解析式,即可求出答案;(2)根据函数的图象得出即可;(3)根据面积公式求出M点到x轴的距离,得出M点的纵坐标,再求出M点的横坐标即可.【解答】解:(1)将P(1,﹣3)、B(4,0)代入y=ax2+c得:,解得:;(2)由图象得x>4或x<1;(3)在抛物线上存在点M,使得S△ABP=5S△ABM,理由是:抛物线的解析式是y=x2﹣,设M点的纵坐标为e,∵P(1,﹣3),∴由S△ABP=5S△ABM得:×AB×|﹣3|=5×AB×|e|,解得;|e|=,当e=时,x2﹣=,解得:x=±,当e=﹣时,x2﹣=﹣,解得:x=±,即M点的坐标是(,)(﹣,)(,﹣)(﹣,﹣).【点评】本题考查了用待定系数法求出二次函数的解析式、二次函数和一次函数的图象和性质,函数图象上点的坐标特征等知识点,能正确运用性质进行计算是解此题的关键.。
2019年浙江省杭州市萧山区北干初中中考数学模拟试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.|﹣|的相反数是()A.2014B.﹣2014C.D.﹣2.计算2m2n﹣3nm2的结果为()A.﹣1B.﹣5m2n C.﹣m2n D.不能合并3.已知,如图,AC与BD相交于点O,AB∥CD,如果∠C=30.2°,∠B=50°56′,那么∠BOC为()A.80°18′B.50°58′C.30°10′D.81°8′4.长方体的主视图与左视图如图所示(单位:cm),则其俯视图的面积是()A.12cm2B.8cm2C.6cm2D.4cm25.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数小于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.乙运动员的成绩比甲运动员的成绩稳定6.已知⊙O1的半径r1=2,⊙O2的半径r2是方程的根,当两圆相内切时,⊙O1与⊙O2的圆心距为()A.5B.4C.1或5D.17.已知y是关于x的函数,函数图象如图,则当y>0时,自变量x的取值范围是()A.x<0B.﹣1<x<1或x>2C.x>﹣1D.x<﹣1或1<x<28.如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与图中4×7方格中的格点的连线中,能够与该圆弧相切的格点个数有()A.1个B.2个C.3个D.4个9.超市有一种“喜之郎”果冻礼盒,内装两个上下倒置的果冻,果冻高为4cm,底面是个直径为6cm的圆,横截面可以近似地看作一个抛物线,为了节省成本,包装应尽可能的小,那么要制作这样一个包装盒至少纸板()平方厘米.(不计重合部分)A.253B.288C.206D.24510.如图,AB是⊙O的直径,BC⊥AB,垂足为点B,连接CO并延长交⊙O于点D、E,连接AD并延长交BC于点F.则下列结论正确的有()①∠CBD=∠CEB;②=;③点F是BC的中点;④若=,tan E=.A.①②B.③④C.①②④D.①②③二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.因式分解:x2y﹣7y=.12.一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,﹣1,﹣2,﹣3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为.13.函数y=与y=x﹣2的图象交点的横坐标分别为a,b,则+的值为.14.如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,已知该山坡的坡度i(即tan∠ABC)为1:,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC.(1)山坡坡角(即∠ABC)的度数等于度;(2)求A、B两点间的距离等于(结果精确到0.1米,参考数据:≈1.41,≈1.73 tan37°≈0.75,tan23°≈1.59,sin37°≈1.60,cos37°≈0.80).15.已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x 轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且=,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为.16.如图,菱形ABCD的边长为12cm,∠A=60°,点P从点A出发沿线路AB→BD做匀速运动,点Q从点D同时出发沿线路DC→CB→BA做匀速运动.已知点P,Q运动的速度分别为2cm/秒和2.5cm/秒,经过12秒后,P、Q分别到达M、N两点时,点P、Q再分别从M、N同时沿原路返回,点P的速度不变,点Q的速度改为vcm/秒,经过3秒后,P、Q分别到达E、F两点,若△BEF与△AMN相似,则v的值为.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.某市拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A,B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A,B,C的位置如图,请利用尺规作图找出音乐喷泉M的位置(要求:不写已知、求作、作法和结论,保留作图痕迹);连结AM、CM,则AM CM.(请在横线上选择填入<,>或=)18.当k 满足条件时,关于x的一元二次方程kx2+(k﹣1)x+k2+3k =0是否存在实数根x=0?若存在求出k值,若不存在请说明理由.19.杭州市相关部门正在研究制定居民用水价格调整方案.小明想为政府决策提供信息,于是在某小区内随机访问了部分居民,就每月的用水量、可承受的水价调整的幅度等进行调查,并把调查结果整理成图1和图2.已知被调查居民每户每月的用水量在m3之间,被调查的居民中对居民用水价格调价幅度抱“无所谓”态度的有8户,试回答下列问题:(1)上述两个统计图表是否完整,若不完整,试把它们补全;(2)若采用阶梯式累进制调价方案(如表1所示),试估计该小区有百分之几的居民用水费用的增长幅度不超过50%?来表1:阶梯式累进制调价方案20.现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B′,过E作EF垂直B′C,交B′C于F.(1)求AE、EF的位置关系;(2)求线段B′C的长,并求△B′EC的面积.21.(10分)阅读对话,解答问题.(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)小冬抽出(a,b)中使关于x的一元二次方程x2﹣ax+2b=0根为有理数的是小丽赢,方程的根为无理数的是小兵赢,你觉得游戏是否公平?若公平,请说明理由;若不公平,请修改游戏方案.22.如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是三角形;(2)若抛物线的“抛物线三角形”是直角三角形,求b的值;(3)若抛物线y=﹣x2﹣bx与x轴交于原点O和点B,抛物线的顶点坐标为A,△ABO 是“抛物线三角形”,是否存在以原点为对称中心的矩形?若存在,求出过三点的抛物线的表达式;若不存在,说明理由.23.(12分)如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作⊙O的切线交边BC于N.(1)图中是否存在与△ODM相似的三角形,若存在,请找出并给于证明.(2)设DM=x,OA=R,求R关于x的函数关系式;是否存在整数R,使得正方形ABCD 内部的扇形OAM围成的圆锥底面周长为π?若存在请求出此时DM的长;不存在,请说明理由.(3)在动点O逐渐向点D运动(OA逐渐增大)的过程中,△CMN的周长如何变化?说明理由.参考答案一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.【解答】解:|﹣|的相反数是﹣,故选:D.2.【解答】解:2m2n﹣3nm2=﹣m2n,故选:C.3.【解答】解:∵AB∥CD,∴∠D=∠B=50°56′,∴∠BOC=∠C+∠D=30.2°+50°56′=81°8′.故选:D.4.【解答】解:根据题意,正方体的俯视图是矩形,它的长是4cm,宽是3cm,面积=4×3=12(cm2),故选A.5.【解答】解:A、由图可知甲、乙运动员第一场比赛得分相同,第十二场比赛得分甲运动员比乙运动员得分高,所以甲运动员得分的极差大于乙运动员得分的极差,此选项正确,不符合题意;B、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员得分的中位数大于乙运动员得分的中位数,此选项错误,符合题意;C、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员的得分平均数大于乙运动员的得分平均数,此选项正确,不符合题意;D、由图可知甲运动员得分数据波动性较大,乙运动员得分数据波动性较小,乙运动员的成绩比甲运动员的成绩稳定,所以此选项正确,不符合题意.故选:B.6.【解答】解:方程两边同乘以x(x﹣1)得:3(x﹣1)=2x,解得:x=3,经检验,x=3是原分式方程的解;∴r2=3,∵⊙O1的半径r1=2,且两圆相内切,∴⊙O1与⊙O2的圆心距为:3﹣2=1.故选:D.7.【解答】解:y>0时,即x轴上方的部分,∴自变量x的取值范围分两个部分是x<﹣1,1<x<2.故选:D.8.【解答】解:根据过格点A,B,C作一圆弧,由图形可得:三点组成的圆的圆心为:O′(2,0),只有∠O′BF=∠O′BD+∠EBF=90°时,BF与圆相切,此时△BO′D≌△FBE,EF=BD=2,∴F点的坐标为:(5,1)或(1,3)或(7,0),则点B与下列格点的连线中,能够与该圆弧相切的是(5,1)或(1,3)或(7,0),共3个.故选:C.9.【解答】解:建立如图(2)所示的平面直角坐标系,过切点K作KH⊥OC于点H.依题意知K(x,2).易求开口向上抛物线的解析式:y=x2,所以2=x2,解得x=或x=﹣(舍去),∴OH=HG=,∴BC=BO+OH+HG+GC=3+++3=6+3,∴S矩形ABCD=AB•BC=4×(6+3)=24+12(平方厘米).如图3,S矩形A′B′C′D′=6BC=6×(6+3)(平方厘米).所以,2S矩形ABCD+2S矩形A′B′C′D′+2AB•AE=178+80(平方厘米).2×(24+12)+2×(36+18)+2×4×6=168+60≈253(平方厘米).故选:A.10.【解答】证明(1)∵BC⊥AB于点B,∴∠CBD+∠ABD=90°,∵∠BAD+∠ABD=90°∴∠CBD=∠BAD,∵∠BAD=∠CEB,∴∠CEB=∠CBD,故①正确.(2)∵∠C=∠C,∠CEB=∠CBD,∴△EBC∽△BDC,∴=,故②正确,(3)∵∠EBD=∠BDF=90°,∴DF∥BE,假设点F是BC的中点,则点D是EC的中点,∴ED=DC,∵ED是直径,长度不变,而DC的长度是不定的,∴DC不一定等于ED,故③是错误的.(4)∵=,设BC=3x,AB=2x,∴OB=OD=x,∴在RT△CBO中,OC=x,∴CD=(﹣1)x∵由(2)知,=∴===,∵tan E=∴tan E=,故④正确,故选:C.二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.【解答】解:x2y﹣7y=y(x2﹣7)=y(x﹣)(x+).故答案为:y(x﹣)(x+).12.【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出的小球上两个数字乘积是负数的有6种情况,∴两次摸出的小球上两个数字乘积是负数的概率为:=.故答案为:.13.【解答】解:根据题意得方程组,消去y得=x﹣2,整理得x2﹣2x﹣1=0,∴a+b=2,ab=﹣1,∴+====6.故答案为6.14.【解答】解:(1)∵tan∠ABC=1:,∴∠ABC=30°;(2)由题意得:∠PBH=60°,∵∠ABC=30°,∴∠ABP=90°,又∠APB=45°,∴△P AB为等腰直角三角形,在直角△PHB中,PB===20.在直角△PBA中,AB=PB=20≈34.6米.故答案为30,34.6.15.【解答】解:连结AD,过D点作DG∥CM.∵=,△AOC的面积是15,∴CD:CO=1:3,OG:OM=2:3,∴△ACD的面积是5,△ODF的面积是15×=,∴四边形AMGF的面积=,∴△BOE的面积=△AOM的面积=×=12,∴△ADC与△BOE的面积和为5+12=17.故答案为:17.16.【解答】解:∵∠A=60°,AD=AB=12,∴△ABD为等边三角形,故BD=12,又∵V P=2cm/s∴S P=V P t=2×12=24(cm),∴P点到达D点,即M与D重合v Q=2.5cm/sS Q=V Q t=2.5×12=30(cm),∴N点在AB之中点,即AN=BN=6(cm),∴∠AND=90°即△AMN为直角三角形,∵V P=2m/st=3s,∴S P=6cm,∴E为BD的中点,又∵△BEF与△AMN相似,∴△BEF为直角三角形,且∠EBF=60°,∠BPF=30°,①Q到达F1处:S Q=BP﹣BF1=6﹣=3(cm),故V Q=1(cm/秒);②Q到达F2处:S Q=BP=9,故V Q=3(cm/秒);③Q到达F3处:S Q=6+2BP=18,故V Q=6(cm/秒).故答案为:1或3或6.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.【解答】解:作AB的垂直平分线,以点C为圆心,以AB的一半为半径画弧交AB的垂直平分线于点M,作图如下:则AM>CM.故答案为:>.18.【解答】解:,解①得:k≤4,解②得:k≥﹣7,则不等式组的解集是:﹣7≤k≤4,把x=0代入方程解得k=0或k=﹣3,∵k=0不满足方程为一元二次方程,∴k=﹣3.19.【解答】解:(1)频数分布直方图,如图:(2)∵设每月每户用水量为xm3的居民调价后用水费用的增长幅度不超过50%当x≤15时,水费的增长幅度为×100%<50%,当x>15时,则≤50%,解得x≤20,∵从调查数据看,每月的用水量不超过20m3的居民有54户,=75%,又∵调查是随机抽取,∴该小区有75%的居民用水费用的增长幅度不超过50%.20.