2018年辽宁省沈阳市高考数学一模试卷(文科)
- 格式:doc
- 大小:391.50 KB
- 文档页数:19
东北育才学校高中部2018届 高三第一次模拟考试(数学文科)试题一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合}2,1,0,1{-=A ,}032{2<-+=x x x B ,则=B A ( ) A .}1{-B .}0,1{-C .}1,0,1{-D .}0,1,2{--2.已知R y x ∈,,i 为虚数单位,若i y xi 3)2(1--=+,则=+yi x ( ) A .2B .5C .3D .103.下列函数的图像关于y 轴对称的是( )A .x x y +=2B .x y 1-=C .x x y --=22D .x x y -+=22 4.已知平面向量),1(m a = ,)1,3(-=b 且b b a//)2(+,则实数m 的值为( )A .31B .31-C .32D .32- 5.在等差数列{}n a 中,n S 为其前n 项和,若34825a a a ++=,则9S =A .60B .75 C.90 D .1056.在抛物线px y 22=上,横坐标为4的点到焦点的距离为5,则p 的值为A.21B.1C.2D.4 7.某几何体的三视图如图所示,则其表面积为 A.83 B.43C.248+D.246+ 8.设点),(y x P 在不等式组⎪⎩⎪⎨⎧≤-+≤-≥03,02,0y x y x x 表示的平面区域上,则22)1(y x z +-=的最小值为A .1B .55 C. 2 D .552 9.若函数()()2log =+f x x a 与()()21=-+g x x a x ()45-+a 存在相同的零点,则a 的值为22俯视图侧视图A .4或52-B .4或2-C .5或2-D .6或52- 10.若将函数x x f 2cos 21)(=的图像向左平移6π个单位长度,则平移后图像的一个对称中心可以为( ) A .)0,12(πB .)0,6(πC .)0,3(πD .)0,2(π11.“1=a ”是“1-=x 是函数1)(223-+--=x a ax x x f 的极小值点”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件12.已知函数()21sin 21x x f x x x -=+++,若正实数b a ,满()()490f a f b +-=,则11a b +的最小值是A.1B.29C.9D.18二.填空题:本大题共4小题,每小题5分. 13.在如右图所示程序框图中,任意输入一次)10(≤≤x x 与)10(≤≤y y 中奖!”的概率为 .14.已知方程1)2(22=-+y m mx 是 .15. 已知函数()sin xf x e x =,则)(x f 在0=x 处的切线方程为 .16. 若31)6sin(=+πx ,则=-)267sin(x π. 三.解答题:共70分。
辽宁省沈阳市2017-2018学年高考数学一模试卷(文科)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若全集U={1,2,3,4,5,6},M={1,4},N={2,3},则集合(∁U M)∩N等于( ) A.{2,3} B.{2,3,5,6} C.{1,4} D.{1,4,5,6}2.设复数z满足(1﹣i)z=2i,则z=( )A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i3.“x<0”是“ln(x+1)<0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.抛物线y=4ax2(a≠0)的焦点坐标是( )A.(0,a)B.(a,0)C.(0,)D.(,0)5.设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S n+2﹣S n=36,则n=( ) A.5 B.6 C.7 D.86.已知某几何体的三视图如,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )A.B.C.2cm3D.4cm37.已知x,y满足约束条件,则z=2x+y的最大值为( )A.3 B.﹣3 C.1 D.8.执行如图所示的程序框图,则输出的k的值为( )A.4 B.5 C.6 D.79.已知函数,若,则f(﹣a)=( )A.B.C.D.10.在△ABC中,若|+|=|﹣|,AB=2,AC=1,E,F为BC边的三等分点,则•=( )A.B.C.D.11.函数y=的图象与函数y=2sinπx(﹣2≤x≤4)的图象所有交点的横坐标之和等于( )A.2 B.4 C.6 D.812.定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式e x f(x)>e x+3(其中e为自然对数的底数)的解集为( )A.(0,+∞)B.(﹣∞,0)∪(3,+∞)C.(﹣∞,0)∪(0,+∞)D.(3,+∞)二、填空题:(本大题共4小题,每小题5分,共20分.把答案填在答题纸上.)13.若双曲线E的标准方程是,则双曲线E的渐进线的方程是__________.14.已知{a n}是等比数列,,则a1a2+a2a3+…+a n a n+1=__________.15.若直线l:(a>0,b>0)经过点(1,2)则直线l在x轴和y轴的截距之和的最小值是__________.16.在直三棱柱ABC﹣A1B1C1中,若BC⊥AC,∠A=,AC=4,AA1=4,M为AA1的中点,点P为BM中点,Q在线段CA1上,且A1Q=3QC.则异面直线PQ与AC所成角的正弦值__________.三、解答题:(解答应写出文字说明,证明过程或演算步骤,解答过程书写在答题纸的对应位置.)17.已知函数f(x)=sin2x+sinxcosx.(Ⅰ)求函数f(x)的最小正周期和单调递增区间;(Ⅱ)当x∈[0,]时,求函数f(x)的值域.18.某班主任对全班50名学生学习积极性和参加社团活动情况进行调查,统计数据如表所示参加社团活动不参加社团活动合计学习积极性高17 8 25学习积极性一般 5 20 25合计22 28 50(Ⅰ)如果随机从该班抽查一名学生,抽到参加社团活动的学生的概率是多少?抽到不参加社团活动且学习积极性一般的学生的概率是多少?(Ⅱ)试运用独立性检验的思想方法分析:学生的学习积极性与参加社团活动情况是否有关系?并说明理由.x2=.P(x2≥k)0.05 0.01 0.001K 3.841 6.635 10.82819.如图,设四棱锥E﹣ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,AE=BE=.(Ⅰ)证明:平面EAB⊥平面ABCD;(Ⅱ)求四棱锥E﹣ABCD的体积.20.已知椭圆C:+=1(a>b>0),e=,其中F是椭圆的右焦点,焦距为2,直线l 与椭圆C交于点A、B,点A,B的中点横坐标为,且=λ(其中λ>1).(Ⅰ)求椭圆C的标准方程;(Ⅱ)求实数λ的值.21.已知函数f(x)=alnx(a>0),e为自然对数的底数.(Ⅰ)若过点A(2,f(2))的切线斜率为2,求实数a的值;(Ⅱ)当x>0时,求证:f(x)≥a(1﹣);(Ⅲ)在区间(1,e)上>1恒成立,求实数a的取值范围.选修4-1:几何证明选讲22.如图,已知AB是圆O的直径,C、D是圆O上的两个点,CE⊥AB于E,BD交AC 于G,交CE于F,CF=FG.(Ⅰ)求证:C是劣弧BD的中点;(Ⅱ)求证:BF=FG.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,圆C的参数方程为(θ为参数),直线l经过点P(1,2),倾斜角α=.(Ⅰ)写出圆C的标准方程和直线l的参数方程;(Ⅱ)设直线l与圆C相交于A、B两点,求|PA|•|PB|的值.选修4-5:不等式选讲24.设函数f(x)=|2x+1|﹣|x﹣4|.(1)解不等式f(x)>0;(2)若f(x)+3|x﹣4|>m对一切实数x均成立,求m的取值范围.辽宁省沈阳市2015届高考数学一模试卷(文科)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若全集U={1,2,3,4,5,6},M={1,4},N={2,3},则集合(∁U M)∩N等于( ) A.{2,3} B.{2,3,5,6} C.{1,4} D.