【解答】解:(1)由折线法及点E是BC的中点,∴EB=EB′=EC,∠AEB=∠AEB′,∴△B'EC是等腰三角形,又∵EF⊥B′C∴EF为∠B'EC的角平分线,即∠B′EF=∠FEC,∴∠AEF=180°﹣(∠AEB+∠CEF)=90°,即∠AEF=90°,即AE⊥EF;(2)连接BB'交AE于点O,由折线法及点E是BC的中点,∴EB=EB′=EC,∴∠EBB′=∠EB′B,∠ECB′=∠EB′C;又∵△BB'C三内角之和为180°,∴∠BB'C=90°;∵点B′是点B关于直线AE的对称点,∴AE垂直平分BB′;在Rt△AOB和Rt△BOE中,BO2=AB2﹣AO2=BE2﹣(AE﹣AO)2将AB=4cm,BE=3cm,AE=5cm,∴AO=cm,∴BO==cm,∴BB′=2BO=cm,∴在Rt△BB'C中,B′C==cm,由题意可知四边形OEFB′是矩形,∴EF=OB ′=,∴S△B′EC =×B′C•EF =××=.21.【解答】解:(1)(a,b)对应的表格为:(2)游戏不公平,∵符合有理数根的有2种,而符合无理数根的只有1种;∴P(小丽赢)=,P(小兵赢)=,∴P(小丽赢)≠P(小兵赢),∴不公平.设计方案:小冬抽出(a,b)中使关于x的一元二次方程x2﹣ax+2b=0根为等根的是小丽赢,方程的根为无理数的是小兵赢.22.【解答】解:(1)如图;根据抛物线的对称性,抛物线的顶点A必在O、B的垂直平分线上,所以OA=AB,即:“抛物线三角形”必为等腰三角形.故答案为:等腰;(2)∵“抛物线三角形”是直角三角形,∴此“物线三角形”是等腰直角三角形,抛物线的顶点坐标为(b,),把y=0代入得解得x=0或b根据题意得=∴b=0或2(0舍去),∴b=2(3)存在.当b<0时,作AH⊥OB于H点,如图,把y=0代入y=﹣x2﹣bx得解得x1=0,x2=﹣b′,∴B点坐标为(﹣b′,0),∴A点坐标为(,)∵矩形ABCD以原点O为对称中心,∴OA=OB=OC=OD,∴△OAB为等边三角形,∴AH=解得b1′=0,b2∴A点坐标为(,﹣3),B点坐标为(,0)∴C点坐标为(),D点坐标为(设过O、C、D三点的抛物线的解析式为y=ax(x﹣2),把C(,3)代入得a=﹣1,∴所求抛物线的表达式为y=﹣x2+2,同理,当b>0时,y=﹣x2﹣2x.23.【解答】解:(1)∵MN切⊙O于点M,∴∠OMN=90°,∵∠OMD+∠CMN=90°,∠CMN+∠CNM=90°,∴∠OMD=∠MNC,又∵∠D=∠C=90°,∴△ODM∽△MCN.(2)在Rt△ODM中,DM=x,设OA=OM=R,∴OD=AD﹣OA=8﹣R,由勾股定理得:(8﹣R)2+x2=R2,∴64﹣16R+R2+x2=R2,∴,∵4<OA<8,即4<R<8,∴当R=5时,∠MOA超过1800,不符合,舍去,当R=6时,∠MOA=160°,∴∵x>0,∴,同理当R=7时,x=.(3)∵CM=CD﹣DM=8﹣x,,且有△ODM∽△MCN,∴,∴代入得到,同理,∴代入得到,∴△CMN的周长为P==(8﹣x)+(x+8)=16,在点O的运动过程中,△CMN的周长始终为16,是一个定值.。
2019年浙江省杭州市萧山中学中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.若|﹣x|=5,则x等于()A.﹣5B.5C.D.±52.下列代数式变形正确的是()A.﹣a+b=﹣(a+b)B.﹣4a2+b2=(2a﹣b)(2a+b)C.(﹣x﹣y)2=(x+y)2D.x2﹣4x﹣3=(x﹣2)2﹣33.图1是边长为4的正方形硬纸片ABCD,点E、F分别是AB、BC的中点,若沿图1的虚线剪开并拼成图2的“小屋”,则图中阴影部分的面积()A.2B.4C.8D.104.一列列车自全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x千米/时,则根据题意所列方程正确的是()A.﹣=1B.﹣=1C.﹣=1D.﹣=15.近年来,我国持续大面积雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某中学举行了“建设宜居白银,关注环境保护”的知识竞赛,某班学生的成绩统计如下表.则该班学生成绩的众数和中位数分别是()A.70分80分B.80分80分C.90分80分D.80分90分6.如图,AB是⊙O的直径,弦CD⊥AB于H,且CD=2,BD=,则AB的长为()A.2B.3C.4D.57.如图所示的是一个小正方体的展开图,把展开图折叠成小正方体,有“粤”字一面的相对面上的字是()A.澳B.大C.湾D.区8.在Rt△ABC中,∠B=90°,AB=3,BC=4,则cos C的值为()A.B.C.D.9.已知抛物线y=a(x﹣1)(x﹣3)﹣2(a≠0)与x轴交点的横坐标为m,n,且m<n,又点(x0,y0)是抛物线上一点,则下列结论正确的是()A.该抛物线可由抛物线y=ax2向右平移2个单位,向下平移2个单位得到B.若1<m<n<3,则a>0C.若1<x0<3,则y0<0D.不论a取何值,m+n=410.如图所示,在矩形ABCD中,F是DC上一点,AE平分∠BAF交BC于点E,且DE⊥AF,垂足为点M,BE=3,AE=2,则MF的长是()。
2019年杭州市萧山区城厢片中考模拟试卷数学(满分:120分考试时间:120分钟)一、选择题(共10小题,每小题3分,满分30分)1.3-8=(D)A.2 B.-2 2C.-83D.-2[命题考向:此题考查立方根,根据-8的立方根是-2解答.]2.据科学家估计,地球的年龄大约是4 600 000 000年,将4 600 000 000用科学记数法表示为(D) A.4.6×108B.46×108C.4.69D.4.6×109[命题考向:此题考查科学记数法表示较大的数的方法,形式为a×10n,准确确定a与n的值是关键.] 3.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.已知ABAC=13,则(C)(第3题图)A.ABBC=13 B.ADFC=13C.DEEF=12 D.BEFC=12[命题考向:本题考查平行线分线段成比例定理,属于中考常考题型.]4.如图是杭州市某天上午和下午各四个整点时的气温绘制成的折线统计图,为了了解该天上午和下午的气温哪个更稳定,则应选择的统计量是(C)(第4题图)A .众数B .平均数C .方差D .中位数[命题考向:本题主要考查折线统计图和统计量的选择,解题的关键是理解方差的意义:方差(或标准差)越大,数据的离散程度越大,稳定性越差;反之,则离散程度越小,稳定性越好.] 5.下列各式变形中,正确的是( A ) A .(x )2=xB .(-x -1)(1-x )=1-x 2 C.x -x +y =-xx +yD .x 2+x +1=⎝ ⎛⎭⎪⎫x +122-34[命题考向:本题考查的是二次根式的化简、平方差公式、分式的基本性质和配方法.]6.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x 人,女孩有y 人,则下列方程组正确的是( C ) A.⎩⎨⎧x -1=y ,x =2yB.⎩⎨⎧x =y ,x =2(y -2) C.⎩⎨⎧x -1=y ,x =2(y -1) D.⎩⎨⎧x +1=y ,x =2(y -1) [命题考向:此题主要考查了二元一次方程组的应用,根据题意利用已知得出正确等量关系是解题关键.] 7.若(5-m )m -3>0,则( D ) A .m <5 B .3≤m <5 C .3≤m ≤5D .3<m <5[命题考向:本题考查不等式的性质,二次根式的非负性.解题的关键是熟练运用不等式的性质,本题属于基础题型.解析:原不等式等价于⎩⎨⎧m -3>0,5-m >0,∴3<m <5,故选D.]8.已知A ,B 两地相距120 km ,甲、乙两人沿同一条公路从A 地出发到B 地,乙骑自行车,甲骑摩托车,图中DE ,OC 分别表示甲、乙离开A 地的路程s (单位:km)与时间t (单位:h)的函数关系的图象,设在这个过程中,甲、乙两人相距y (单位:km),则y 关于t 的函数图象是( B )(第8题图)A BC D[命题考向:本题考查函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.解析:由题意和图象可得,乙到达B 地时甲距A 地120 km ,开始时两人的距离为0;甲的速度是120÷(3-1)=60 km/h ,乙的速度是80÷3=803 km/h ,即乙出发1 h 后两人距离为803 km ;设乙出发后被甲追上的时间为x h ,则60(x -1)=803x ,解得x =1.8,即乙出发后被甲追上的时间为1.8 h .所以符合题意的函数图象只有选项B.故选B.]9.如图,AB 是⊙O 的直径,点D 是半径OA 的中点,过点D 作CD ⊥AB ,交⊙O 于点C ,点E 为弧BC 的中点,连结ED 并延长ED 交⊙O 于点F ,连结AF ,BF ,则( C )A .sin ∠AFE =12 B .cos ∠BFE =12 C .tan ∠EDB =32D .tan ∠BAF = 3(第9题图)(第9题答图)[命题考向:本题考查的是圆周角定理、全等三角形的判定和性质、锐角三角函数的定义,掌握圆周角定理、直角三角形的性质是解题的关键.解析:如答图,连结OC ,OE ,作EG ⊥AB 于点G ,∵OD =12OA =12OC ,∴∠OCD =30°,∴∠COD =60°,∴∠BOC =180°-60°=120°,∵点E 是弧BC 的中点,∴∠COE =∠BOE =60°,∴∠AOE =∠AOC +∠COE =120°,∴∠AFE =12∠AOE =60°,∴sin ∠AFE =32,A 错误;∵∠BOE =60°,∴∠BFE =30°,∴cos ∠BFE =32,B 错误;设OD =a ,则OC =2a ,由勾股定理得CD =OC 2-OD 2=3a ,在△COD 和△EOG中,⎩⎨⎧∠COD =∠EOG ,∠CDO =∠EGO ,OC =OE ,∴△COD ≌△EOG (AAS ),∴EG =CD =3a ,OG =OD =a ,∴tan ∠EDB =EG DG =32,C 正确;∵tan ∠EDB=32,∴∠EDB =∠ADF ≠60°,则∠BAF ≠60°,∴tan ∠BAF ≠3,D 错误.故选C.] 10.如图,已知在△ABC 中,点D 为BC 边上一点(不与点B ,点C 重合),连结AD ,点E 、点F 分别为AB ,AC 上的点,且EF ∥BC ,交AD 于点G ,连结BG ,并延长BG 交AC 于点H .已知AEBE =2,①若AD 为BC 边上的中线,则BG BH 的值为23;②若BH ⊥AC ,当BC >2CD 时,BHAD <2sin ∠DAC .则( A )(第10题图)A .①正确;②不正确B .①正确;②正确C .①不正确;②正确D .①不正确;②不正确[命题考向:本题是三角形的一个综合题,主要考查了直角三角形,相似三角形的性质与判定,全等三角形的性质与判定,关键是作辅助线,构造全等三角形与相似三角形、直角三角形进行解答.解析:①如答图①,过点B 作BM ∥AC ,与AD 的延长线相交于点M ,∴∠C =∠MBD ,在△ACD 和△MBD 中,⎩⎨⎧∠C =∠MBD ,CD =BD ,∠ADC =∠MDB ,∴△ACD ≌△MBD (ASA ),∴AD =MD ,∵EF ∥BC ,AE BE =2,∴AG DG =AE BE =2,∴MGAG =42=2,∵BM ∥AC ,∴△MBG ∽△AHG ,∴BG HG =MG AG =2,∴BG BH =23,故①正确;②如答图②,过点D 作DN ⊥AC 于点N ,则DN =AD ·sin ∠DAC ,∵BH ⊥AC ,DN ⊥AC ,∴BH ∥DN ,∴BH DN =BCDC ,即BH AD sin ∠DAC =BC DC ,∵BC >2CD ,∴BH AD sin ∠DAC>2,∴BHAD >2sin ∠DAC .故②错误.故选A.](第10题答图①)(第10题答图②)二、填空题(共6小题,每小题4分,满分24分) 11.计算:a ·a 2=__a 3__.[命题考向:本题主要考查同底数幂的乘法,熟练掌握运算法则是解题的关键.] 12.分解因式:m 4n -4m 2n =__m 2n (m +2)(m -2)__.[命题考向:本题考查了提公因式法和公式法分解因式,熟练掌握因式分解的方法是解本题的关键.] 13.如图,点P 在⊙O 外,P A ,PB 分别切⊙O 于点A 、点B ,若∠P =50°,则∠A =__65°__.(第13题图)[命题考向:本题考查了切线的性质.解题的关键是掌握切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等.解析:∵P A ,PB 分别切⊙O 于点A ,点B ,∴P A =PB ,∴∠A =∠B .∵∠P =50°,∴∠A =∠B =12×(180°-50°)=65°.]14.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,不放回,再抽出一张卡片,以第一次抽取的数字为十位数,第二次抽取的数字为个位数,则组成的两位数是6的倍数的概率是__16__.[命题考向:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点:概率=所求情况数与总情况数之比.解析:列表如下:1 2 3 4 5 6 1 12 13 14 15 16 2 21 23 24 25 26 3 31 32 34 35 36 4 41 42 43 45 46 5 51 52 53 54 56 66162636465由表格可得,共有30种等可能结果,其中组成的两位数是6的倍数的有5种结果,∴组成的两位数是6的倍数的概率是530=16,故答案为16.]15.已知在▱ABCD 中,∠B 和∠C 的平分线分别交直线AD 于点E 、点F ,AB =5,若EF >4,则AD 的取值范围是__0<AD <6或AD >14__.[命题考向:本题考查了平行四边形的性质,角平分线的性质,利用分类讨论思想解决问题是本题的关键.解析:若点E 在点F 右边,如答图①,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB =CD =5,∴∠AEB =∠EBC ,∵BE 平分∠ABC ,∴∠ABE =∠EBC ,∴∠AEB =∠ABE ,∴AB =AE =5,同理可得DF =CD =5,∴AD =AE +DF -EF =10-EF ,∵EF >4,∴0<AD <6;若点E 在点F 左边,如答图②,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB =CD =5,∴∠AEB =∠EBC ,∵BE 平分∠ABC ,∴∠ABE =∠EBC ,∴∠AEB =∠ABE ,∴AB =AE =5,同理可得DF =CD =5,∴AD =AE +EF +FD =10+EF ,∵EF >4,∴AD >14.故答案为0<AD <6或AD >14.](第15题答图①)(第15题答图②)16.在△ABC中,点A到直线BC的距离为d,AB>AC>d,以A为圆心,AC为半径画圆弧,圆弧交直线BC于点D,过点D作DE∥AC交直线AB于点E,若BC=4,DE=1,∠EDA=∠ACD,则AD=.[命题考向:本题考查等边三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是运用分类讨论的思想,利用参数结合几何图形中的等量关系构建方程解决问题.解析:分两种情形:Ⅰ.如答图①中,当点D在线段BC上时.∵DE∥AC,∴∠ADE=∠CAD,∵∠ADE=∠C,∴∠CAD=∠C,∴DA=DC,∵AD=AC,∴AD=DC=AC,设AD=x,∵DE∥AC,∴DEAC=BDBC,∴1x=4-x4,解得x=2.Ⅱ.如答图②中,当点D在线段BC的延长线上时,同法可证:AD=DC=AC,设AD=x,∵DE∥AC,∴DEAC=BDBC,∴1x=4+x4,解得x=-2+22或-2-22(舍去),综上所述,满足条件的AD的值为2或-2+22,故答案为2或-2+2 2.](第16题答图①) (第16题答图②)三、解答题(共7小题,满分66分)17.(6分)跳跳一家外出自驾游,出发时油箱里还剩有汽油30 L,已知跳跳家的汽车每百千米平均油耗为12 L,设油箱里剩下的油量为y(单位:L),汽车行驶的路程为x(单位:km).(1)求y关于x的函数表达式;(2)若跳跳家的汽车油箱中的油量低于5 L时,仪表盘会亮起黄灯警报.要使油箱中的存油量不低于5 L,跳跳爸爸至多行驶多少千米就要进加油站加油?[命题考向:本题考查了一次函数的应用,解一元一次不等式,读懂题目信息,理解剩余油量的表示是解题的关键.]解:(1)y关于x的函数表达式为y=-0.12x+30;(2)当y≥5时,-0.12x+30≥5,解得x≤625 3.答:跳跳爸爸至多行驶6253km就要进加油站加油.18.(8分)为了满足学生的个性化需求,新课程改革势在必行,某校积极开展拓展性课程建设,大体分为学科、文体、德育、其他等四个框架进行拓展课程设计.为了了解学生喜欢的拓展课程类型,学校随机抽取了部分学生进行调查,调查后将数据绘制成扇形统计图和条形统计图(未绘制完整).(第18题图)(1)求调查的学生总人数,把条形图补充完整并填写扇形图中缺失的数据;(2)小明同学说:“因为调查的同学中喜欢文体类拓展课程的同学占16%,而喜欢德育类拓展课程的同学仅占12%,所以全校2 000名学生中,喜欢文体类拓展课程的同学人数一定比喜欢德育类拓展课程的同学人数多.”你觉得小明说得对吗?为什么?[命题考向:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.]解:(1)被调查的总人数为4÷16%=25(人),学科的人数为25×32%=8(人),其他的百分比为1-(32%+16%+12%)=40%,补全图形如答图:(第18题答图)(2)不对,样本容量不够大,无法用样本预测整体.19.(8分)如图,已知在△ABC中,AB=AC,点D为BC上一点(不与点B、点C重合),连结AD,以AD为边在右侧作△ADE,DE交AC于点F,其中AD=AE,∠ADE=∠B.(1)求证:△ABD∽△AEF;(2)若BDEF=43,记△ABD的面积为S1,△AEF的面积为S2,求S1S2的值.(第19题图)[命题考向:本题考查了相似三角形的判定和性质,等腰三角形的性质,熟练掌握相似三角形的性质是解题的关键.]解:(1)证明:∵AB=AC,∴∠B=∠C,∵AD=AE,∴∠ADE=∠E,又∵∠ADE=∠B,∴∠B=∠E,∵∠BDE=∠ADB+∠ADE=∠C+∠DFC=∠E+∠AFE,∴∠ADB=∠AFE,∴△ABD∽△AEF;(2)由(1)得△ABD∽△AEF,而BDEF=43,∴S1S2=⎝⎛⎭⎪⎫BDEF2=169.20.(10分)在同一平面直角坐标系中,设一次函数y1=mx+n(m,n为常数,且m≠0,m≠-n)与反比例函数y2=m+n x.(1)若y1与y2的图象有交点(1,5),且n=4m,当y1≥5时,求y2的取值范围;(2)若y1与y2的图象有且只有一个交点,求mn的值.[命题考向:此题主要考查了反比例函数与一次函数的交点问题,正确利用数形结合思想分析问题是解题关键.]解:(1)把(1,5)代入y1=mx+n,得m+n=5.又∵n=4m,∴m=1,n=4.∴y1=x+4,y2=5 x.∴当y1≥5时,x≥1.此时,0<y2≤5;(2)令m+nx=mx+n,得mx2+nx-(m+n)=0.由题意得Δ=n2+4m(m+n)=(2m+n)2=0,即2m+n=0.∴mn=-12.21.(10分)如图,在矩形ABCD中,2AB>BC,点E和点F为边AD上两点,将矩形沿着BE和CF折叠,点A和点D恰好重合于矩形内部的点G处.(1)当AB=BC时,求∠GEF的度数;(2)若AB=2,BC=2,求EF的长.(第21题图)[命题考向:本题考查了翻折变换,矩形的性质,勾股定理,等腰直角三角形的性质,证明△EGF为等腰直角三角形是解第(2)问的关键.]解:(1)当AB=BC时,矩形ABCD为正方形,由折叠得AB=BG,CD=CG,∠EGB=∠A=90°=∠FGC,∵AB=BC=CD,∴BG=BC=GC,∴∠GBC=60°,∴∠ABG=30°,∴∠AEG=360°-∠A-∠BGE-∠ABG=150°,∴∠GEF=30°;(2)在矩形ABCD中,AB=CD=2,由折叠得AB=BG,CD=CG,AE=EG,DF=FG,∴BG=GC=2,∵BG2+CG2=4,BC2=4,∴BG2+CG2=BC2,∴∠BGC=90°,且BG=CG,∴∠GBC=45°,∴∠ABG=45°,∴∠AEG=360°-∠A-∠BGE-∠ABG=135°,∴∠FEG=45°,同理可得∠EFG=45°,∴△EGF为等腰直角三角形,设EG=x,则AE=FD=x,EF=2x,由AE +EF +FD =AD ,得2x +2x =2, ∴x =2-2,∴EF =2x =22-2.22.(12分)在平面直角坐标系中,函数y 1=ax +b (a ,b 为常数,且ab ≠0)的图象如图所示,y 2=bx +a ,设y =y 1·y 2. (1)当b =-2a 时,①若点(1,4)在函数y 的图象上,求函数y 的表达式;②若点(x 1,p )和(x 2,q )在函数y 的图象上,且⎪⎪⎪⎪⎪⎪x 1-54<⎪⎪⎪⎪⎪⎪x 2-54,比较p ,q 的大小;(2)若函数y 的图象与x 轴交于(m ,0)和(n ,0)两点,求证:m =1n.(第22题图)[命题考向:本题考查的是一次函数及二次函数的应用,利用函数与方程及不等式的关系是解题关键.] 解:(1)由题意得y =(ax +b )(bx +a ), 当b =-2a 时,y =(ax -2a )(-2ax +a ). ①把(1,4)代入表达式,得a 2=4, 由题意可知a <0,则a =-2,故函数y 的表达式为y =(-2x +4)(4x -2)=-8x 2+20x -8; ②令(ax -2a )(-2ax +a )=0,得x 1=2,x 2=12,∴二次函数y =(ax -2a )(-2ax +a )与x 轴的两个交点坐标为(2,0),⎝ ⎛⎭⎪⎫12,0,∴二次函数y 的对称轴为直线x =54,又∵⎪⎪⎪⎪⎪⎪x 1-54<⎪⎪⎪⎪⎪⎪x 2-54,∴点(x 1,p )离对称轴较近,且抛物线y 开口向下, ∴p >q ;(2)证明:令(ax +b )(bx +a )=0,得x1=-ba,x2=-ab,∴mn=⎝⎛⎭⎪⎫-ba×⎝⎛⎭⎪⎫-ab=1,即m=1n得证.23.(12分)已知在△ABC中,AB=AC,AD⊥BC,垂足为点D,以AD为对角线作正方形AEDF,DE 交AB于点M,DF交AC于点N,连结EF,EF分别交AB,AD,AC于点G,O,H.(1)求证:EG=HF;(2)当∠BAC=60°时,求AHNC的值;(3)设HFHE=k,△AEH和四边形EDNH的面积分别为S1和S2,求S2S1的最大值.(第23题图)[命题考向:本题考查了相似三角形的判定和性质,等腰三角形的性质,正方形的性质,正确的识别图形是解题的关键.]解:(1)证明:在正方形AEDF中,OE=OF,EF⊥AD,∵AD⊥BC,∴EF∥BC,∴∠AGH=∠B,∠AHG=∠C,∵AB=AC,∴∠B=∠C,∴∠AGH=∠AHG,∴AG=AH,∴OG=OH,∴OE-OG=OF-OH,∴EG=HF;(2)当∠BAC=60°时,△ABC为正三角形.∵AD⊥BC,∴∠OAH=30°,∴AOOH=3,设OH=a,则OA=OE=OF=3a,∴EH=(3+1)a,HF=(3-1)a,∵AE∥FN,∴△AEH∽△NFH,∴AH NH =EHFH =3+13-1, ∵EF ∥BC ,∴△AOH ∽△ADC , ∴OH DC =AO AD =12,∴CD =2a ,∵△HNF ∽△CND ,∴NH NC =HFCD =3-12, ∴AH NC =AH NH ·NHNC =3+12; (3)设EH =2m ,则FH =2km , ∴EF =EH +FH =2m +2km , ∴OA =12EF =(k +1)m , ∴S 1=12EH ·OA =(k +1)m 2, 由(2)得△AEH ∽△NFH , ∴S △HNF =k 2S 1=k 2(k +1)m 2, 而S △EDF =OA 2=(k +1)2m 2,∴S 2=S △EDF -S △HNF =(k +1)2m 2-k 2(k +1)m 2 =(-k 2+k +1)(k +1)m 2,∴S 2S 1=-k 2+k +1=-⎝ ⎛⎭⎪⎫k -122+54,∴当k =12时,S 2S 1最大,其最大值为54.102019年杭州市萧山区临浦片中考模拟试卷数学(满分:120分考试时间:120分钟)一、选择题(每小题3分,满分30分)1.下列计算正确的是(D)A.-16=-4B.16=±4C.(-4)2=-4D.3(-4)3=-4[命题考向:本题考查平方根、立方根的计算.]2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为440 000万人,将440 000用科学记数法表示为(B)A.4.4×106B.4.4×105C.44×104D.0.44×105[命题考向:本题考查科学记数法.]3.哥哥身高1.68 m,在地面上的影子长是2.1 m,同一时间测得弟弟的影子长1.8 m,则弟弟身高是(A) A.1.44 m B.1.52 mC.1.96 m D.2.25 m[命题考向:本题考查相似三角形的应用.能够根据同一时刻,物高与影长成比例,列出正确的比例式,再进行求解.解析:设弟弟的身高是x m,则x1.8=1.682.1,解得x=1.44.故选A.]4.如图是某厂2018年各季度产值统计图(单位:万元),则下列说法正确的是(D)(第4题图)A.四个季度中,每个季度生产总值有增有减B.四个季度中,前三个季度生产总值增长较快C.四个季度中,各季度的生产总值变化一样D.第四季度生产总值增长最快[命题考向:本题考查折线统计图的运用,折线统计图表示的是事物的变化情况,如增长率.] 5.下列运算中,错误的是( C ) A.x -y x +y =-y -xy +xB.-a -ba +b=-1 C.a 2=a D.(1-2)2=2-1[命题考向:此题主要考查了二次根式的性质以及分式的性质,正确化简各式是解题关键.]6.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x 人,物品价值y 元,则所列方程组正确的是( C ) A.⎩⎨⎧8y +3=x ,7y -4=x B.⎩⎨⎧8x +3=y ,7x -4=y C.⎩⎨⎧8x -3=y ,7x +4=y D.⎩⎨⎧8y -3=x ,7y +4=x [命题考向:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,找出合适的等量关系.] 7.下列不等式变形中,错误的是( D ) A .若a ≥b ,则a +c ≥b +c B .若a +c ≥b +c ,则a ≥b C .若a ≥b ,则ac 2≥bc 2 D .若ac 2≥bc 2,则a ≥b[命题考向:本题考查了不等式的性质,熟记性质是解决此题的关键.解析:A.a ≥b ,不等式两边同时加上c ,不等号的方向不变,即a +c ≥b +c ,变形正确;B.a +c ≥b +c ,不等式两边同时减去c ,不等号的方向不变,即a ≥b ,变形正确;C.a ≥b ,c 2≥0,不等式两边同时乘以一个非负数c 2,ac 2≥bc 2成立,变形正确;D.ac 2≥bc 2,若c 2=0,则不等式两边同时除以c 2无意义,变形错误.故选D.] 8.小带和小路两个人开车从A 城出发匀速行驶至B 城.在整个行驶过程中,小带和小路两人车离开A 城的距离y (km)与行驶的时间t (h)之间的函数关系如图所示.有下列结论; ①A ,B 两城相距300 km ;②小路的车比小带的车晚出发1 h ,却早到1 h ; ③小路的车出发后2.5 h 追上小带的车;④当小带和小路的车相距50 km 时,t =54或t =154. 其中正确的结论有( C )(第8题图)A .①②③④B .①②④C .①②D .②③④[命题考向:本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t 是小带车所用的时间.解析:由图象可知A ,B 两城市之间的距离为300 km ,小带行驶的时间为5 h ,而小路是在小带出发1 h 后出发的,且用时3 h ,即比小带早到1 h ,∴①②都正确;设小带车离开A 城的距离y 与t 的关系式为y 小带=kt ,把(5,300)代入可求得k =60,∴y 小带=60t ,设小路车离开A 城的距离y 与t 的关系式为y 小路=mt +n ,把(1,0)和(4,300)代入可得⎩⎨⎧m +n =0,4m +n =300,解得⎩⎨⎧m =100,n =-100,∴y 小路=100t -100,令y 小带=y 小路,可得60t =100t -100,解得t =2.5,即小带和小路两直线的交点横坐标为t =2.5,此时小路出发时间为1.5 h ,即小路车出发1.5 h 后追上甲车,∴③不正确;令|y 小带-y 小路|=50,可得|60t -100t +100|=50,即|100-40t |=50,当100-40t =50时,可解得t =54,当100-40t =-50时,可解得t =154,又当t =56时,y 小带=50,此时小路还没出发,当t =256时,小路到达B 城,y 小带=250.综上可知当t 的值为54或154或56或256时,两车相距50 km ,∴④不正确.故选C.]9.如图,直径AB ,CD 相互垂直,P 为弧BC 上任意一点,连结PC ,P A ,PD ,PB ,下列结论: ①∠APC =∠DPE ; ②∠AED =∠DF A ; ③CP +DP BP +AP =APDP.