{1,4,5,6}考点:交、并、补集的混合运算.专题:集合.分析:根据集合的基本运算即可得到结论.解答:解:由补集的定义可得∁U N={2,3,5},则(∁U N)∩M={2,3},故选:A点评:本题主要考查集合的基本运算,比较基础.2.设复数z满足(1﹣i)z=2i,则z=( )A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i考点:复数代数形式的乘除运算.专题:计算题.分析:根据所给的等式两边同时除以1﹣i,得到z的表示式,进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理成最简形式,得到结果.解答:解:∵复数z满足z(1﹣i)=2i,∴z==﹣1+i故选A.点评:本题考查代数形式的除法运算,是一个基础题,这种题目若出现一定是一个送分题目,注意数字的运算.3.“x<0”是“ln(x+1)<0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:充要条件.专题:计算题;简易逻辑.分析:根据不等式的性质,利用充分条件和必要条件的定义进行判断即可得到结论.解答:解:∵x<0,∴x+1<1,当x+1>0时,ln(x+1)<0;∵ln(x+1)<0,∴0<x+1<1,∴﹣1<x<0,∴x<0,∴“x<0”是ln(x+1)<0的必要不充分条件.故选:B.点评:本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键,比较基础.4.抛物线y=4ax2(a≠0)的焦点坐标是( )A.(0,a)B.(a,0)C.(0,)D.(,0)考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:先将抛物线的方程化为标准式,再求出抛物线的焦点坐标.解答:解:由题意知,y=4ax2(a≠0),则x2=,所以抛物线y=4ax2(a≠0)的焦点坐标是(0,),故选:C.点评:本题考查抛物线的标准方程、焦点坐标,属于基础题.5.设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S n+2﹣S n=36,则n=( ) A.5 B.6 C.7 D.8考点:等差数列的性质.专题:等差数列与等比数列.分析:由S n+2﹣S n=36,得a n+1+a n+2=36,代入等差数列的通项公式求解n.解答:解:由S n+2﹣S n=36,得:a n+1+a n+2=36,即a1+nd+a1+(n+1)d=36,又a1=1,d=2,∴2+2n+2(n+1)=36.解得:n=8.故选:D.点评:本题考查了等差数列的性质,考查了等差数列的通项公式,是基础题.6.已知某几何体的三视图如,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )A.B.C.2cm3D.4cm3考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:由题目给出的几何体的三视图,还原得到原几何体,然后直接利用三棱锥的体积公式求解.解答:解:由三视图可知,该几何体为底面是正方形,且边长为2cm,高为2cm的四棱锥,如图,故,故选B.点评:本题考查了棱锥的体积,考查了空间几何体的三视图,能够由三视图还原得到原几何体是解答该题的关键,是基础题.7.已知x,y满足约束条件,则z=2x+y的最大值为( )A.3 B.﹣3 C.1 D.考点:简单线性规划.专题:计算题.分析:先根据约束条件画出可行域,再利用几何意义求最值,z=2x+y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.解答:解:作图易知可行域为一个三角形,当直线z=2x+y过点A(2,﹣1)时,z最大是3,故选A.点评:本小题是考查线性规划问题,本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.8.执行如图所示的程序框图,则输出的k的值为( )A.4 B.5 C.6 D.7考点:程序框图.专题:计算题;规律型;算法和程序框图.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是输出输出不满足条件S=0+1+2+8+…<100时,k+1的值.解答:解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是:输出不满足条件S=0+1+2+8+…<100时,k+1的值.第一次运行:满足条件,s=1,k=1;第二次运行:满足条件,s=3,k=2;第三次运行:满足条件,s=11<100,k=3;满足判断框的条件,继续运行,第四次运行:s=1+2+8+211>100,k=4,不满足判断框的条件,退出循环.故最后输出k的值为4.故选:A.点评:本题考查根据流程图(或伪代码)输出程序的运行结果.这是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.已知函数,若,则f(﹣a)=( )A.B.C.D.考点:函数的值.专题:计算题.分析:利用f(x)=1+,f(x)+f(﹣x)=2即可求得答案.解答:解:∵f(x)==1+,∴f(﹣x)=1﹣,∴f(x)+f(﹣x)=2;∵f(a)=,∴f(﹣a)=2﹣f(a)=2﹣=.故选C.点评:本题考查函数的值,求得f(x)+f(﹣x)=2是关键,属于中档题.10.在△ABC中,若|+|=|﹣|,AB=2,AC=1,E,F为BC边的三等分点,则•=( )A.B.C.D.考点:平面向量数量积的运算.专题:计算题;平面向量及应用.分析:运用向量的平方即为模的平方,可得=0,再由向量的三角形法则,以及向量共线的知识,化简即可得到所求.解答:解:若|+|=|﹣|,则=,即有=0,E,F为BC边的三等分点,则=(+)•(+)=()•()=(+)•(+)=++=×(1+4)+0=.故选B.点评:本题考查平面向量的数量积的定义和性质,考查向量的平方即为模的平方,考查向量共线的定理,考查运算能力,属于中档题.11.函数y=的图象与函数y=2sinπx(﹣2≤x≤4)的图象所有交点的横坐标之和等于( )A.2 B.4 C.6 D.8考点:奇偶函数图象的对称性;三角函数的周期性及其求法;正弦函数的图象.专题:压轴题;数形结合.分析:的图象由奇函数的图象向右平移1个单位而得,所以它的图象关于点(1,0)中心对称,再由正弦函数的对称中心公式,可得函数y2=2sinπx的图象的一个对称中心也是点(1,0),故交点个数为偶数,且每一对对称点的横坐标之和为2.由此不难得到正确答案.解答:解:函数,y2=2sinπx的图象有公共的对称中心(1,0),作出两个函数的图象如图当1<x≤4时,y1<0而函数y2在(1,4)上出现1.5个周期的图象,在和上是减函数;在和上是增函数.∴函数y1在(1,4)上函数值为负数,且与y2的图象有四个交点E、F、G、H相应地,y1在(﹣2,1)上函数值为正数,且与y2的图象有四个交点A、B、C、D且:x A+x H=x B+x G═x C+x F=x D+x E=2,故所求的横坐标之和为8故选D点评:发现两个图象公共的对称中心是解决本题的入口,讨论函数y2=2sinπx的单调性找出区间(1,4)上的交点个数是本题的难点所在.12.定义在R上的函数f(x)满足:f(x)+f′(x)>1,f(0)=4,则不等式e x f(x)>e x+3(其中e为自然对数的底数)的解集为( )A.(0,+∞)B.(﹣∞,0)∪(3,+∞)C.(﹣∞,0)∪(0,+∞)D.(3,+∞)考点:利用导数研究函数的单调性;导数的运算.专题:导数的综合应用.分析:构造函数g(x)=e x f(x)﹣e x,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解解答:解:设g(x)=e x f(x)﹣e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)﹣e x=e x[f(x)+f′(x)﹣1],∵f(x)+f′(x)>1,∴f(x)+f′(x)﹣1>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>e x+3,∴g(x)>3,又∵g(0)═e0f(0)﹣e0=4﹣1=3,∴g(x)>g(0),∴x>0故选:A.点评:本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.二、填空题:(本大题共4小题,每小题5分,共20分.把答案填在答题纸上.)13.若双曲线E的标准方程是,则双曲线E的渐进线的方程是y=x.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:求出双曲线的a,b,再由渐近线方程y=x,即可得到所求方程.解答:解:双曲线E的标准方程是,则a=2,b=1,即有渐近线方程为y=x,即为y=x.故答案为:y=x.点评:本题考查双曲线的方程和性质:渐近线方程,考查运算能力,属于基础题.14.已知{a n}是等比数列,,则a1a2+a2a3+…+a n a n+1=.考点:数列的求和;等比数列的通项公式.专题:计算题.分析:首先根据a2和a5求出公比q,根据数列{a n a n+1}每项的特点发现仍是等比数列,根据等比数列求和公式可得出答案.解答:解:由,解得.数列{a n a n+1}仍是等比数列:其首项是a1a2=8,公比为,所以,故答案为.点评:本题主要考查等比数列通项的性质和求和公式的应用.应善于从题设条件中发现规律,充分挖掘有效信息.15.若直线l:(a>0,b>0)经过点(1,2)则直线l在x轴和y轴的截距之和的最小值是3+2.考点:直线的截距式方程.专题:直线与圆.分析:把点(1,1)代入直线方程,得到=1,然后利用a+b=(a+b)(),展开后利用基本不等式求最值.解答:解:∵直线l:(a>0,b>0)经过点(1,2)∴=1,∴a+b=(a+b)()=3+≥3+2,当且仅当b=a时上式等号成立.∴直线在x轴,y轴上的截距之和的最小值为3+2.故答案为:3+2.点评:本题考查了直线的截距式方程,考查利用基本不等式求最值,是中档题.16.在直三棱柱ABC﹣A1B1C1中,若BC⊥AC,∠A=,AC=4,AA1=4,M为AA1的中点,点P为BM中点,Q在线段CA1上,且A1Q=3QC.则异面直线PQ与AC所成角的正弦值.考点:异面直线及其所成的角.专题:空间角.分析:以C为原点,CB为x轴,CA为y轴,CC1为z轴,建立空间直角坐标系,利用向量法能求出异面直线PQ与AC所成角的正弦值.解答:解:以C为原点,CB为x轴,CA为y轴,CC1为z轴,建立空间直角坐标系,则由题意得A(0,4,0),C(0,0,0),B(4,0,0),M(0,4,2),A1(0,4,4),P(2,2,1),==(0,4,4)=(0,1,1),∴Q(0,1,1),=(0,﹣4,0),=(﹣2,﹣1,0),设异面直线PQ与AC所成角为θ,cosθ=|cos<>|=||=,∴sinθ==.故答案为:.点评:本题考查异面直线PQ与AC所成角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.三、解答题:(解答应写出文字说明,证明过程或演算步骤,解答过程书写在答题纸的对应位置.)17.已知函数f(x)=sin2x+sinxcosx.(Ⅰ)求函数f(x)的最小正周期和单调递增区间;(Ⅱ)当x∈[0,]时,求函数f(x)的值域.考点:三角函数中的恒等变换应用;正弦函数的图象.专题:三角函数的求值;三角函数的图像与性质.分析:(I)先化简求得解析式f(x)=sin(2x﹣)+,从而可求函数f(x)的最小正周期和单调递增区间;(Ⅱ)先求2x﹣的范围,可得sin(2x﹣)的范围,从而可求函数f(x)的值域.解答:解:(I)f(x)=sin2x+sinxcosx=+sin2x …=sin(2x﹣)+.…函数f(x)的最小正周期为T=π.…因为﹣+2kπ≤2x﹣≤+2kπ,解得﹣+kπ≤x≤+kπ,k∈Z,所以函数f(x)的单调递增区间是[﹣+kπ,+kπ],k∈Z,.…(Ⅱ)当x∈[0,]时,2x﹣∈[﹣,]sin(2x﹣)∈[﹣,1],…所以函数f(x)的值域为f(x)∈[0,1+].…点评:本题主要考查了三角函数中的恒等变换应用,三角函数的图象与性质,属于基本知识的考查.18.某班主任对全班50名学生学习积极性和参加社团活动情况进行调查,统计数据如表所示参加社团活动不参加社团活动合计学习积极性高17 8 25学习积极性一般 5 20 25合计22 28 50(Ⅰ)如果随机从该班抽查一名学生,抽到参加社团活动的学生的概率是多少?抽到不参加社团活动且学习积极性一般的学生的概率是多少?(Ⅱ)试运用独立性检验的思想方法分析:学生的学习积极性与参加社团活动情况是否有关系?并说明理由.x2=.P(x2≥k)0.05 0.01 0.001K 3.841 6.635 10.828考点:独立性检验的应用.专题:计算题;概率与统计.分析:(Ⅰ)求出积极参加社团活动的学生有22人,总人数为50人,得到概率,不参加社团活动且学习积极性一般的学生为20人,得到概率.(Ⅱ)根据条件中所给的数据,代入求这组数据的观测值的公式,求出观测值,把观测值同临界值进行比较,得到有99.9%的把握认为学生的学习积极性与参加社团活动情况有关系.解答:解:(Ⅰ)积极参加社团活动的学生有22人,总人数为50人,所以随机从该班抽查一名学生,抽到参加社团活动的学生的概率是=;抽到不参加社团活动且学习积极性一般的学生为20人,所以其概率为=;(Ⅱ)x2=≈11.7∵x2>10.828,∴有99.9%的把握认为学生的学习积极性与参加社团活动情况有关系.点评:本题考查独立性检验的意义,是一个基础题,题目一般给出公式,只要我们代入数据进行运算就可以,注意数字的运算不要出错.19.如图,设四棱锥E﹣ABCD的底面为菱形,且∠ABC=60°,AB=EC=2,AE=BE=.(Ⅰ)证明:平面EAB⊥平面ABCD;(Ⅱ)求四棱锥E﹣ABCD的体积.考点:棱柱、棱锥、棱台的体积;平面与平面垂直的判定.专题:空间位置关系与距离.分析:(I)取AB的中点O,连结EO、CO,由已知得△ABC是等边三角形,由此能证明平面EAB⊥平面ABCD.(II)V E﹣ABCD=,由此能求出四棱锥E﹣ABCD的体积.解答:(I)证明:取AB的中点O,连结EO、CO.由AE=BE=,知△AEB为等腰直角三角形.故EO⊥AB,EO=1,又AB=BC,∠ABC=60°,则△ABC是等边三角形,从而CO=.又因为EC=2,所以EC2=EO2+CO2,所以EO⊥CO.又EO⊥AB,CO∩AB=O,因此EO⊥平面ABCD.又EO⊂平面EAB,故平面EAB⊥平面ABCD.…(II)解:V E﹣ABCD===.…点评:本题考查平面与平面垂直的证明,考查四棱锥的体积的求法,解题时要认真审题,注意空间思维能力的培养.20.已知椭圆C:+=1(a>b>0),e=,其中F是椭圆的右焦点,焦距为2,直线l 与椭圆C交于点A、B,点A,B的中点横坐标为,且=λ(其中λ>1).(Ⅰ)求椭圆C的标准方程;(Ⅱ)求实数λ的值.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(I)由条件可知c=1,a=2,由此能求出椭圆的标准方程.(Ⅱ)由,可知A,B,F三点共线,设A(x1,y1),B(x2,y2),直线AB⊥x 轴,则x1=x2=1,不合意题意.当AB所在直线l的斜率k存在时,设方程为y=k(x﹣1).由,得(3+4k2)x2﹣8k2x+4k2﹣12=0,由此利用根的判别式、韦达定理,结合已知条件能求出实数λ的值.解答:解:(I)由条件可知c=1,a=2,故b2=a2﹣c2=3,椭圆的标准方程是.…(Ⅱ)由,可知A,B,F三点共线,设A(x1,y1),B(x2,y2),若直线AB⊥x轴,则x1=x2=1,不合题意.当AB所在直线l的斜率k存在时,设方程为y=k(x﹣1).由,消去y得(3+4k2)x2﹣8k2x+4k2﹣12=0.①由①的判别式△=64k4﹣4(4k2+3)(4k2﹣12)=144(k2+1)>0.因为,…所以=,所以.…将代入方程①,得4x2﹣2x﹣11=0,解得x=.…又因为=(1﹣x1,﹣y1),=(x2﹣1,y2),,,解得.…点评:本题考查椭圆的标准方程的求法,考查满足条件的实数的值的求法,解题时要认真审题,注意函数与方程思想的合理运用.21.已知函数f(x)=alnx(a>0),e为自然对数的底数.(Ⅰ)若过点A(2,f(2))的切线斜率为2,求实数a的值;(Ⅱ)当x>0时,求证:f(x)≥a(1﹣);(Ⅲ)在区间(1,e)上>1恒成立,求实数a的取值范围.考点:利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(Ⅰ)求函数的导数,根据函数导数和切线斜率之间的关系即可求实数a的值;(Ⅱ)构造函数,利用导数证明不等式即可;(Ⅲ)利用参数分离法结合导数的应用即可得到结论.