其中正确的是( A ) A .①③ B .只有① C .只有②D .①②③(第9题图) (第9题答图)[命题考向:此题考查了圆周角定理、垂径定理、旋转的性质以及勾股定理.此题难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.解析:∵直径AB,CD相互垂直,∴∠AOC=∠AOD,∴∠APC =∠DPE,故①正确;∵∠AED=∠DPE+∠D,∠DF A=∠APF+∠A,∵P为BC上任意一点,∴∠A 不一定等于∠D,∴∠AED不一定等于∠DF A,故②错误;如答图,连结AC,AD,BD,将△ACP绕A 点顺时针旋转90°,使AC与AD重合(由AB⊥CD知AC=AD),点P旋转到Q点,∴AQ=AP,CP=QD,∵∠P AQ=90°,AQ=AP,∵∠ADQ+∠ADP=∠ACP+∠ADP=180°,∴P,D,Q三点共线,∴∠Q=∠APD=45°,∴PQ2=P A2+AQ2,∴PQ=2AP,即CP+DP=2AP,同理:BP+AP=2DP,∴CP+DPBP+AP=APDP.故③正确.故选A.]10.如图,在由边长为1的小正方形组成的网格中,点A,B,C,D都在这些小正方形的格点上,AB,CD相交于点E,则sin∠AEC的值为(A)A.255 B.3510 C.12 D.104(第10题图) (第10题答图)[命题考向:本题考查了勾股定理、相似三角形的判定和性质、锐角三角函数等知识点,能够正确作出辅助线是解此题的关键.解析:如答图,过A作AF⊥CD于F,在Rt△ADB中,BD=3,AD=3,由勾股定理得AB=32+32=32,在Rt△CAD中,AC=1,AD=3,由勾股定理得CD=12+32=10,由三角形的面积公式得12×CD×AF=12×AC×AD,10×AF=1×3,解得AF=31010,∵AC∥BD,∴△CEA ∽△DEB ,∴AC BD =AE BE ,∴13=AE 32-AE ,∴AE =324,∴sin ∠AEC =AF AE =31010324=255.故选A.]二、填空题(每小题4分,满分24分) 11.若a m =5,a n =6,则a m +n =__30__.[命题考向:本题考查了同底数幂的乘法计算,属于简单题,熟悉法则是解题关键.解析:a m +n =a m ·a n =5×6=30.]12.分解因式:3x 2-6x 2y +3xy 2=__3x (x -2xy +y 2)__. [命题考向:本题考查因式分解.]13.如图,直线l 与x 轴、y 轴分别交于点A ,B ,且OB =4,∠ABO =30°,一个半径为1的⊙C ,圆心C 从点(0,1)开始沿y 轴向下运动,当⊙C 与直线l相切时,⊙C 运动的距离是__3或7__.(第13题图)(第13题答图)[命题考向:本题考查切线的性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,注意一题多解.解析:设第一次相切的切点为E ,第二次相切的切点为F ,如答图,连结EC ′,FC ″,在Rt △BEC ′中,∠ABC =30°,EC ′=1,∴BC ′=2EC ′=2,∵BC =5,∴CC ′=3,同法可得CC ″=7,故答案为3或7.]14.袋中装有一个红球和两个黄球,它们除了颜色外都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到红球的概率是__19__.[命题考向:此题考查的是用列表法或画树状图法求概率的知识.画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.解析:画树状图如答图,由树状图可知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次都摸到红球的概率是19.](第14题答图)15.平行四边形两条对角线的长分别为8 cm ,6 cm ,则它的一边长a 的取值范围是__1<a <7__. [命题考向:本题考查平行四边形的性质以及三角形的三边关系.根据平行四边形的对角线互相平分将已知数据和未知数据都转化到一个三角形中是解决此题的关键.解析:如答图,∵四边形ABCD 是平行四边形,AC =6,BD =8,∴OC =3,OB =4,在△BOC 中,设BC =a ,则OB -OC <a <OB +OC ,即4-3<a <3+4,即1<a <7.∴它的一条边长a 的取值范围是1<a <7.](第15题答图)16.数学课上,老师提出如下问题:△ABC 是⊙O 的内接三角形,OD ⊥BC 于点D .请借助直尺,画出△ABC 中∠BAC 的平分线. 晓龙同学的画图步骤如下: ①延长OD 交⊙O 于点M ; ②连结AM 交BC 于点N .所以线段AN 为所求△ABC 中∠BAC 的平分线.请回答:晓龙同学画图的依据是__垂径定理和在同圆或等圆中,同弧或等弧所对的圆周角相等__.(第16题图)(第16题答图)[命题考向:此题主要考查了基本作图,关键是掌握垂径定理和圆周角定理的知识.解析:如答图所示:∵OM ⊥BC ,∴BM ︵=MC ︵,∴∠BAM =∠CAM ,故线段AN 即为所求△ABC 中∠BAC 的平分线,画图的依据是垂径定理和在同圆或等圆中,同弧或等弧所对的圆周角相等.] 三、解答题(共7小题,满分66分)17.(6分)浙江实施“五水共治“以来,越来越重视节约用水,某地对居民用水按阶梯水价方式进行收费,人均月生活用水收费标准如图所示,图中x 表示人均月生活用水的吨数(吨),y 表示收取的人均月生活用水费(元),请根据图象信息,回答下列问题. (1)请写出y 与x 的函数关系式;(2)若某个家庭有5人,响应节水号召,计划控制1月份的生活用水费不超过76元,则该家庭这个月最多可以用多少吨水?(第17题图)[命题考向:本题考查了一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.]解:(1)当0≤x ≤5时,设y =kx ,5k =8,得k =1.6,即当0≤x ≤5时,y =1.6x ,当x >5时,设y =ax +b ,则⎩⎨⎧5a +b =8,10a +b =20,解得⎩⎨⎧a =2.4,b =-4,即当x >5时,y =2.4x -4,综上可得y =⎩⎨⎧1.6x (0≤x ≤5),2.4x -4(x >5); (2)令2.4x -4≤765,解得x ≤8,5×8=40吨. 答:该家庭这个月最多可以用40吨水.18.(8分)我市某中学为了了解孩子们对《中国诗词大会》《挑战不可能》《最强大脑》《超级演说家》《地理中国》五种电视节目的喜爱程度,随机在七、八、九年级抽取了部分学生进行调查(每人只能选择一种喜爱的电视节目),并将获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据两幅统计图中的信息回答下列问题:(第18题图)(1)本次调查中共抽取了__200__名学生;(2)补全条形统计图;(3)在扇形统计图中,喜爱《地理中国》节目的人数所在的扇形的圆心角是__36__度.[命题考向:本题考查了条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.]解:(1)本次调查的学生总人数为30÷15%=200(名);(2)喜爱《挑战不可能》的人数为200-(20+60+40+30)=50(人),补全条形图如答图;(第18题答图)(3)在扇形统计图中,喜爱《地理中国》节目的人数所在的扇形的圆心角是360°×20200=36°.19.(8分)如图,已知等腰三角形ADC,AD=AC,B是线段DC上一点,连结AB,且有AB=DB.(1)求证:△ADB∽△CDA;(2)若DB=2,BC=3,求AD的值.(第19题图)[命题考向:本题考查的是相似三角形的判定与性质的运用,解题的关键是熟练掌握相似三角形的判定和性质.]解:(1)证明:∵AD=AC,∴∠D=∠C,又∵AB=DB,∴∠D=∠DAB,∴∠DAB=∠D=∠C.又∵∠D=∠D,∴△ADB∽△CDA;(2)∵△ADB∽△CDA,∴ADCD=BDAD,∵DB=2,BC=3,∴CD=5,∴AD2=BD·CD=2×5=10,∴AD=10.20.(10分)如图,在平面直角坐标中,点O是坐标原点,一次函数y1=kx+b与反比例函数y2=3x(x>0)的图象交于A(1,m),B(n,1)两点.(1)求直线AB的表达式及△OAB面积;(2)根据图象写出当y1<y2时,x的取值范围;(3)若点P在x轴上,求P A+PB的最小值.(第20题图) (第20题答图)[命题考向:本题考查的是反比例函数与一次函数的交点问题,根据函数图象的上下位置关系结合交点的横坐标,得出自变量的取值范围是解答此题的关键.]解:(1)把A (1,m ),B (n ,1)两点坐标分别代入反比例函数y 2=3x ,可得m =3,n =3, ∴A (1,3),B (3,1),把A (1,3),B (3,1)代入一次函数y 1=kx +b ,可得 ⎩⎨⎧3=k +b ,1=3k +b ,解得⎩⎨⎧k =-1,b =4, ∴直线AB 的表达式为y =-x +4. ∴M (0,4),N (4,0).∴S △OAB =S △MON -S △AOM -S △BON =12×4×4-12×4×1-12×4×1=4;(2)从图象看出0<x <1或x >3时,一次函数图象在反比例函数图象的下方, ∴当y 1<y 2时,x 的取值范围是0<x <1或x >3;(3)如答图,作点A 关于x 轴的对称点C ,连结BC 交x 轴于点P ,则P A +PB 的最小值等于BC 的长,过C 作x 轴的平行线,过B 作y 轴的平行线,交于点D ,则Rt △BCD 中,BD =4,CD =2,BC =CD 2+BD 2=22+42=2 5.∴P A +PB 的最小值为2 5.21.(10分)如图,已知一张长方形纸片,AB =CD =a ,AD =BC =b (a <b <2a ).将这张纸片沿着过点A 的折痕翻折,使点B 落在AD 边上的点F ,折痕交BC 于点E ,将折叠后的纸片再次沿着另一条过点A 的折痕翻折,点E 恰好与点D 重合,此时折痕交DC 于点G . (1)在图中确定点F 、点E 和点G 的位置; (2)连结AE ,则∠EAB =__45__°;(3)用含有a ,b 的代数式表示线段DG 的长.(第21题图) ( 第21题答图)[命题考向:本题考查了翻折变换(折叠问题),矩形的性质,正确地作出图形是解题的关键.] 解:(1)点F 、点E 和点G 的位置如答图所示; (2)由折叠的性质得∠DAE =∠EAB ,∵四边形ABCD是矩形,∴∠BAD=∠DAE+∠EAB=90°,∴∠EAB=45°;(3)由折叠的性质得DG=EG,∵∠ABE=90°,∠EAB=45°,∴∠AEB=45°,∴BE=AB=a,∴CE=b-a,设CG=x,则DG=EG=a-x,在Rt△CEG中,CG2+CE2=EG2,即x2+(b-a)2=(a-x)2,解得x=2ab-b22a,∴DG=a-x=a-2ab-b22a=a-b+b22a.22.(12分)用描点法在同一直角坐标系中画出y1=|x|和y2=x+1的图象,并根据图象回答:(1)当x在什么范围时,y1<y2?(2)当x在什么范围时,y1>y2?[命题考向:本题考查了一次函数与一元一次不等式的性质,能正确画出两函数的图象是解此题的关键.] 解:函数图象如答图所示:(第22题答图)两函数的交点坐标是(-0.5,0.5),(1)当x>-0.5时,y1<y2;(2)当x<-0.5时,y1>y2.23.(12分)(1)如图1,在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,若AB =AC=2,求DE的长;(2)如图2,在(1)的条件下,连结AG,AF分别交DE于M,N两点,求MN的长;(3)如图3,在△ABC中,AB=AC=BN=2,∠BAC=108°,若AM=AN,请直接写出MN的长.(第23题图)[命题考向:本题考查相似三角形的判定和性质,正方形的性质,等腰三角形的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题.]解:(1)∵AB=AC=2,∠A=90°,∴∠B=∠C=45°,BC=22,∵四边形DEFG是正方形,∴DE=DG=GF=EF,∠DGF=∠EFG=90°,∴∠BGD=∠CFE=90°,∴∠B=∠BDG=45°,∠C=∠CEF=45°,∴BG=DG,CF=EF,∴BG=FG=FC=DE,∴DE=13BC=223;(2)∵DE∥BC,∴MNGF=ANAF=AEAC=DEBC,∴MN223=13,∴MN=229;(3)∵AB=AC,∠BAC=108°,∴∠B=∠C=36°,∵BA=NB,∴∠ANB=∠BAN=72°,∵AM=AN,∴∠AMN=∠ANM=72°,∴∠B=∠BAM=∠MAN=36°,∴BM=AM=AN,设MN=x,则AN=AM=BM=2-x.∵△NAM∽△NBA,∴AN2=NM·NB,∴(2-x)2=2x,∴x=3-5或3+5(舍去),∴MN=3- 5.。