解答:解答:(I)函数的f(x)的导数f′(x)=,∵过点A(2,f(2))的切线斜率为2,∴f′(2)==2,解得a=4.…(Ⅱ)令g(x)=f(x)﹣a(1﹣)=a(lnx﹣1+);则函数的导数g′(x)=a().…令g′(x)>0,即a()>0,解得x>1,∴g(x)在(0,1)上递减,在(1,+∞)上递增.∴g(x)最小值为g(1)=0,故f(x)≥a(1﹣)成立.…(Ⅲ)令h(x)=alnx+1﹣x,则h′(x)=﹣1,令h′(x)>0,解得x<a.…当a>e时,h(x)在(1,e)是增函数,所以h(x)>h(1)=0.…当1<a≤e时,h(x)在(1,a)上递增,(a,e)上递减,∴只需h(x)≥0,即a≥e﹣1.…当a≤1时,h(x)在(1,e)上递减,则需h(e)≥0,∵h(e)=a+1﹣e<0不合题意.…综上,a≥e﹣1…点评:本题主要考查导数的综合应用,要求熟练掌握导数的几何意义,函数单调性最值和导数之间的关系,考查学生的综合应用能力.选修4-1:几何证明选讲22.如图,已知AB是圆O的直径,C、D是圆O上的两个点,CE⊥AB于E,BD交AC 于G,交CE于F,CF=FG.(Ⅰ)求证:C是劣弧BD的中点;(Ⅱ)求证:BF=FG.考点:与圆有关的比例线段.专题:计算题.分析:(I)要证明C是劣弧BD的中点,即证明弧BC与弧CD相等,即证明∠CAB=∠DAC,根据已知中CF=FG,AB是圆O的直径,CE⊥AB于E,我们易根据同角的余角相等,得到结论.(II)由已知及(I)的结论,我们易证明△BFC及△GFC均为等腰三角形,即CF=BF,CF=GF,进而得到结论.解答:解:(I)∵CF=FG∴∠CGF=∠FCG∴AB圆O的直径∴∵CE⊥AB∴∵∴∠CBA=∠ACE∵∠CGF=∠DGA∴∴∠CAB=∠DAC∴C为劣弧BD的中点(II)∵∴∠GBC=∠FCB∴CF=FB同理可证:CF=GF∴BF=FG点评:本题考查的知识点圆周角定理及其推理,同(等)角的余角相等,其中根据AB是圆O的直径,CE⊥AB于E,找出要证明相等的角所在的直角三角形,是解答本题的关键.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,圆C的参数方程为(θ为参数),直线l经过点P(1,2),倾斜角α=.(Ⅰ)写出圆C的标准方程和直线l的参数方程;(Ⅱ)设直线l与圆C相交于A、B两点,求|PA|•|PB|的值.考点:参数方程化成普通方程.专题:坐标系和参数方程.分析:(Ⅰ)利用同角的三角函数的平方关系消去θ,得到圆的普通方程,再由直线过定点和倾斜角确定直线的参数方程;(Ⅱ)把直线方程代入圆的方程,得到关于t的方程,利用根与系数的关系得到所求.解答:解:(I)消去θ,得圆的标准方程为x2+y2=16.…直线l的参数方程为,即(t为参数)…(Ⅱ)把直线的方程代入x2+y2=16,得(1+t)2+(2+t)2=16,即t2+(2+)t﹣11=0,…所以t1t2=﹣11,即|PA|•|PB|=11.…点评:本题考查了圆的参数方程化为普通方程、直线的参数方程以及直线与圆的位置关系问题,属于基础题.选修4-5:不等式选讲24.设函数f(x)=|2x+1|﹣|x﹣4|.(1)解不等式f(x)>0;(2)若f(x)+3|x﹣4|>m对一切实数x均成立,求m的取值范围.考点:绝对值不等式的解法;函数最值的应用.专题:计算题;压轴题;分类讨论.分析:(1)分类讨论,当x≥4时,当时,当时,分别求出不等式的解集,再把解集取交集.(2)利用绝对值的性质,求出f(x)+3|x﹣4|的最小值为9,故m<9.解答:解:(1)当x≥4时f(x)=2x+1﹣(x﹣4)=x+5>0得x>﹣5,所以,x≥4时,不等式成立.当时,f(x)=2x+1+x﹣4=3x﹣3>0,得x>1,所以,1<x<4时,不等式成立.当时,f(x)=﹣x﹣5>0,得x<﹣5,所以,x<﹣5成立综上,原不等式的解集为:{x|x>1或x<﹣5}.(2)f(x)+3|x﹣4|=|2x+1|+2|x﹣4|≥|2x+1﹣(2x﹣8)|=9,当,所以,f(x)+3|x﹣4|的最小值为9,故m<9.点评:本题考查绝对值不等式的解法,求函数的最小值的方法,绝对值不等式的性质,体现了分类讨论的数学思想.。
东北育才学校高中部2018届 高三第一次模拟考试(数学文科)试题一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合}2,1,0,1{-=A ,}032{2<-+=x x x B ,则=B A ( ) A .}1{-B .}0,1{-C .}1,0,1{-D .}0,1,2{--2.已知R y x ∈,,i 为虚数单位,若i y xi 3)2(1--=+,则=+yi x ( ) A .2B .5C .3D .103.下列函数的图像关于y 轴对称的是( )A .x x y +=2B .x y 1-=C .x x y --=22D .x x y -+=22 4.已知平面向量),1(m a = ,)1,3(-=b 且b b a//)2(+,则实数m 的值为( )A .31B .31-C .32D .32- 5.在等差数列{}n a 中,n S 为其前n 项和,若34825a a a ++=,则9S =A .60B .75 C.90 D .1056.在抛物线px y 22=上,横坐标为4的点到焦点的距离为5,则p 的值为A.21.1 C 7.某几何体的三视图如图所示,则其表面积为 A.83 43.248+ D.246+ 8.设点),(y x P 在不等式组⎪⎩⎪⎨⎧≤-+≤-≥03,02,0y x y x x 表示的平面区域上,则22)1(y x z +-=的最小值为A .1B .55 C. 2 D .552 9.若函数()()2log =+f x x a 与()()21=-+g x x a x ()45-+a 存在相同的零点,则a 的值为 22俯视图侧视图结束)10(≤≤x x 任意输入)10(≤≤y y 任意输入是否输出“恭喜中奖!”输出“谢谢参与!”y x≤A .4或52-B .4或2-C .5或2-D .6或52- 10.若将函数x x f 2cos 21)(=的图像向左平移6π个单位长度,则平移后图像的一个对称中心可以为( ) A .)0,12(πB .)0,6(πC .)0,3(πD .)0,2(π11.“1=a ”是“1-=x 是函数1)(223-+--=x a ax x x f 的极小值点”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件12.已知函数()21sin 21x x f x x x -=+++,若正实数b a ,满()()490f a f b +-=,则11a b +的最小值是B.29二.填空题:本大题共4小题,每小题5分.13.在如右图所示程序框图中,任意输入一次)10(≤≤x x 与)10(≤≤y y ,则能输出“恭喜中奖!”的概率为 .14.已知方程1)2(22=-+y m mx 表示双曲线,则m 的取值范围是 .15. 已知函数()sin xf x e x =,则)(x f 在0=x 处的切线方程为 .16. 若31)6sin(=+πx ,则=-)267sin(x π. 三.解答题:共70分。
2018届高三第一次模拟考试(文科)试题一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合}2,1,0,1{-=A ,}032{2<-+=x x x B ,则=B A ( )A .}1{-B .}0,1{-C .}1,0,1{-D .}0,1,2{--2.已知R y x ∈,,i 为虚数单位,若i y xi 3)2(1--=+,则=+yi x ( ) A .2B .5C .3D .103.下列函数的图像关于y 轴对称的是( )A .x x y +=2B .x y 1-=C .x x y --=22D .x x y -+=22 4.已知平面向量),1(m a = ,)1,3(-=b 且b b a//)2(+,则实数m 的值为( )A .31B .31-C .32D .32- 5.在等差数列{}n a 中,n S 为其前n 项和,若34825a a a ++=,则9S =A .60B .75 C.90 D .1056.在抛物线px y 22=上,横坐标为4的点到焦点的距离为5,则p 的值为 A.21B.1C.2D.4 7.某几何体的三视图如图所示,则其表面积为 A.83 B.43C.248+D.246+ 8.设点),(y x P 在不等式组⎪⎩⎪⎨⎧≤-+≤-≥03,02,0y x y x x 表示的平面区域上,则22)1(y x z +-=的最小值为A .1B .55 C. 2 D .552 9.若函数()()2log =+f x x a 与()()21=-+g x x a x ()45-+a 存在相同的零点,则a 的值为 A .4或52-B .4或2-C .5或2-D .6或52- 22俯视图侧视图10.若将函数x x f 2cos 21)(=的图像向左平移6π个单位长度,则平移后图像的一个对称中心可以为( ) A .)0,12(πB .)0,6(πC .)0,3(πD .)0,2(π11.“1=a ”是“1-=x 是函数1)(223-+--=x a ax x x f 的极小值点”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件12.已知函数()21sin 21x x f x x x-=+++,若正实数b a ,满()()490f a f b +-=,则11a b +的最小值是A.1B.29C.9D.18二.填空题:本大题共4小题,每小题5分.13.在如右图所示程序框图中,任意输入一次)10(≤≤x x 与)10(≤≤y y 中奖!”的概率为 .14.已知方程1)2(22=-+y m mx 表示双曲线,则m 的取值范围是 .15. 已知函数()sin x f x e x =,则)(x f 在0=x 处的切线方程为 .16. 若31)6sin(=+πx ,则=-)267sin(x π. 三.解答题:共70分。
2018东北三省三校一模考试数学文科试题2018东北三省三校一模考试数学文科试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}*2,A x x x N =≤∈,{}2,B y y x x R ==∈,则A B =( ) A.{}0x x ≥ B.{}1x x ≥ C.{}1,2 D.{}0,1,22.已知复数z 满足()12i z i +=,i 为虚数单位,则z 等于( )A.1i -B.1i +C.1122i -D.1122i + 3.在下列向量中,可以把向量()3,1a =-表示出来的是( ) A.()10,0e =,()23,2e = B.()11,2e =-,()23,2e = C.()13,5e =,()26,10e = D.()13,5e =-,()23,5e =-4.在区间()0,3上任取一个实数x ,则22x<的概率是( )A.23B.12C.13D.14 5.抛物线24y x =的焦点到准线的距离为( )A.2B.1C.14D.186.已知,a b 都是实数,p :直线0x y +=与圆()()222x a y b -+-=相切;q :2a b +=,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.如图所示的程序框图的算法思路来源于我国古代数学名著《九章算术》,执行该程序框图若输出的4a =,则输入的,a b 不可能为( ) A.4,8 B.4,4 C.12,16 D.15,188.已知函数()sin 3f x x π⎛⎫=+ ⎪⎝⎭,则下列说法不正确的是( ) A.()f x 的一个周期为2π B.()f x 向左平移3π个单位长度后图象关于原点对称C.()f x 在7,66ππ⎡⎤⎢⎥⎣⎦上单调递减 D.()f x 的图象关于56x π=-对称 9.函数()a f x x x=+(其中a R ∈)的图象不可能是( )A B C D10.如图所示是一个三棱锥的三视图,则此三棱锥的外接球的体积为( )A.43πB.3πC.55πD.6π11.设双曲线()222210,0x y a b a b -=>>的两条渐近线与直线2a x c=分别交于,A B 两点,F 为该双曲线的右焦点,若6090AFB <<∠°°,则该双曲线离心率e 的取值范围是( ) A.()1,2 B.23,⎛⎫+∞ ⎪ ⎪⎝⎭ C.()2,2D.23,2⎛⎫⎪ ⎪⎝使用手机支付的情况,得到如下的22⨯列联表,已知其中从使用手机支付的人群中随机抽取1人,抽到青年的概率为710.(1)根据已知条件完成22⨯列联表,并根据此资料判断是否有99.5%的把握认为“市场购物用手机支付与年龄有关”? (2)现采用分层抽样从这100名顾客中按照“使用手机支付”和“不使用手机支付”中抽取得到一个容量为5的样本,设事件A 为“从这个样本中任选2人,这2人中至少有1人是不使用手机支付的”,求事件A 发生的概率?()2P K k ≥0.05 0.025 0.010 0.005 0k3.841 5.024 6.635 7.879 22⨯列联表青年 中老年 合计 使用手机支付60 不使用手机支付 24 合计100附:()()()()()22n ad bc Ka b c d a c b d -=++++19.已知圆锥SO ,2SO =,AB 为底面圆的直径,2AB =,点C 在底面圆周上,且OC AB ⊥,E 在母线SC 上,且4SE CE =,F 为SB 中点,M 为弦AC 中点. (1)求证:AC ⊥平面SOM ;(2)求四棱锥O EFBC -的体积.20.已知椭圆()2222:10x y C a b a b+=>>22,()1,0F c -,()2,0F c 为椭圆C 的左、右焦点,M 为椭圆C 上的任意一点,12MF F △的面积的最大值为1,A 、B 为椭圆C 上任意两个关于x 轴对称的点,直线2a x c=与x 轴的交点为P ,直线PB 交椭圆C 于另一点E .(1)求椭圆C 的标准方程;(2)求证:直线AE 过定点. 21.已知函数()34f x x ax =-+,x R ∈. (1)讨论函数()f x 的单调性;(2)若函数()f x 在[]1,1-上的最大值为1,求实数a 的取值集合. 22.已知在极坐标系中曲线1C 的极坐标方程为:4cos ρθ=,以极点为坐标原点,以极轴为x 轴的正半轴建立直角坐标系,曲线2C 的参数方程为:1323x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),点()3,0A .(1)求出曲线1C 的直角坐标方程和曲线2C 的普通方程;(2)设曲线1C 与曲线2C 相交于,P Q 两点,求AP AQ ⋅的值. 23.已知函数()2521f x x x =-++. (1)求不等式()1f x x >-的解集;(2)若()1>-对于x R∈恒成立,求实数a的范围.f x a2018年三省三校一模考试文科数学答案一、选择题(本大题共12小题,每小题5分,共60分) 1.C 2.A 3.B 4.C 5.D 6.B 7.D 8.B 9.C 10.C 11.C 12.A二、填空题(本大题共4小题,每小题5分,共20分) 13. //l α或l α⊂ 14. []5,2-- 15.丙 16.22三、解答题(本大题共70分) 17.(本小题满分12分) 解:(Ⅰ)当2≥n 时,3+13232111(22)(22)277n n n nn n aS S ---=-=---=当1=n 时,112a S ==312=2⨯-,符合上式所以32*2()n na n -=∈N .(Ⅱ)由(Ⅰ)得322log 2=32n nb n -=-,所以=+-++⨯+⨯=++++)13)(23(174141111113221n n b b b b b b n n13)1311(31)]131231()7141()411[(31+=+-=+--++-+-n nn n n .18.(本小题满分12分)解:(Ⅰ) 从使用手机支付的人群中随机抽取1人,抽到青年的概率为710 ∴使用手机支付的人群中的青年的人数为7604210⨯=人,则使用手机支付的人群中的中老年的人数为604218-=人,所以22⨯列联表为:2K的观测值2100(42241816)1800=8.86758426040203k ⨯-⨯=≈⨯⨯⨯28.8677.879(7.879)0.005P K >≥=,,故有99.5%的把握认为“市场购物用手机支付与年龄有关”. (Ⅱ) 这100名顾客中采用分层抽样从“使用手机支付”和“不使用手机支付”中抽取得到一个容量 为5的样本中:使用手机支付的人有6053100⨯=人,记编号为1,2,3不使用手机支付的人有2人,记编号为a,b , 则从这个样本中任选2人有(1,2)(1,3)(1,a)(1,b)(2,3)(2,a)(2,b)(3,a)(3,b)(a ,b)共10种其中至少有1人是不使用手机支付的(1,a)(1,b) (2,a)(2,b)(3,a)(3,b)(a,b)共7种,故7()10P A =.