2019年杭州市萧山区九年级一模试卷一、选择题(本题有10个小题,每题3分,共30分)1、计算32=-+()A.1- B.1 C.5- D.5【答案】A2、已知买n千克苹果共花了m元,则买2千克苹果需要花()元A.2mnB.2mnC.2mnD.2nm【答案】B3、某景区:“五一”小长假期间,每天接待的旅客人数统计如下表:日期5月1日5月2日5月3日5月4日5月5日人数(万人) 1.2 2 2.5 2 1.1表中表示人数的一组数据中,众数和中位数分别为()A.2.5万,2万B.2.5万,2.5万C.2万,2.5万D.2万,2万【答案】D4、如图,将一正方形纸片沿图①、②的的虚线对折,得到图③,然后沿图③中虚线的剪去一个角,展开得平面图形④,则图③的虚线是()A. B. C. D.【答案】C5、如图,Rt△ABC中,∠ACB=Rt∠,点D是BC边上一点,若∠B=α,∠ADC=β,则ABAD为()A.sinsinαβ B.coscosαβ C.sinsinβαD.sinsinβα【答案】C6、某公司2019年4月份已投入1000万元科研经费,计划6月份投入科研经费比4月份多500万元,设该公司5,6两月投入科研经费的月平均增长率为x ,则可列方程为( ) A.210001500x =(1+)B.21000500x =(1+)C.25001000x =(1+)D.1000x =(1+2)1500 【答案】A7、如图,菱形ABCD 中,边CD 的中垂线交对角线BD 于点E ,交CD 于点F ,连接AE , 若=50ABC ∠,则AEB ∠的度数为( )A.30°B.40°C.50°D.60°【答案】C8、如图,记图①中阴影部分面积为,图②中阴影部分面积为,设(a >b >0), 则有( )A.0<k <B.<k <1C.1<k <D.<k <2【答案】B9、已知点(-3,)(5, ) 在二次函数的图像上,点(,)是函数图像的顶点,则( )A .当>≥时,的取值范围是1<<5B .当>≥时,的取值范围是>5C .当≥>时,的取值范围是<-3D .当≥>时,的取值范围是<1【答案】D12123232y 1y 2y =ax 2+bx +c (a ¹0)x 0y 0y 1y 2y 0x 0x 0y 1y 2y 0x 0x 0y 0y 1y 2x 0x 0y 0y 1y 2x 0x 010、如图,△ABC 中,D 为边AB 上一点,E 是CD 的中点,且=ACD ABE ∠∠,已知AC =2,设AB =x ,AD =y ,则y 与x满足的关系式为( )A .xy =4 B. C. D.【答案】B【解析】如下图,构造BE 的中位线△AC=2,AB=x ,AD=y △BD=BF=x-y∵=ACD ABE ∠∠=∠F ∴△F AC ∽△CAD, ∴二、填空题(本题有6个小题,每题4分,共24分) 11、计算:53()aa ÷-= .【答案】2a -12、如图,直线a ∥b ,直线a ,b 被直线c 所截.若∠1=2∠2,则∠2的度数为.【答案】60°2xy -y 2=4xy -y 2=4x 2+xy -y 2=4AF AC =AC AD 2x -y 2=2y 2xy -y 2=413、一个盒子里装有除颜色外都相同的10个球,其中有a 个红球,b 个黄球,3个白球.从盒子里随意摸出1个球,摸出黄球的概率是25,那么a = ,b = . 【答案】a =3;b =4.14、如图,Rt △ABC 中,=ABC Rt ∠∠,D 为BC 边上一点, 以BD 为直径的半圆与边AC 相切于点E .若AB =3,BC =4则BD = .【答案】315、已知直线y =3x -2经过点A (a ,b ),B (a+m ,b+k ),其中k ≠0,则的值为 . 【答案】16、如图,线段AB =a ,点P 是AB 中垂线上MN 上的一动点,过点P 作直线CD ∥AB ,若 在直线CD 上存在点Q 使得△ABQ 为等腰三角形,且满足条件的点Q 有且只有3个, 则PM 的长为 .或a【解析】①以A ,B 为圆心,AB 为半径画两圆,当两圆交于点P 时有且只有3个,此时△ABC 为等边三角形时,PM =; ②以A ,B 为圆心,AB 为半径画两圆,当两圆与CD 相切时有且只有3个,PM=AB=a .mk132a三、解答题(本题有7个小题,共66分)17.(本小题满分6分)萧山区垃圾分类掀起“绿色革命”,为调查居民对垃圾分类的了解情况,调查小组对某小区进行抽样调查并将调查结果绘制成了统计图(如图),已知调查中“根本了解”的人数占调查人数的60%.(1)计算此次调查人数,并补全统计图.(2)若该小区有住户1000人,请估计该小区对垃圾分类“基本了解”的人数.【答案】(1)基本了解:24人;(2)600人.18.(本小题满分8分)已知23M x=-,34()2 N x=-.(1)当x=1时,求M N-的值.(2)当12x<<时,试比较M,N的大小【答案】(1)0;(2)M<N;19. (本小题满分8分)如图,△ABC中,AB=AC,AD⊥BC于点D,DE⊥AC于点E,CF⊥AB于点F.(1)求证:△BCF∽△CDE(2)若DE=3,求CF的长.【答案】(1)略(AA);(2)6.已知一次函数1y =kx b +的图像与反比例函数2my =x的图像交于点A (2,2),B (-1,a ) (1) 求一次函数和反比例函数的表达式.(2) 设点P (h ,1y ),Q (h ,2y )分别是两函数图像上的点.① 试写出当12y y >时h 的取值范围; ② 若,试写出h 的值【答案】 (1), (2)①h >2 或 -1<h <0;②21.(本小题满分10分)如图,矩形ABCD 中,BC >AB ,E 是AD 上一点,△ABE 沿BE 折叠,点A 恰好落在线段CE 上的点F 处,连接BF (1) 求证:BC =CE (2) 设AE =k AD ① 若k =15,求sin ∠DCE 的值.②设AB =m AD,试求m 与k 满足的关系式.【答案】 (1)略 (2)①45;②222m k k =-+y 2-y 1=2y 2=4xy 1=2x -2h =已知二次函数2y=x m x m -(2-1)-3.(1) 若m =2,写出该函数的表达式,并求出函数图像的对称轴.(2) 已知点P (m ,1y ),Q (m +4,2y )在该函数图像上,试比较12,y y 的大小. (3) 对于此函数,在-1≤x ≤1的范围内至少有一个x 值使得y ≥0,求m 的取值范围. 【答案】(1)256y=x x --;直线52x =(2)21y y > (3)m ≤223.(本小题满分12分)如图,已知AB 是O 的直径,弦CD ⊥AB 于点E .点P 是劣弧AD 上的任一点(不与A ,D 重合),CP 交AB 于点M ,AP 与CD 的延长线相交于点F . (1)设CPF α∠=,BDCβ∠=,求证:=90αβ+︒;(2)若OE =BE ,设tan =AFC x ∠,AMy BM=. ①求∠APC 的度数;②求y 关于x 的函数表达式及自变量x 的取值范围.备用图【答案】(1)见解析;(2)①∠APC =60°;② 【解析】 (1) 连接AC∵CD ⊥AB∴BDC BAC β∠==∠又∵1122BAPm BP ACPm AP ∠弧,∠弧 ∴+=90BAP BAC ∠︒∠ ∴=90αβ+︒(2)①连接OC∵OE =BE ∴1=2OE OC ∴∠OCE =30°,∠COE =60°,∠AOC =120° 又∵11=22APCm AC AOC ∠弧∠ ∴∠APC =60°②连接BP ,则:BP AP ⊥ ∵OE=BE可推出30BDC ∠=︒ ∴60APC ∠=︒过点M 作MQ AF ⊥交AF 于点Q 令AQ a =,PQ b =则:MQ =,2MP b =易得:AQM APB ∆∆∽∴AM AQ y BM PQ ==,AQ MQAP BP= ∴a y b=,()a b BP a +=易得:AFE ABP ∠=∠∴tan tan APAFEABP x BP∠=∠==xa ==∵a y b=∴(0y x =<<。
2019年浙江省杭州市萧山区中考数学模拟试卷(3月份)一.仔细选一选(本题有10个小题,每小题3分,共30分)1.下列式子的计算结果为26的是()A.23+23B.23•23C.(23)3D.212÷222.G20峰会来了,在全民的公益热潮中,杭州的志愿者们摩拳擦掌,想为世界展示一个美丽幸福文明的杭州.据统计,目前杭州市注册志愿者已达9.17×105人.而这个数字,还在不断地增加.请问近似数9.17×105的精确度是()A.百分位B.个位 C.千位 D.十万位3.下列等式成立的是()A.B.(﹣x﹣1)(1﹣x)=1﹣x2C.D.(﹣x﹣1)2=x2+2x+14.下列关于方程x2+x﹣1=0的说法中正确的是()A.该方程有两个相等的实数根B.该方程有两个不相等的实数根,且它们互为相反数C.该方程有一根为D.该方程有一根恰为黄金比例5.下列命题中,正确的是()A.菱形的对角线相等B.平行四边形既是轴对称图形,又是中心对称图形C.正方形的对角线相等且互相垂直D.矩形的对角线不能相等6.在平面直角坐标系xOy中,经过点(sin45°,cos30°)的直线,与以原点为圆心,2为半径的圆的位置关系是()A.相交 B.相切C.相离 D.以上三者都有可能7.若,且x+y=5,则x的取值范围是()A.x>B.≤x<5 C.<x<7 D.<x≤78.如图,已知该圆锥的侧面展开图的圆心角为120°、半径长为6,圆锥的高与母线的夹角为α,则()A.圆锥的底面半径为3 B.tanα=C.圆锥的表面积为12πD.该圆锥的主视图的面积为89.设函数y=x2+2kx+k﹣1(k为常数),下列说法正确的是()A.对任意实数k,函数与x轴都没有交点B.存在实数n,满足当x≥n时,函数y的值都随x的增大而减小C.k取不同的值时,二次函数y的顶点始终在同一条直线上D.对任意实数k,抛物线y=x2+2kx+k﹣1都必定经过唯一定点10.如图,⊙O是△ABC的外接圆,已知AD平分∠BAC交⊙O于点D,连结CD,延长AC,BD,相交于点F.现给出下列结论:①若AD=5,BD=2,则DE=;②∠ACB=∠DCF;③△FDA∽△FCB;④若直径AG⊥BD交BD于点H,AC=FC=4,DF=3,则cosF=;则正确的结论是()A.①③B.②③④ C.③④D.①②④二.认真填一填(本题有6个小题,每小题4分,共24分)11.数据2,2,2,5,6,8的中位数是;众数是.12.分解因式:m4n﹣4m2n=.13.一个正三棱柱的三视图如图所示,若这个正三棱柱的侧面积为8,则a的值为.14.已知二次函数y=x2+bx+c(其中b,c为常数,c>0)的顶点恰为函数y=2x和y=的其中一个交点.则当a2+ab+c>2a>时,a的取值范围是.15.如图,将正方形ABCD的边AD和边BC折叠,使点C与点D重合于正方形内部一点O,已知点O到边CD的距离为a,则点O到边AB的距离为.(用a的代数式表示)16.如图,已知Rt△AOB中,∠AOB=90°,AO=5,BO=3,点E、M是线段AB上的两个不同的动点(不与端点重合),分别过E、M作AO的垂线,垂足分别为K、L.①△OEK面积S的最大值为;②若以OE、OM为边构造平行四边形EOMF,当EM⊥OF时,OK+OL=.三.全面答一答(本题有7个小题,共66分)17.化简:÷,并回答:对于任何的a的值,原式都有意义吗?如果不是,则写出所有令原式无意义的a的值.18.在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.19.如图,是杭州市2019年2月份的空气质量指数的AQI折线统计图,空气质量指数AQI的值在不同的区间,就代表了不同的空气质量水平(如在0﹣50之间,代表“优”;51﹣100之间,代表“良”;101﹣150之间,代表“轻度污染”等.)以下是关于杭州市2019年2月份空气质量天数情况统计图.(1)根据三个图表中的信息,请补全条形统计图和扇形统计图中缺失的数据.(扇形统计图中的数据精确到1%)(2)求出图3中表示轻度污染的扇形圆心角的度数.(结果精确到度)(3)在杭州,有一种“蓝”叫“西湖蓝”.现在的一年中,我们至少有超过一半以上的时间能看见“西湖蓝”.请估算2019年一年杭州的空气质量为优良的天数.(一年按365计,精确到天)20.已知y是关于x的函数,且x,y满足方程组,(1)求函数y的表达式;(2)若点P的坐标为(m,0),求以P为圆心、1为半径的圆与函数y的图象有交点时,m的取值范围.21.平面直角坐标系中,有A、B、C三点,其中A为原点,点B和点C的坐标分别为(5,0)和(1,2).(1)证明:△ABC为Rt△.(2)请你在直角坐标系中找一点D,使得△ABC与△ABD相似,写出所有满足条件的点D的坐标,并在同一坐标系中画出所有符合要求的三角形.(3)在第(2)题所作的图中,连接任意两个直角三角形(包括△ABC)的直角顶点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,求取到长度为无理数的线段的概率.22.设函数y=(kx﹣3)(x+1)(其中k为常数).(1)当k=﹣2时,函数y存在最值吗?若存在,请求出这个最值.(2)在x>0时,要使函数y的值随x的增大而减小,求k应满足的条件.(3)若函数y的图象与x轴交于A、B两点,与y轴交于点C,求能使△ABC为等腰三角形的k的值.(分母保留根号,不必化简)23.如图,△ABC和△DEF均是边长为4的等边三角形,△DEF的顶点D为△ABC的一边BC的中点,△DEF绕点D旋转,且边DF、DE始终分别交△ABC的边AB、AC于点H、G,图中直线BC两侧的图形关于直线BC成轴对称.连结HH′、HG、GG′、H′G′,其中HH′、GG′分别交BC于点I、J.(1)求证:△DHB∽△GDC;(2)设CG=x,四边形HH′G′G的面积为y,①求y关于x的函数解析式和自变量x的取值范围.②求当x为何值时,y的值最大,最大值为多少?2019年浙江省杭州市萧山区中考数学模拟试卷(3月份)参考答案与试题解析一.仔细选一选(本题有10个小题,每小题3分,共30分)1.下列式子的计算结果为26的是()A.23+23B.23•23C.(23)3D.212÷22【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【专题】计算题;实数.【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=23•(1+1)=24,不合题意;B、原式=23+3=26,符合题意;C、原式=29,不合题意;D、原式=212﹣2=210,不合题意.故选B.【点评】此题考查了同底数幂的除法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.2.G20峰会来了,在全民的公益热潮中,杭州的志愿者们摩拳擦掌,想为世界展示一个美丽幸福文明的杭州.据统计,目前杭州市注册志愿者已达9.17×105人.而这个数字,还在不断地增加.请问近似数9.17×105的精确度是()A.百分位B.个位 C.千位 D.十万位【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数9.17×105精确到千位.故选C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.3.下列等式成立的是()A.B.(﹣x﹣1)(1﹣x)=1﹣x2C.D.(﹣x﹣1)2=x2+2x+1【考点】分式的混合运算;整式的混合运算.【分析】利用分式的性质以及整式混合运算的计算方法逐一计算结果,进一步判断得出答案即可.【解答】解:A、不能约分,此选项错误;B、(﹣x﹣1)(1﹣x)=﹣1+x2,此选项错误;C、=﹣,此选项错误;D、(﹣x﹣1)2=x2+2x+1,此选项正确.故选:D.【点评】此题考查分式的混合运算,整式的混合运算,掌握分式的性质和整式混合运算的方法是解决问题的关键.4.下列关于方程x2+x﹣1=0的说法中正确的是()A.该方程有两个相等的实数根B.该方程有两个不相等的实数根,且它们互为相反数C.该方程有一根为D.该方程有一根恰为黄金比例【考点】根的判别式;解一元二次方程-公式法.【分析】根据一元二次方程根的判别式和根与系数的关系,以及一元二次方程根的意义逐一进行判断即可.【解答】解:A、△=12+4×1>0,∴程x2+x﹣1=0有两个不相等的实数根,此选项错误;B、方程两根的和为﹣1,它们不互为相反数,此选项错误;C、把x=代入x2+x﹣1得x2+x≠0,故此选项错误;D、把x=代入x2+x﹣1得x2+x=0,故此选项正确.故选:D.【点评】此题考查了一元二次方程的解,根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5.下列命题中,正确的是()A.菱形的对角线相等B.平行四边形既是轴对称图形,又是中心对称图形C.正方形的对角线相等且互相垂直D.矩形的对角线不能相等【考点】命题与定理.【分析】根据菱形的性质对A进行判断;根据平行四边形的性质和轴对称的定义对B进行判断;根据正方形的性质对C进行判断;根据矩形的性质对D进行判断.【解答】解:A、菱形的对角线相互垂直平分,所以A选项错误;B、平行四边形不是轴对称图形,只是中心对称图形,所以B选项错误;C、正方形的对角线相等且互相垂直,所以C选正确;D、矩形的对角线相等,所以D选项错误.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.在平面直角坐标系xOy中,经过点(sin45°,cos30°)的直线,与以原点为圆心,2为半径的圆的位置关系是()A.相交 B.相切C.相离 D.以上三者都有可能【考点】直线与圆的位置关系;坐标与图形性质;特殊角的三角函数值.【分析】设直线经过的点为A,若点A在圆内则直线和圆一定相交;若点在圆上或圆外则直线和圆有可能相交或相切或相离,所以先要计算OA的长和半径2比较大小再做选择.【解答】解:设直线经过的点为A,∵点A的坐标为(sin45°,cos30°),∴OA==,∵圆的半径为2,∴OA<2,∴点A在圆内,∴直线和圆一定相交,故选A.【点评】本题考查了直线和圆的位置关系,用到的知识点有特殊角的锐角三角函数值、勾股定理的运用,判定点A和圆的位置关系是解题关键.7.若,且x+y=5,则x的取值范围是()A.x>B.≤x<5 C.<x<7 D.<x≤7【考点】二次根式的乘除法.【分析】直接利用二次根式有意义的条件,得出y的取值范围,进而得出答案.【解答】解:∵,∴y+2≥0,2x﹣1>0,解得:y≥﹣2,x>,∵x+y=5,∴<x≤7.故选:D.【点评】此题主要考查了二次根式有意义的条件,得出y的取值范围是解题关键.8.如图,已知该圆锥的侧面展开图的圆心角为120°、半径长为6,圆锥的高与母线的夹角为α,则()A.圆锥的底面半径为3 B.tanα=C.圆锥的表面积为12πD.该圆锥的主视图的面积为8【考点】圆锥的计算.【分析】根据圆锥的侧面展开图的弧长=2πr=,求出r以及圆锥的高h即可解决问题.【解答】解:设圆锥的底面半径为r,高为h.由题意:2πr=,解得r=2,h==4,所以tanα==,圆锥的主视图的面积=×4×4=8,表面积=4π+π×2×6=16π.∴选项A、B、C错误,D正确.故选D.【点评】本题考查圆锥的有关知识,记住侧面展开图的弧长=2πr=,圆锥的表面积=πr2+πrl是解决问题的关键,属于中考常考题型.9.设函数y=x2+2kx+k﹣1(k为常数),下列说法正确的是()A.对任意实数k,函数与x轴都没有交点B.存在实数n,满足当x≥n时,函数y的值都随x的增大而减小C.k取不同的值时,二次函数y的顶点始终在同一条直线上D.对任意实数k,抛物线y=x2+2kx+k﹣1都必定经过唯一定点【考点】二次函数的性质.【分析】A、计算出△,根据△的值进行判断;B、根据二次函数的性质即可判断;C、得到抛物线的顶点,写成方程组,消去k得y=﹣x2﹣x﹣1,即可判断;D、令k=1和k=0,得到方程组,求出所过点的坐标,再将坐标代入原式验证即可;【解答】解:A、∵△=(2k)2﹣4(k﹣1)=4k2﹣4k+4=4(k﹣)2+3>0,∴抛物线的与x轴都有两个交点,故A错误;B、∵a=1>0,抛物线的对称轴x=﹣=﹣k,∴在对称轴的左侧函数y的值都随x的增大而减小,即当x<k时,函数y的值都随x的增大而减小,当n=﹣k时,当x≥n时,函数y的值都随x的增大而增大,故B错误;C、∵y=x2+2kx+k﹣1=(x+k)2﹣k2+k﹣1,∴抛物线的顶点为(﹣k,﹣k2+k﹣1),∴,消去k得,y=﹣x2﹣x﹣1由此可见,不论k取任何实数,抛物线的顶点都满足函数y=﹣x2﹣x﹣1,即在二次函数y=﹣x2﹣x﹣1的图象上.故C错误;D、令k=1和k=0,得到方程组:,解得,将代入x2+2kx+k﹣1得,﹣k+k﹣1=﹣,与k值无关,不论k取何值,抛物线总是经过一个定点(﹣,﹣),故D正确.故选D.【点评】本题考查了二次函数的性质,熟悉函数和函数方程的关系、函数的性质是解题的关键.10.如图,⊙O是△ABC的外接圆,已知AD平分∠BAC交⊙O于点D,连结CD,延长AC,BD,相交于点F.现给出下列结论:①若AD=5,BD=2,则DE=;②∠ACB=∠DCF;③△FDA∽△FCB;④若直径AG⊥BD交BD于点H,AC=FC=4,DF=3,则cosF=;则正确的结论是()A.①③B.②③④ C.③④D.①②④【考点】圆的综合题.【分析】①只需证明△BDE∽△ADB,运用对应线段成比例求解即可;②连接CD,假设∠ACB=∠DCF,推出与题意不符即可判断;③由公共角和同弧所对的圆周角相等即可判断;④先证明△FCD∽△FBA,求出BD的长度,根据垂径定理求出DH,结合三角函数即可求解.【解答】解:①如图1,∵AD平分∠BAC,∴∠BAD=∠CAD,∵∠CAD=∠CBD,∴∠BAD=∠CBD,∵∠BDE=∠BDE,∴△BDE∽△ADB,∴,由AD=5,BD=2,可求DE=,①不正确;②如图2,连接CD,∠FCD+∠ACD=180°,∠ACD+∠ABD=180°,∴∠FCD=∠ABD,若∠ACB=∠DCF,因为∠ACB=∠ADB,则有:∠ABD=∠ADB,与已知不符,故②不正确;③如图3,∵∠F=∠F,∠FAD=∠FBC,∴△FDA∽△FCB;故③正确;④如图4,连接CD,由②知:∠FCD=∠ABD,又∵∠F=∠F,∴△FCD∽△FBA,∴,由AC=FC=4,DF=3,可求:AF=8,BD=,∴BD=BF﹣DF=,∵直径AG⊥BD,∴DH=,∴FG=,∴cosF==,故④正确;故选:C.【点评】此题主要考查圆的综合问题,熟悉圆的相关性质,会证明三角形相似并解决相关问题,能灵活运用垂径定理和三角函数是解题的关键.二.认真填一填(本题有6个小题,每小题4分,共24分)11.数据2,2,2,5,6,8的中位数是 3.5;众数是2.【考点】众数;中位数.【分析】根据中位数以及众数的定义解答即可,解答时要特别注意先把数据排序.【解答】解:数据2,2,2,5,6,8的中位数是 3.5;因为2出现的次数最多,所以此数据的众数是2.故答案为:3.5,2.【点评】本题考查了众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.12.分解因式:m4n﹣4m2n=m2n(m+2)(m﹣2).【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=m2n(m2﹣4)=m2n(m+2)(m﹣2),故答案为:m2n(m+2)(m﹣2)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.一个正三棱柱的三视图如图所示,若这个正三棱柱的侧面积为8,则a的值为.【考点】由三视图判断几何体.【分析】根据左视图中的a就是俯视图等边三角形的高,由此根据侧面积列出方程即可解决.【解答】解:由题意:3×a×=8,解得a=.故答案为.【点评】本题考查三视图的有关知识,解题关键是理解左视图中的a就是俯视图等边三角形的高,学会用方程的思想解决问题,属于中考常考题型.14.已知二次函数y=x2+bx+c(其中b,c为常数,c>0)的顶点恰为函数y=2x和y=的其中一个交点.则当a2+ab+c>2a>时,a的取值范围是﹣1<a<0或a>3.【考点】二次函数与不等式(组).【专题】数形结合.【分析】只需先求出抛物线的顶点坐标,再求出抛物线与直线y=2x的交点,然后结合函数图象就可解决问题.【解答】解:解方程组,得,.①当抛物线y=x2+bx+c顶点为(1,2)时,抛物线的解析式为y=(x﹣1)2+2=x2﹣2x+3.解方程组,得,.结合图象可得:当a2+ab+c>2a>时,a的取值范围是﹣1<a<0或a>3;②当抛物线y=x2+bx+c顶点为(﹣1,﹣2)时,抛物线的解析式为y=(x+1)2﹣2=x2+2x﹣1.∴c=﹣1<0,与条件c>0矛盾,故舍去.故答案为﹣1<a<0或a>3.【点评】本题主要考查了直线与反比例函数图象的交点、抛物线的顶点坐标公式、直线与抛物线的交点等知识,运用数形结合的思想是解决本题的关键.15.如图,将正方形ABCD的边AD和边BC折叠,使点C与点D重合于正方形内部一点O,已知点O到边CD的距离为a,则点O到边AB的距离为(3+2)a.(用a的代数式表示)【考点】翻折变换(折叠问题).【分析】作OG⊥CD于G,交AB于H,根据翻转变换的性质得到OA=AD,OB=BC,∠EOA=∠D=90°,∠FOB=∠C=90°,根据直角三角形的性质和勾股定理求出DE、EF、FC,得到正方形的边长,计算即可.【解答】解:作OG⊥CD于G,交AB于H,∵CD∥AB,∴OH⊥AB于H,由翻转变换的性质可知,OA=AD,OB=BC,∠EOA=∠D=90°,∠FOB=∠C=90°,∴△OAB是等边三角形,∠EOF=120°,∴∠OEF=30°,∴EO=2a,EG=a,∴DE=OE=2a,OF=FC=2a,EF=2EG=2a,∴DC=4a+2a,∴点O到边AB的距离为4a+2a﹣a=3a+2a=(3+2)a.故答案为:(3+2)a.【点评】本题考查的是翻转变换的性质和等边三角形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.16.如图,已知Rt△AOB中,∠AOB=90°,AO=5,BO=3,点E、M是线段AB上的两个不同的动点(不与端点重合),分别过E、M作AO的垂线,垂足分别为K、L.①△OEK面积S的最大值为;②若以OE、OM为边构造平行四边形EOMF,当EM⊥OF时,OK+OL=.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】①根据条件证明△OBA∽△KEA,得到比例式,用含OK的式子表示KE,根据三角形的面积公式,列出关于OK的关系式即可;②根据菱形的性质和勾股定理,利用一元二次方程根与系数的关系,求出答案.【解答】解:①∵EK⊥OA,∠AOB=90°,∴△OBA∽△KEA.∴=,∴,∴KE=,∴S=×OK•KE=,设OK=x,则S==﹣,∴当x=时,S有最大值,最大值为;②解:当EM⊥OF时,平行四边形EOMF为菱形,OE的取值范围为<OE<3,设OK=a,OL=b,由(1)得,KE=,ML=,由OE=OM得a2+[]2=b2+[]2.设y=x2+[]2=x2﹣x+9,则当x1=a,x2=b时,函数y的值相等.函数y的对称轴为直线x即=解得a+b=,即OK+OL=.故答案为:,.【点评】本题综合考查了菱形的性质、相似三角形的判定和性质、一元二次方程、二次函数的知识,综合性很强,属于较难题,需要学生有综合运用知识的能力.三.全面答一答(本题有7个小题,共66分)17.化简:÷,并回答:对于任何的a的值,原式都有意义吗?如果不是,则写出所有令原式无意义的a的值.【考点】分式的混合运算;分式有意义的条件.【分析】首先把分子分母因式分解,把除法改为乘法约分化简得出答案,进一步利用分式有意义与无意义的条件判定a的数值即可.【解答】解:原式=•=对于任何的a的值,不是原式都有意义,当a=3,2,﹣2,0时原式无意义.【点评】此题考查分式的混合运算,分式有意义的条件,掌握分式的运算方法是解决问题的关键.18.在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:PB=PC,并直接写出图中其他相等的线段.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】几何图形问题.【分析】可证明△ABF≌△ACE,则BF=CE,再证明△BEP≌△CFP,则PB=PC,从而可得出PE=PF,BE=CF.【解答】解:在△ABF和△ACE中,,∴△ABF≌△ACE(SAS),∴∠ABF=∠ACE(全等三角形的对应角相等),∴BF=CE(全等三角形的对应边相等),∵AB=AC,AE=AF,∴BE=CF,在△BEP和△CFP中,,∴△BEP≌△CFP(AAS),∴PB=PC,∵BF=CE,∴PE=PF,∴图中相等的线段为PE=PF,BE=CF,BF=CE.【点评】本题考查了全等三角形的判定和性质以及等腰三角形的性质,是基础题,难度不大.19.如图,是杭州市2019年2月份的空气质量指数的AQI折线统计图,空气质量指数AQI的值在不同的区间,就代表了不同的空气质量水平(如在0﹣50之间,代表“优”;51﹣100之间,代表“良”;101﹣150之间,代表“轻度污染”等.)以下是关于杭州市2019年2月份空气质量天数情况统计图.(1)根据三个图表中的信息,请补全条形统计图和扇形统计图中缺失的数据.(扇形统计图中的数据精确到1%)(2)求出图3中表示轻度污染的扇形圆心角的度数.(结果精确到度)(3)在杭州,有一种“蓝”叫“西湖蓝”.现在的一年中,我们至少有超过一半以上的时间能看见“西湖蓝”.请估算2019年一年杭州的空气质量为优良的天数.(一年按365计,精确到天)【考点】折线统计图;用样本估计总体;扇形统计图;条形统计图.【分析】(1)根据图1中的数据整理出四个等级的数目,补全图2,将图2中中度、轻度污染天数分别除以总天数得百分率,补全图3;(2)轻度污染的扇形圆心角的度数=轻度污染百分率×360°;(3)一年的空气质量为优良的天数=365×优良天数占抽查总天数得比例.【解答】解:(1)补全统计图如下:(2)轻度污染的扇形圆心角的度数为:31%×360°≈112°;(3)2019年一年杭州的空气质量为优良的天数为:×365≈239(天).【点评】此题主要考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.已知y是关于x的函数,且x,y满足方程组,(1)求函数y的表达式;(2)若点P的坐标为(m,0),求以P为圆心、1为半径的圆与函数y的图象有交点时,m的取值范围.【考点】直线与圆的位置关系;待定系数法求一次函数解析式;相似三角形的判定与性质.【分析】(1)把a作为已知数,分别得到x、y和a的数量关系即可求出函数y的表达式;(2)易求点A和点B的坐标,当圆P与直线y相切时,设切点为C,则PC⊥直线y,求出此时P 的横坐标即可得到函数y的图象有交点时,m的取值范围.【解答】解:(1),①×3,得3x+9y=12﹣3a③,②+③,得4x+8y=12,即x+2y=3,得,;(2)当y=0时,x=3,即函数y的图象与x轴交于点A(3,0),当x=0时,y=,即函数y的图象与y轴交于点B(0,),当圆P与直线y相切时,设切点为C,则PC⊥直线y,此时∠PCA=90°∴∠PCA=∠BOA,且∠BAO=∠PAC,∴△ABO∽△APC,∴,即,∴AC=2,∴PA=此时,P 的横坐标为3﹣或3+,∴当圆P 与直线y 有交点时,3﹣≤m ≤3+. 