青年 中老年 合计使用手机支付42 18 60不使用手机支付16 24 40合计 58 42 10019.(本小题满分12分)(Ⅰ)证明:∵SO ⊥平面ABC ,∴SO AC ⊥, 又∵点M 是圆O 内弦AC 的中点, AC MO ∴⊥,又SO MO O =AC ∴⊥平面SOM(Ⅱ)∵SO ⊥平面ABC ,SO 为三棱锥S OCB -的高,111112323S OCB O SCB V V --∴==⨯⨯⨯⨯=而O EFBCV-与O SCBV-等高,1sin 2215sin 2ESFSCBSE SF ESFS S SC SB CSB ∆∆⨯⨯∠==⨯⨯∠,∴35SCB EFBCSS ∆=四边形因此,33115535O EFBCO SCB VV --==⨯=20.(本小题满分12分) 解:(Ⅰ)2c e a ==,当M 为椭圆C 的短轴端点时,12MF F ∆的面积的最大值为112112c b bc ∴⨯⨯=∴=, 而222ab c =+2,1a b ∴==故椭圆C 标准方程为:2212x y +=(Ⅱ)设112211(,),,),(,)B x y Ex y A x y -(,且12x x ≠,2=2a x c=,(2,0)P ∴由题意知BP 的斜率必存在,设BP :(2)y k x =-,代入2212x y +=得2222(21)8820k x k x k +-+-=∆>得212k<22121222882,2121k k x x x x k k -+=⋅=++12x x ≠∴AE 斜率必存在,AE :121121()y y y yx x x x ++=--由对称性易知直线AE 过的定点必在x 轴上,则当0y =时,得121122112211121212()(2)(2)()4y x x y x y x k x x k x x x x y y y y k x x k-+-+-=+==+++-2222121221228282222()2121=184421k k x x x x k k k x x k -⋅-⋅-+++==+--+即在212k<的条件下,直线AE 过定点(1,0).21. (本小题满分12分) 解:(Ⅰ)2()12f x x a '=-+.当0a =时,3()4f x x =-在R 上单调递减;当0a <时,2()120f x x a '=-+<,即3()4f x xax=-+在R 上单调递减;当0a >时,2()12f x xa'=-+.3(,6a x ∈-∞-时,()0f x '<,()f x 在3(,6a -∞-上递减; 33(a a x ∈时,()0f x '>,()f x 在33()a a上递增;3)ax ∈+∞时,()0f x '<,()f x 在3)a+∞上递减;综上,当0a ≤时,()f x 在R 上单调递减; 当0a >时,()f x 在3(,6a -∞-上递减; 在33(a a 上递增;3)a+∞上递减.(Ⅱ)∵函数()f x 在[1,1]-上的最大值为1. 即对任意[1,1]x ∈-,()1f x ≤恒成立。
2017-2018学年辽宁省沈阳市高考数学一模试卷(文科)一.选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数(i为虚数单位)在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1} B.{2} C.{0,1} D.{1,2}3.等差数列{a n}的前n项和为S n,若S5=32,则a3=()A.B.2 C.D.4.已知函数,则f(f(4))的值为()A.B.﹣9 C.D.95.如图,网格纸的各小格都是正方形,粗实线画出的是一个凸多面体的三视图(两个矩形,一个直角三角形),则这个几何体可能为()A.三棱台B.三棱柱C.四棱柱D.四棱锥6.已知直线l过圆x2+(y﹣3)2=4的圆心,且与直线x+y+1=0垂直,则l的方程是()A.x+y﹣2=0 B.x﹣y+2=0 C.x+y﹣3=0 D.x﹣y+3=07.执行如图所示的程序框图,如果输入a=﹣1,b=﹣2,则输出的a的值为()A.16 B.8 C.4 D.28.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为()A.2 B.3 C.4 D.59.若函数y=log a x(a>0,且a≠1)的图象如图所示,则下列函数与其图象相符的是()A.B.C.D.10.已知正四面体ABCD的棱长为a,其外接球表面积为S1,内切球表面积为S2,则S1:S2的值为()A.3 B.C.9 D.11.已知抛物线y2=4x的焦点为F,A、B为抛物线上两点,若,O为坐标原点,则△AOB的面积为()A.B.C.D.12.已知偶函数f(x)(x≠0)的导函数为f′(x),且满足f(1)=0,当x>0时,xf′(x)<2f(x),则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣∞,﹣1)∪(1,+∞)C.(﹣1,0)∪(1,+∞)D.(﹣1,0)∪(0,1)二.填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上)13.设x,y满足约束条件:,若z=x﹣y,则z的最大值为.14.已知正方形ABCD的边长为2,E为CD的中点,则=.15.函数f(x)=2x﹣lnx的单调增区间是.16.已知双曲线的右焦点为F,双曲线C与过原点的直线相交于A、B两点,连接AF,BF.若|AF|=6,|BF|=8,,则该双曲线的离心率为.三.解答题:(本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.已知函数.(Ⅰ)求函数f(x)的最大值,并写出取得最大值时相应的x的取值集合;(Ⅱ)若,求f(α)的值.18.如图所示,三棱锥D﹣ABC中,AC,BC,CD两两垂直,AC=CD=1,,点O为AB中点.(Ⅰ)若过点O的平面α与平面ACD平行,分别与棱DB,CB相交于M,N,在图中画出该截面多边形,并说明点M,N的位置(不要求证明);(Ⅱ)求点C到平面ABD的距离.,得到统计数据如下:现从所有试验动物中任取一只,取到“注射疫苗”动物的概率为.(Ⅰ)求2×2列联表中的数据的值;(Ⅱ)绘制发病率的条形统计图,并判断疫苗是否有效?20.已知椭圆+=1(a>b>0)的左,右焦点分别为F1,F2,且|F1F2|=6,直线y=kx与椭圆交于A,B两点.(Ⅰ)若△AF1F2的周长为16,求椭圆的标准方程;(Ⅱ)若,且A,B,F1,F2四点共圆,求椭圆离心率e的值;(Ⅲ)在(Ⅱ)的条件下,设P(x0,y0)为椭圆上一点,且直线PA的斜率k1∈(﹣2,﹣1),试求直线PB的斜率k2的取值范围.21.已知函数.(Ⅰ)若曲线y=f(x)在x=1处的切线的方程为3x﹣y﹣3=0,求实数a,b的值;(Ⅱ)若x=1是函数f(x)的极值点,求实数a的值;(Ⅲ)若﹣2≤a<0,对任意x1,x2∈(0,2],不等式恒成立,求m的最小值.请考生在22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑.【选修4-1:几何证明选讲】22.如图所示,两个圆相内切于点T,公切线为TN,外圆的弦TC,TD分别交内圆于A、B两点,并且外圆的弦CD恰切内圆于点M.(Ⅰ)证明:AB∥CD;(Ⅱ)证明:AC•MD=BD•CM.【选修4-4:坐标系与参数方程】23.在以直角坐标原点O为极点,x轴的非负半轴为极轴的极坐标系下,曲线C1的方程是ρ=1,将C1向上平移1个单位得到曲线C2.(Ⅰ)求曲线C2的极坐标方程;(Ⅱ)若曲线C1的切线交曲线C2于不同两点M,N,切点为T,求|TM|•|TN|的取值范围.【选修4-5:不等式选讲】24.已知“∀a>b>c,”是真,记t的最大值为m,“∀n∈R,”是假,其中.(Ⅰ)求m的值;(Ⅱ)求n的取值范围.2016年辽宁省沈阳市高考数学一模试卷(文科)参考答案与试题解析一.选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数(i为虚数单位)在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、复数的几何意义即可得出.【解答】解:,在复平面内复数z对应点的坐标为(1,1),在第一象限.故选:A.2.设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1} B.{2} C.{0,1} D.{1,2}【考点】交集及其运算.【分析】求出集合N的元素,利用集合的基本运算即可得到结论.【解答】解:∵N={x|x2﹣3x+2≤0}={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2},∴M∩N={1,2},故选:D.3.等差数列{a n}的前n项和为S n,若S5=32,则a3=()A.B.2 C.D.【考点】等差数列的前n项和.【分析】根据等差数列的性质,S5=5a3,即可得出.【解答】解:根据等差数列的性质,S5=5a3,∴.故选:A.4.已知函数,则f(f(4))的值为()A.B.﹣9 C.D.9【考点】函数的值.【分析】利用分段函数求值、指数、对数性质及运算法则求解.【解答】解:因为,∴f(4)==﹣2,∴.故选:C.5.如图,网格纸的各小格都是正方形,粗实线画出的是一个凸多面体的三视图(两个矩形,一个直角三角形),则这个几何体可能为()A.三棱台B.三棱柱C.四棱柱D.四棱锥【考点】简单空间图形的三视图.【分析】根据三视图的法则是“长对正,高平齐,宽相等”,得出该几何体是一个三棱柱.【解答】解:根据三视图的法则:长对正,高平齐,宽相等;可得几何体如右图所示,这是一个三棱柱.故选:B.6.已知直线l过圆x2+(y﹣3)2=4的圆心,且与直线x+y+1=0垂直,则l的方程是()A.x+y﹣2=0 B.x﹣y+2=0 C.x+y﹣3=0 D.x﹣y+3=0【考点】直线与圆的位置关系.【分析】由题意可得所求直线l经过点(0,3),斜率为1,再利用点斜式求直线l的方程.【解答】解:由题意可得所求直线l经过点(0,3),斜率为1,故l的方程是y﹣3=x﹣0,即x﹣y+3=0,故选:D.7.执行如图所示的程序框图,如果输入a=﹣1,b=﹣2,则输出的a的值为()A.16 B.8 C.4 D.2【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环累乘a值,并判断满足a>6时输出a的值.【解答】解:模拟执行程序框图,可得a=﹣1,b=﹣2时,不满足条件a>6,a=(﹣1)×(﹣2)=2<6;不满足条件a>6,a=2×(﹣2)=﹣4<6;不满足条件a>6,a=(﹣4)×(﹣2)=8;满足条件a>6,退出循环,输出a的值为8.故选:B.8.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为()A.2 B.3 C.4 D.5【考点】频率分布直方图.【分析】可根据直方图中各个矩形的面积之和为1,列得一元一次方程,解出a,欲求选取的人数,可先由直方图找出三个区域内的学生总数,及其中身高在[140,150]内的学生人数,再根据分层抽样的特点,代入其公式求解.【解答】解:∵直方图中各个矩形的面积之和为1,∴10×(0.005+0.035+a+0.02+0.01)=1,解得a=0.03.由直方图可知三个区域内的学生总数为100×10×(0.03+0.02+0.01)=60人.其中身高在[140,150]内的学生人数为10人,所以身高在[140,150]范围内抽取的学生人数为×10=3人.故选B.9.若函数y=log a x(a>0,且a≠1)的图象如图所示,则下列函数与其图象相符的是()A.B.C.D.【考点】对数函数的图象与性质.【分析】根据f(x)图象过(3,1)可知a=3,写出四个选项中函数的解析式,根据单调性和特殊点进行判断.【解答】解:∵函数y=log a x的图象过点(3,1),∴a=3.∴y=a﹣x=()x是减函数,故A错;y=x a=x3是增函数,且过(0,0),(1,1)两点,故B正确.y=(﹣x)a=﹣x3是减函数,故C错.y=log a(﹣x)=log3(﹣x)是减函数,故D错.故选B.10.已知正四面体ABCD的棱长为a,其外接球表面积为S1,内切球表面积为S2,则S1:S2的值为()A.3 B.C.9 D.【考点】球内接多面体;球的体积和表面积.【分析】设点O是内切球的球心,正四面体棱长为a,由图形的对称性知,点O也是外接球的球心,由此能求出S1:S2的值.【解答】解:如图,设点O是内切球的球心,正四面体棱长为a,由图形的对称性知,点O也是外接球的球心.设内切球半径为r,外接球半径为R.在Rt△BEO中,BO2=BE2+EO2,即,又,解得R=3r,∴,故选:C.11.已知抛物线y2=4x的焦点为F,A、B为抛物线上两点,若,O为坐标原点,则△AOB的面积为()A.B.C.D.【考点】抛物线的简单性质.【分析】根据抛物线的定义,不难求出,|AB|=2|AE|,由抛物线的对称性,不妨设直线的斜率为正,所以直线AB的倾斜角为60°,可得直线AB的方程,与抛物线的方程联立,求出A,B的坐标,即可求出△AOB的面积.【解答】解:如图所示,根据抛物线的定义,不难求出,|AB|=2|AE|,由抛物线的对称性,不妨设直线的斜率为正,所以直线AB的倾斜角为60°,直线AB的方程为,联立直线AB与抛物线的方程可得:,解之得:,,所以,而原点到直线AB的距离为,所以,当直线AB的倾斜角为120°时,同理可求.故应选C.12.已知偶函数f(x)(x≠0)的导函数为f′(x),且满足f(1)=0,当x>0时,xf′(x)<2f(x),则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣∞,﹣1)∪(1,+∞)C.(﹣1,0)∪(1,+∞)D.(﹣1,0)∪(0,1)【考点】利用导数研究函数的单调性;导数的运算.【分析】构造函数设函数,利用导数得到,g(x)在(0,+∞)是增函数,再根据f(x)为偶函数,根据f(1)=0,解得f(x)>0的解集.【解答】解:根据题意,设函数,当x>0时,,所以函数g(x)在(0,+∞)上单调递减,又f(x)为偶函数,所以g(x)为偶函数,又f(1)=0,所以g(1)=0,故g(x)在(﹣1,0)∪(0,1)的函数值大于零,即f(x)在(﹣1,0)∪(0,1)的函数值大于零.故选:D.二.填空题:(本大题共4小题,每小题5分,共20分,把答案填在答卷纸的相应位置上)13.设x,y满足约束条件:,若z=x﹣y,则z的最大值为3.【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用z的几何意义进行求解即可.【解答】解:作出不等式组对应的平面区域如图:由z=x﹣y,得y=x﹣z表示,斜率为1纵截距为﹣z的一组平行直线,平移直线y=x﹣z,当直线经过点A(3,0)时,此时直线y=x﹣z截距最小,z 最大.此时z ma x=3.故答案为:3.14.已知正方形ABCD的边长为2,E为CD的中点,则=2.【考点】平面向量数量积的运算.【分析】方法一:根据两个向量的加减法的法则,以及其几何意义,可得要求的式子,再根据两个向量垂直的性质,运算求得结果.方法二:以A为原点,以AB为x轴,以AD为y轴建立直角坐标系,利用坐标的运算即可求出.【解答】解:(解法一)=.(解法二)以A为原点,以AB为x轴,以AD为y轴建立直角坐标系,,,.故答案为:2.15.函数f(x)=2x﹣lnx的单调增区间是(,+∞).【考点】利用导数研究函数的单调性.【分析】求出f′(x),在定义域内解不等式f′(x)>0即得单调增区间.【解答】解:f(x))=2x﹣lnx的定义域为(0,+∞).f′(x)=2﹣=,令f′(x)>0,解得x.所以函数f(x)=2x﹣lnx的单调增区间是(,+∞).故答案为:(,+∞).16.已知双曲线的右焦点为F,双曲线C与过原点的直线相交于A、B两点,连接AF,BF.若|AF|=6,|BF|=8,,则该双曲线的离心率为5.【考点】双曲线的简单性质.【分析】在△AFB中,由余弦定理可得|BF|2=|AB|2+|AF|2﹣2|AB|•|AF|cos∠BAF,即可得到|AB|,由勾股定理的逆定理,可得∠ABF=90°,设F′为双曲线的右焦点,连接BF′,AF′.根据对称性可得四边形AFBF′是矩形.即可得到a,c,进而求得离心率.【解答】解:在△AFB中,由余弦定理可得|BF|2=|AB|2+|AF|2﹣2|AB|•|AF|cos∠BAF,即有64=|AB|2+36﹣12|AB|•化为|AB|2﹣|AB|﹣28=0,解得|AB|=10.由勾股定理的逆定理,可得∠ABF=90°,设F'为双曲线的右焦点,连接BF′,AF′.根据对称性可得四边形AFBF′是矩形.结合矩形性质可知,2c=10,利用双曲线定义,2a=8﹣6=2,所以离心率e==5.