【点评】本题考查直线和圆的位置关系、一次函数和坐标轴的交点、相似三角形的判定和性质以及切线的性质,题目的综合性较强,难度中等,是一道不错的中考题.21.平面直角坐标系中,有A 、B 、C 三点,其中A 为原点,点B 和点C 的坐标分别为(5,0)和(1,2).(1)证明:△ABC 为Rt △.(2)请你在直角坐标系中找一点D ,使得△ABC 与△ABD 相似,写出所有满足条件的点D 的坐标,并在同一坐标系中画出所有符合要求的三角形.(3)在第(2)题所作的图中,连接任意两个直角三角形(包括△ABC )的直角顶点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,求取到长度为无理数的线段的概率.【考点】相似形综合题;勾股定理;勾股定理的逆定理;概率公式.【专题】综合题;分类讨论.【分析】(1)过点C 作CH ⊥x 轴于H ,如图1,只需运用勾股定理求出AB 2、AC 2、BC 2,然后运用勾股定理的逆定理就可解决问题;(2)△ABC 与△ABD 相似,对应关系不确定,故需分六种情况(①若△ABC ∽△ABD ,②若△ABC ∽△BAD ,③若△ABC ∽△ADB ,④若△ABC ∽△DAB ,⑤若△ABC ∽△BDA ,⑥若△ABC ∽△DBA )讨论,然后运用相似三角形的性质就可解决问题;(3)图中的直角三角形的直角顶点有A 、B 、C 、D 1、D 2、D 3,只需求出任意两直角顶点的连线段的条数和长度为无理数的线段的条数,就可解决问题.【解答】解:(1)过点C 作CH ⊥x 轴于H ,如图1,∵A(0,0),B(5,0),C(1,2),∴AC2=12+22=5,BC2=(5﹣1)2+22=20,AB2=52=25,∴AB2=AC2+BC2,∴△ABC为Rt△;(2)①若△ABC∽△ABD,则有D1(1,﹣2);②若△ABC∽△BAD,则有D2(4,﹣1),D3(4,1);③若△ABC∽△ADB,则有D4(5,﹣10),D5(5,10);④若△ABC∽△DAB,则有D6(5,﹣2.5),D7(5,2.5);⑤若△ABC∽△BDA,则有D8(0,﹣10),D9(0,10);⑥若△ABC∽△DBA,则有D10(0,﹣2.5),D11(0,2.5);所有符合要求的三角形如图所示.(3)图中的直角三角形的直角顶点有A、B、C、D1、D2、D3.任意两直角顶点的连线段共有=15条,其中AB=5,CD1=D2D3=4,CD2=D1D3=5,CD3=D1D2=3,故长度为有理数的线段共7条,长度为无理数的线段共8条,则取到长度为无理数的线段的概率为p=.【点评】本题主要考查了勾股定理及其逆定理、相似三角形的性质、概率公式等知识,运用分类讨论的思想是解决第(2)小题的关键.22.设函数y=(kx﹣3)(x+1)(其中k为常数).(1)当k=﹣2时,函数y存在最值吗?若存在,请求出这个最值.(2)在x>0时,要使函数y的值随x的增大而减小,求k应满足的条件.(3)若函数y的图象与x轴交于A、B两点,与y轴交于点C,求能使△ABC为等腰三角形的k的值.(分母保留根号,不必化简)【考点】抛物线与x轴的交点;二次函数的性质;二次函数的最值.【分析】(1)把k=﹣2代入抛物线解析式得到y=﹣2x2﹣5x﹣3,根据顶点坐标公式即可解决.(2)分两种情形讨论当k=0时,y=﹣3x﹣3为一次函数,k=﹣3<0,则当x>0时,y随x的增大而减小;当k≠0时,y=(kx﹣3)(x+1)=kx2+(k﹣3)x﹣3为二次函数,由不等式组解决.(3)分三种情形讨论:当k>0时①AC=BC,②AC=AB,③AB=BC分别列出方程解决;当k<0时,B只能在A的左侧,只有AC=AB列出方程解决,当k=0时,不合题意.【解答】解:(1)当k=﹣2时,函数y=(﹣2x﹣3)(x+1)=﹣(2x+3)(x+1)=﹣2x2﹣5x﹣3,函数为二次函数,且二次项系数小于0,故函数存在最大值,当x=﹣=时,y最大==,(2)当k=0时,y=﹣3x﹣3为一次函数,k=﹣3<0,则当x>0时,y随x的增大而减小;当k≠0时,y=(kx﹣3)(x+1)=kx2+(k﹣3)x﹣3为二次函数,其对称轴为直线要使当x>0时,y随x的增大而减小,则抛物线的开口必定朝下,且对称轴不在y轴的右边,故得,,解得k<0综上所述,k应满足的条件是:k≤0.(3)由题意得,k≠0,函数为二次函数,由所给的抛物线解析式可得A,C为定值A(﹣1,0),C(0,﹣3)则,而,当k>0时①AC=BC,则有,可得k=3,②AC=AB,则有,可得,③AB=BC,则有,可得,当k<0时,B只能在A的左侧,只有AC=AB,则有,可得,当k=0时函数为一次函数,不合题意.综上所述,使△ABC为等腰三角形的k的值为3或或或﹣.【点评】本题考查二次函数的有关知识、一次函数的有关知识,掌握函数的性质是解决问题的关键,学会分类讨论的思想,属于中考常考题型.23.如图,△ABC和△DEF均是边长为4的等边三角形,△DEF的顶点D为△ABC的一边BC的中点,△DEF绕点D旋转,且边DF、DE始终分别交△ABC的边AB、AC于点H、G,图中直线BC两侧的图形关于直线BC成轴对称.连结HH′、HG、GG′、H′G′,其中HH′、GG′分别交BC于点I、J.(1)求证:△DHB∽△GDC;(2)设CG=x,四边形HH′G′G的面积为y,①求y关于x的函数解析式和自变量x的取值范围.②求当x为何值时,y的值最大,最大值为多少?。
2019年浙江省杭州市萧山区中学中考数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.函数y=(x+1)2﹣2的最小值是( )A.1B.﹣1C.2D.﹣22.从1978年12月18日党的十一届三中全会决定改革开放到如今已经40周年了,我国GDP(国内生产总值)从1978年的1495亿美元到2017年已经达到了122400亿美元,全球排名第二,将122400用科学记数法表示为( )A.12.24×104B.1.224×105C.0.1224×106D.1.224×1063.若2m=5,4n=3,则43n﹣m的值是( )A.B.C.2D.44.“龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是( )A.赛跑中,兔子共休息了50分钟B.乌龟在这次比赛中的平均速度是0.1米/分钟C.兔子比乌龟早到达终点10分钟D.乌龟追上兔子用了20分钟5.一组数据:201、200、199、202、200,分别减去200,得到另一组数据:1、0、﹣1、2、0,其中判断错误的是( )A.前一组数据的中位数是200B.前一组数据的众数是200C.后一组数据的平均数等于前一组数据的平均数减去200D.后一组数据的方差等于前一组数据的方差减去2006.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是( )A.①②③B.①②④C.①③④D.①②③④7.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )A.y=﹣2(x+1)2+1B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1D.y=﹣2(x+1)2﹣18.现在把一张正方形纸片按如图方式剪去一个半径为40厘米的圆面后得到如图纸片,且该纸片所能剪出的最大圆形纸片刚好能与前面所剪的扇形纸片围成一圆锥表面,则该正方形纸片的边长约为( )厘米.(不计损耗、重叠,结果精确到1厘米,≈1.41,≈1.73)A.64B.67C.70D.739.如图,▱ABCD的对角线AC、BD交于点O,DE平分∠ADC交AB于点E,∠BCD=60°,AD=AB,连接OE.下列结论:①S▱ABCD=AD•BD;②DB平分∠CDE;③AO=DE;④S△ADE=5S△OFE,其中正确的个数有( )A.1个B.2个C.3个D.4个10.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A.9人B.10人C.11人D.12人二.填空题(共6小题,满分24分,每小题4分)11.若二次函数y=2(x+1)2+3的图象上有三个不同的点A(x1,4)、B(x1+x2,n)、C(x2,4),则n 的值为 .12.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是 .13.如图,已知函数y=x+2的图象与函数y=(k≠0)的图象交于A、B两点,连接BO并延长交函数y=(k≠0)的图象于点C,连接AC,若△ABC的面积为8.则k的值为 .14.如图1为两个边长为1的正方形组成的2×1格点图,点A,B,C,D都在格点上,AB,CD交于点P,则tan∠BPD= ,如果是n个边长为1的正方形组成的n×1格点图,如图2,那么tan∠BPD= .15.如图,动点O从边长为6的等边△ABC的顶点A出发,沿着A→C→B→A的路线匀速运动一周,速度为1个单位长度每秒.以O为圆心、为半径的圆在运动过程中与△ABC的边第二次相切时是点O出发后第 秒.16.如图,将半径为1、圆心角为60°的扇形纸片AOB,在直线l上向右作无滑动的滚动至扇形A'O'B'处,则顶点O经过的路线总长为 .三.解答题(共8小题,满分20分)17.先化简,再求值:(x﹣2y)2+(x+y)(x﹣4y),其中x=5,y=.18.解下列不等式,并把它的解集在数轴上表示出来.3x+(13﹣x)>17.19.如图,已知△ABC.(1)AC的长等于 ;(2)先将△ABC向右平移2个单位得到△A′B′C′,则A点的对应点A′的坐标是 ;(3)再将△ABC绕点C按逆时针方向旋转90°后得到△A1B1C1,则A点对应点A1的坐标是 .(4)点A到A′所画过痕迹的长 .20.济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(l)杨老师采用的调查方式是 (填“普查”或“抽样调查”);(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数 .(3)请估计全校共征集作品的什数.(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.21.甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后,两种商品的单价和比原来的单价和提高了20%.问甲、乙两种商品原来的单价各是多少元?22.如图,在△ABC中,AB=AC,以AC为直经作⊙O交BC与D点,过点D作⊙O的切线EF,交AB于点E,交AC的延长线于点F.(1)求证:FE⊥AB.(2)当AE=6,AF=10时,求BE的长.23.如图,抛物线y=ax2+bx(a>0)经过原点O和点A(2,0).(1)写出抛物线的对称轴与x轴的交点坐标;(2)点(x1,y1),(x2,y2)在抛物线上,若x1<x2<1,比较y1,y2的大小;(3)点B(﹣1,2)在该抛物线上,点C与点B关于抛物线的对称轴对称,求直线AC的函数关系式.24.如图,已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.2019年浙江省杭州市萧山区中学中考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】抛物线y=(x+1)2﹣2开口向上,有最小值,顶点坐标为(﹣1,﹣2),顶点的纵坐标﹣2即为函数的最小值.【解答】解:根据二次函数的性质,当x=﹣1时,二次函数y=(x﹣1)2﹣2的最小值是﹣2.故选:D.【点评】本题考查对二次函数最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:122400=1.224×105,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则将原式变形得出答案.【解答】解:∵2m=5,4n=3,∴43n﹣m=(4n)3÷4m=(4n)3÷(2m)2=.故选:B.【点评】此题主要考查了幂的乘方运算以及同底数幂的乘除运算,正确将原式变形是解题关键.4.【分析】根据题意和函数图象可以判断各个选项中的说法是否正确,从而可以解答本题.【解答】解:由图象可得,赛跑中,兔子共休息了50﹣10=40分钟,故选项A错误,乌龟在这次比赛中的平均速度是500÷50=10米/分钟,故选项B错误,乌龟比兔子先到达60﹣50=10分钟,故选项C错误,乌龟追上兔子用了20分钟,故选项D正确,故选:D.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.5.【分析】由中位数、众数、平均数及方差的意义逐一判断可得.【解答】解:A.前一组数据的中位数是200,正确,此选项不符合题意;B.前一组数据的众数是200,正确,此选项不符合题意;C.后一组数据的平均数等于前一组数据的平均数减去200,正确,此选项不符合题意;D.后一组数据的方差等于前一组数据的方差,此选项符合题意;故选:D.【点评】本题主要考查方差、中位数、众数、平均数,解题的关键是掌握中位数、众数、平均数及方差的意义.6.【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【解答】解:(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.(5)(6)当点E在CD的下方时,同理可得,∠AEC=α﹣β或β﹣α.故选:D.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等,两直线平行,内错角相等.7.【分析】易得原抛物线的顶点及平移后新抛物线的顶点,根据平移不改变二次项系数利用顶点式可得抛物线解析式.【解答】解:∵函数y=﹣2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=﹣2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=﹣2(x﹣1)2+1,故选:B.【点评】考查二次函数的平移情况,二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.8.【分析】设出与小圆的半径,利用扇形的弧长等于圆的周长得到小圆的半径,扇形的半径与小圆半径相加,再加上倍的小圆半径即可得正方形的对角线长,除以就是正方形的边长.【解答】解:设小圆半径为r,则:2πr=,解得:r=10,∴正方形的对角线长为:40+10+10×=50+20,∴正方形的边长为:50+10≈64,故选:A.【点评】本题用到的知识点为:圆锥的侧面展开图的弧长等于圆锥的底面周长;注意扇形的半径与小圆半径相加,再加上倍的小圆半径即为得正方形的对角线长,对角线除以即为正方形的边长.9.【分析】求得∠ADB=90°,即AD⊥BD,即可得到S▱ABCD=AD•BD;依据∠CDE=60°,∠BDE30°,可得∠CDB=∠BDE,进而得出DB平分∠CDE;依据Rt△AOD中,AO>AD,即可得到AO>DE;依据OE是△ABD的中位线,即可得到OE∥AD,OE=AD,进而得到△OEF∽△ADF,依据S△ADF=4S△OEF,S△AEF=2S△OEF,即可得到S△ADE=6S△OFE.【解答】解:∵∠BAD=∠BCD=60°,∠ADC=120°,DE平分∠ADC,∴∠ADE=∠DAE=60°=∠AED,∴△ADE是等边三角形,∴AD=AE=AB,∴E是AB的中点,∴DE=BE,∴∠BDE=∠AED=30°,∴∠ADB=90°,即AD⊥BD,∴S▱ABCD=AD•BD,故①正确;∵∠CDE=60°,∠BDE=30°,∴∠CDB=∠BDE,∴DB平分∠CDE,故②正确;∵Rt△AOD中,AO>AD,∴AO>DE,故③错误;∵O是BD的中点,E是AB的中点,∴OE是△ABD的中位线,∴OE∥AD,OE=AD,∴△OEF∽△ADF,∴S△ADF=4S△OEF,且AF=2OF,∴S△AEF=2S△OEF,∴S△ADE=6S△OFE,故④错误;故选:B.【点评】本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式以及相似三角形的判定与性质的综合运用,熟练掌握性质定理和判定定理是解题的关键.10.【分析】设参加酒会的人数为x人,根据每两人都只碰一次杯且一共碰杯55次,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设参加酒会的人数为x人,根据题意得: x(x﹣1)=55,整理,得:x2﹣x﹣110=0,解得:x1=11,x2=﹣10(不合题意,舍去).答:参加酒会的人数为11人.故选:C.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.二.填空题(共6小题,满分24分,每小题4分)11.【分析】先根据点A,C的坐标,建立方程求出x1+x2=﹣2,代入二次函数解析式即可得出结论.【解答】解:∵A(x1,4)、C(x2,4)在二次函数y=2(x+1)2+3的图象上,∴2(x+1)2+3=4,∴2x2+4x+1=0,根据根与系数的关系得,x1+x2=﹣2,∵B(x1+x2,n)在二次函数y=2(x+1)2+3的图象上,∴n=2(﹣2+1)2+3=5,故答案为5.【点评】此题主要考查了二次函数图象上点的特点,根与系数的关系,求出x1+x2=﹣2是解本题的关键.12.【分析】直接根据中位数的定义求解.【解答】解:将这6位同学的成绩重新排列为75、75、84、86、92、99,所以这六位同学成绩的中位数是=85,故答案为:85.【点评】本题考查了中位数的概念.找中位数时需要对这一组数据按照从大到小或从小到大的顺序进行排序.13.【分析】连接OA.根据反比例函数的对称性可得OB=OC,那么S△OAB=S△OAC=S△ABC=4.求出直线y=x+2与y轴交点D的坐标.设A(a,a+2),B(b,b+2),则C(﹣b,﹣b﹣2),根据S△OAB=4,得出a﹣b=4 ①.根据S△OAC=4,得出﹣a﹣b=2 ②,①与②联立,求出a、b的值,即可求解.【解答】解:如图,连接OA.由题意,可得OB=OC,∴S△OAB=S△OAC=S△ABC=4.设直线y=x+2与y轴交于点D,则D(0,2),设A(a,a+2),B(b,b+2),则C(﹣b,﹣b﹣2),∴S△OAB=×2×(a﹣b)=4,∴a﹣b=4 ①.过A点作AM⊥x轴于点M,过C点作CN⊥x轴于点N,则S△OAM=S△OCN=k,∴S△OAC=S△OAM+S梯形AMNC﹣S△OCN=S梯形AMNC=4,∴(﹣b﹣2+a+2)(﹣b﹣a)=4,将①代入,得∴﹣a﹣b=2 ②,①+②,得﹣2b=6,b=﹣3,①﹣②,得2a=2,a=1,∴A(1,3),∴k=1×3=3.故答案为3.【点评】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,反比例函数图象上点的坐标特征,三角形的面积,待定系数法求函数的解析式等知识,综合性较强,难度适中.根据反比例函数的对称性得出OB=OC是解题的突破口.14.【分析】(1)作BH⊥DP于H点,设小正方形的边长为1,根据勾股定理可计算出CD=,AB=,再根据三角形面积公式可计算出DH=,由BC∥AD得到△APD∽△BPC,利用相似比得到PD=2PC,所以PD=CD=,接着在Rt△PHC中,根据勾股定理计算出PH=,最后利用正切的定义求解.(2)类比(1)的解题过程,即可解答.【解答】解:作DH⊥BP于H点,如图,设小正方形的边长为1,则AD=2,在Rt△BCD中,CD=,在Rt△ABC中,AB==,∵DH•AB=AD•BD,∴DH=,∵AD∥BC,∴△APD∽△BPC,∴,即DP=2PC,∴PD=CD=,在Rt△PHD中,PH==,∴tan∠BPD==3.如果是n个边长为1的正方形组成的n×1格点图,那么tan∠BPD=.故答案为:3,.【点评】此题考查了相似三角形的判定与性质与三角函数的定义.此题难度适中,解题的关键准确作出辅助线,注意转化思想与数形结合思想的应用.15.【分析】若以O为圆心,以为半径的圆在运动过程中与△ABC的边第二次相切,即为当点O在AC 上,且和BC边相切的情况.作O′D⊥BC于D,则O′D=,利用解直角三角形的知识,进一步求得O′C=2,从而求得OA的长,进一步求得运动时间.【解答】解:根据题意,则作O′D⊥BC于D,则O′D=,在直角三角形O′CD中,∠C=60°,O′D=,∴O′C=2,∴O′A=6﹣2=4,∴以O为圆心、为半径的圆在运动过程中与△ABC的边第二次相切时是出发后第4秒.故答案为:4.【点评】本题考查了直线和圆相切时数量之间的关系的应用,能够正确分析出以O为圆心、为半径的圆在运动过程中与△ABC的边第二次相切时的位置是解此题的关键,此题是一道中档题目,难度适中.16.【分析】仔细观察顶点O经过的路线可得,顶点O经过的路线可以分为三段,分别求出三段的长,再求出其和即可.【解答】解:顶点O经过的路线可以分为三段,当弧AB切直线l于点B时,有OB⊥直线l,此时O点绕不动点B转过了90°;第二段:OB⊥直线l到OA⊥直线l,O点绕动点转动,而这一过程中弧AB始终是切于直线l的,所以O与转动点的连线始终⊥直线l,所以O点在水平运动,此时O点经过的路线长=BA’=AB的弧长第三段:OA⊥直线l到O点落在直线l上,O点绕不动点A转过了90°所以,O点经过的路线总长S=π+π+π=π.故答案为π.【点评】本题关键是理解顶点O经过的路线可得,则顶点O经过的路线总长为三个扇形的弧长.三.解答题(共8小题,满分20分)17.【分析】原式利用完全平方公式,以及多项式乘以多项式法则计算,去括号合并得到最简结果,把x 与y的值代入计算即可求出值.【解答】解:原式=x2﹣4xy+4y2+x2﹣4xy+xy﹣4y2=2x2﹣7xy,当x=5,y=时,原式=50﹣7=43.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.18.【分析】先求出不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将解集在数轴上表示出来.【解答】解:3x+13﹣x>17,2x>4,∴x>2;把不等式的解集在数轴上表示为:.【点评】不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.19.【分析】(1)根据勾股定理求解可得;(2)△ABC向右平移2个单位,则点A′向右平移两个单位,据此写出点A′的坐标;(3)画出旋转图形后,直接写出A点对应点A1的坐标;(4)由平移的定义可得.【解答】解:(1)AC的长为=,故答案为:;(2)∵点A坐标为(﹣1,2),∴向右平移2个单位后得到(1,2),故答案为:(1,2);(3)如图所示:由图可知点A1的坐标为(﹣3,﹣2);(4)点A到A′所画过痕迹的长为2,故答案为:2.【点评】本题考查了利用旋转变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.20.【分析】(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.(2)由题意得:所调查的4个班征集到的作品数为:6÷=24(件),C班作品的件数为:24﹣4﹣6﹣4=10(件);继而可补全条形统计图;(3)先求出抽取的4个班每班平均征集的数量,再乘以班级总数可得;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两名学生性别相同的情况,再利用概率公式即可求得答案.【解答】解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.故答案为:抽样调查.(2)所调查的4个班征集到的作品数为:6÷=24件,C班有24﹣(4+6+4)=10件,补全条形图如图所示,扇形统计图中C班作品数量所对应的圆心角度数360°×=150°;故答案为:150°;(3)∵平均每个班=6件,∴估计全校共征集作品6×30=180件.(4)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好选取的两名学生性别相同的概率为=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时考查了概率公式.21.【分析】如果设甲商品原来的单价是x元,乙商品原来的单价是y元,那么根据“甲、乙两种商品原来的单价和为100元”可得出方程为x+y=100根据“甲商品降价10%,乙商品提价40%,调价后,两种商品的单价之和比原来的单价之和提高了20%”,可得出方程为x(1﹣10%)+y(1+40%)=100(1+20%).【解答】解:设甲种商品原来的单价是x元,乙种商品原来的单价是y元,依题意得,解得:.答:甲种商品原来的单价是40元,乙种商品原来的单价是60元.【点评】本题考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.22.【分析】(1)连接OD,由EF为⊙O的切线,利用切线的性质得到OD与EF垂直,利用同圆的半径相等和等边对等角得到OD∥AB,由与平行线中的一条直线垂直,与另一条也垂直,即可得证;(2)如图2,连接OD,过O作OG⊥AB于G,先根据勾股定理求EF=8,根据三角函数tan∠F===,设OD=3x,DF=4x,则OF=5x,表示AG=,根据AE=6,列方程3x+=6,可得x的值,计算BE的长.【解答】证明:(1)如图1,连接OD,…(1分)∵OC=OD,∴∠ODC=∠OCD,又∵AB=AC,∴∠OCD=∠B,∴∠ODC=∠B,∴OD∥AB,…∵ED是⊙O的切线,OD是⊙O的半径,∴OD⊥EF,∴AB⊥EF;…(2)如图2,连接OD,过O作OG⊥AB于G,Rt△AEF中,∵AE=6,AF=10,∴EF=8,…(5分)tan∠F===,设OD=3x,DF=4x,则OF=5x,∴OA=OC=3x,FC=2x,∵OG∥EF,∴∠AOG=∠F,∴sin∠AOG=sin∠F=,∴=,∴AG=,…(8分)∵四边形EDOG为矩形,∴EG=OD=3x,∵AE=6,∴3x+=6,x=,∴BE=AB﹣AE=AC﹣AE=6x﹣6=6×﹣6=.…【点评】此题考查了切线的性质,勾股定理,平行线的判定与性质,锐角三角函数定义,以及等腰三角形的性质,熟练掌握性质及定理是解本题的关键.23.【分析】(1)根据图示可以直接写出抛物线的对称轴与x轴的交点坐标;(2)根据抛物线的对称轴与x轴的交点坐标可以求得该抛物线的对称轴是直线x=1,然后根据函数图象的增减性进行解题;(3)根据已知条件可以求得点C的坐标是(3,2),所以根据点A、C的坐标来求直线AC的函数关系式.【解答】解:(1)根据图示,由抛物线的对称性可知,抛物线的对称轴是x=1.与x轴的交点坐标(0,0)(2,0).(2)抛物线的对称轴是直线x=1.根据图示知,当x<1时,y随x的增大而减小,所以,当x1<x2<1时,y1>y2;(3)∵对称轴是直线x=1,点B(﹣1,2)在该抛物线上,点C与点B关于抛物线的对称轴对称,∴点C的坐标是(3,2).设直线AC的关系式为y=kx+b(k≠0).则,解得.∴直线AC的函数关系式是:y=2x﹣4.【点评】本题考查了待定系数法求一次函数解析式,二次函数图象上点的坐标特征.解答该题时,需要熟悉二次函数图象的对称性.24.【分析】(1)将A(﹣1,0)、B(3,0)代入二次函数y=ax2+bx﹣3a求得a、b的值即可确定二次函数的解析式;(2)分别求得线段BC、CD、BD的长,利用勾股定理的逆定理进行判定即可;(3)分以CD为底和以CD为腰两种情况讨论.运用两点间距离公式建立起P点横坐标和纵坐标之间的关系,再结合抛物线解析式即可求解.【解答】解:(1)∵二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),∴根据题意,得,解得,∴抛物线的解析式为y=﹣x2+2x+3.(2)由y=﹣x2+2x+3=﹣(x﹣1)2+4得,D点坐标为(1,4),∴CD==,BC==3,BD==2,∵CD2+BC2=()2+(3)2=20,BD2=(2)2=20,∴CD2+BC2=BD2,∴△BCD是直角三角形;(3)存在.y=﹣x2+2x+3对称轴为直线x=1.①若以CD为底边,则P1D=P1C,设P1点坐标为(x,y),根据勾股定理可得P1C2=x2+(3﹣y)2,P1D2=(x﹣1)2+(4﹣y)2,因此x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,即y=4﹣x.又P1点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即x2﹣3x+1=0,解得x1=,x2=<1,应舍去,∴x=,∴y=4﹣x=,即点P1坐标为(,).②若以CD为一腰,∵点P2在对称轴右侧的抛物线上,由抛物线对称性知,点P2与点C关于直线x=1对称,此时点P2坐标为(2,3).∴符合条件的点P坐标为(,)或(2,3).【点评】考查了二次函数综合题,此题是一道典型的“存在性问题”,结合二次函数图象和等腰三角形、直角梯形的性质,考查了它们存在的条件,有一定的开放性.。