故答案为:5.三.解答题:(本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.已知函数.(Ⅰ)求函数f(x)的最大值,并写出取得最大值时相应的x的取值集合;(Ⅱ)若,求f(α)的值.【考点】三角函数中的恒等变换应用;正弦函数的图象;三角函数的最值.【分析】(1)利用将次公式与和角公式化简f (x )=2sin (x+)+1.故f (x )最大值为3,令x+=+2k π求出x 的集合.(2)使用二倍角公式对f (α)进行弦化切,用tan 来表示f (α).【解答】解:(Ⅰ)f (x )=1+cosx+sinx=2sin (x+)+1,∴当sin (x+)=1时,f (x )取得最大值3.此时x+=+2k π,解得x=+2k π,∴此时相应的x 的取值集合为.(Ⅱ)f (α)=2cos 2+sin α=2cos 2+2sin cos ====.18.如图所示,三棱锥D ﹣ABC 中,AC ,BC ,CD 两两垂直,AC=CD=1,,点O 为AB 中点.(Ⅰ)若过点O 的平面α与平面ACD 平行,分别与棱DB ,CB 相交于M ,N ,在图中画出该截面多边形,并说明点M ,N 的位置(不要求证明); (Ⅱ)求点C 到平面ABD 的距离.【考点】点、线、面间的距离计算;直线与平面平行的性质. 【分析】(Ⅰ)当M 为棱DB 中点,N 为棱BC 中点时,平面α∥平面ACD . (Ⅱ)由V C ﹣AB D =V D ﹣AB C ,利用等体积法能求出点C 到平面ABD 的距离. 【解答】解:(Ⅰ)当M 为棱DB 中点,N 为棱BC 中点时, 平面α∥平面ACD .… 解:(Ⅱ)∵CD ⊥AC ,CD ⊥BC , ∴直线CD ⊥平面ABC ,…,.又.∴AB=BD,…设点E是AD的中点,连接BE,则BE⊥AD,∴,.又V C﹣AB D =V D﹣AB C,而,设点C到平面ABD的距离为h,则有,…即,∴,∴点C到平面ABD的距离为.…,得到统计数据如下:现从所有试验动物中任取一只,取到“注射疫苗”动物的概率为.(Ⅰ)求2×2列联表中的数据的值;(Ⅱ)绘制发病率的条形统计图,并判断疫苗是否有效?Ⅲ)【考点】独立性检验的应用;频率分布直方图. 【分析】(Ⅰ)由已知得,所以y=10,B=40,x=40,A=60,即可求2×2列联表中的数据的值; (Ⅱ)未注射疫苗发病率为,注射疫苗发病率为,即可绘制发病率的条形统计图,并判断疫苗是否有效?(Ⅲ)求出X 2,与临界值比较,即可得出结论. 【解答】解:(Ⅰ)设“从所有试验动物中任取一只,取到“注射疫苗”动物”为事件A , 由已知得,所以y=10,B=40,x=40,A=60. …(Ⅱ)未注射疫苗发病率为,注射疫苗发病率为.发病率的条形统计图如图所示,由图可以看出疫苗影响到发病率. (Ⅲ)…=.所以没有把握认为疫苗有效.…20.已知椭圆+=1(a>b>0)的左,右焦点分别为F1,F2,且|F1F2|=6,直线y=kx与椭圆交于A,B两点.(Ⅰ)若△AF1F2的周长为16,求椭圆的标准方程;(Ⅱ)若,且A,B,F1,F2四点共圆,求椭圆离心率e的值;(Ⅲ)在(Ⅱ)的条件下,设P(x0,y0)为椭圆上一点,且直线PA的斜率k1∈(﹣2,﹣1),试求直线PB的斜率k2的取值范围.【考点】椭圆的简单性质.【分析】(Ⅰ)由题意得c=3,2a+2c=16,由此能求出椭圆的方程.(Ⅱ)由,得.由此利用韦达定理、AB、EF 互相平分且共圆,向量的数量积,结合已知条件能求出离心率.(Ⅲ)由椭圆方程为,设A(x1,y1),B(﹣x1,﹣y1),求出,由此能求出直线PB的斜率k2的取值范围.【解答】解:(Ⅰ)∵椭圆+=1(a>b>0)的左,右焦点分别为F1,F2,且|F1F2|=6,直线y=kx与椭圆交于A,B两点.∴由题意得c=3,…根据2a+2c=16,得a=5.…结合a2=b2+c2,解得a2=25,b2=16.…∴椭圆的方程为.…(Ⅱ)(解法一)由,得.设A(x1,y1),B(x2,y2).则,…由AB、EF互相平分且共圆,∴AF2⊥BF2,∵,,∴.即x1x2=﹣8,∴,结合b2+9=a2.解得a2=12,∴离心率.…(若设A(x1,y1),B(﹣x1,﹣y1)相应给分)(Ⅲ)由(Ⅱ)结论,椭圆方程为,…由题可设A(x1,y1),B(﹣x1,﹣y1),,∴,…又,即,由﹣2<k1<﹣1可知,.…21.已知函数.(Ⅰ)若曲线y=f(x)在x=1处的切线的方程为3x﹣y﹣3=0,求实数a,b的值;(Ⅱ)若x=1是函数f(x)的极值点,求实数a的值;(Ⅲ)若﹣2≤a<0,对任意x1,x2∈(0,2],不等式恒成立,求m的最小值.【考点】利用导数研究函数的极值;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出f(x)的导数,根据f′(1)=3,求出a,代入f(x)求出b即可;(Ⅱ)根据x=1是极值点求出a,检验即可;(Ⅲ)问题可化为,设,根据函数的单调性求出m的最小值即可.【解答】解:(Ⅰ)∵,∴,…∵曲线y=f(x)在x=1处的切线的方程为3x﹣y﹣3=0,∴1﹣a=3,f(1)=0,∴a=﹣2,,∴a=﹣2,.…(Ⅱ)∵x=1是函数f(x)的极值点,∴f′(1)=1﹣a=0,∴a=1;…当a=1时,,定义域为(0,+∞),,当0<x<1时,f'(x)<0,f(x)单调递减,当x>1时,f'(x)>0,f(x)单调递增,所以,a=1.…(Ⅲ)因为﹣2≤a<0,0<x≤2,所以,故函数f(x)在(0,2]上单调递增,不妨设0<x1≤x2≤2,则,可化为,…设,则h(x1)≥h(x2).所以h(x)为(0,2]上的减函数,即在(0,2]上恒成立,等价于x3﹣ax﹣m≤0在(0,2]上恒成立,即m≥x3﹣ax在(0,2]上恒成立,又﹣2≤a<0,所以ax≥﹣2x,所以x3﹣ax≤x3+2x,而函数y=x3+2x在(0,2]上是增函数,所以x3+2x≤12(当且仅当a=﹣2,x=2时等号成立).所以m≥12.即m的最小值为12.…请考生在22,23,24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑.【选修4-1:几何证明选讲】22.如图所示,两个圆相内切于点T,公切线为TN,外圆的弦TC,TD分别交内圆于A、B两点,并且外圆的弦CD恰切内圆于点M.(Ⅰ)证明:AB∥CD;(Ⅱ)证明:AC•MD=BD•CM.【考点】与圆有关的比例线段.【分析】(Ⅰ)证明∠TCD=∠TAB,即可证明AB∥CD;(Ⅱ)证明:∠MTD=∠ATM,利用正弦定理证明,由AB∥CD知,即可证明AC•MD=BD•CM.【解答】(Ⅰ)由弦切角定理可知,∠NTB=∠TAB,…同理,∠NTB=∠TCD,所以,∠TCD=∠TAB,所以,AB∥CD.…(Ⅱ)连接TM、AM,因为CD是切内圆于点M,所以由弦切角定理知,∠CMA=∠ATM,又由(Ⅰ)知AB∥CD,所以,∠CMA=∠MAB,又∠MTD=∠MAB,所以∠MTD=∠ATM.…在△MTD中,由正弦定理知,,在△MTC中,由正弦定理知,,因∠TMC=π﹣∠TMD,所以,由AB∥CD知,所以,即,AC•MD=BD•CM.…【选修4-4:坐标系与参数方程】23.在以直角坐标原点O为极点,x轴的非负半轴为极轴的极坐标系下,曲线C1的方程是ρ=1,将C1向上平移1个单位得到曲线C2.(Ⅰ)求曲线C2的极坐标方程;(Ⅱ)若曲线C1的切线交曲线C2于不同两点M,N,切点为T,求|TM|•|TN|的取值范围.【考点】简单曲线的极坐标方程.【分析】(I)曲线C1的方程是ρ=1,即ρ2=1,利用ρ2=x2+y2,即可化为直角坐标方程:再向上平移1个单位得到曲线C2:x2+(y﹣1)2=1,展开利用即可得到曲线C2的极坐标方程.(II)设T(cosθ,sinθ),θ∈[0,π].切线的参数方程为:(t为参数),代入C2的方程化为:t2+2t[cos(θ﹣α)﹣sinα]+1﹣2sinθ=0,利用|TM|•|TN|=|t1t2|及其三角函数的单调性即可得出.【解答】解:(I)曲线C1的方程是ρ=1,即ρ2=1,化为x2+y2=1,将C1向上平移1个单位得到曲线C2:x2+(y﹣1)2=1,展开为x2+y2﹣2y=0.则曲线C2的极坐标方程为ρ2﹣2ρsinθ=0,即ρ=2sinθ.(II)设T(cosθ,sinθ),θ∈[0,π].切线的参数方程为:(t为参数),代入C2的方程化为:t2+2t[cos(θ﹣α)﹣sinα]+1﹣2sinθ=0,∴t1t2=1﹣2sinθ,∴|TM|•|TN|=|t1t2|=|1﹣2sinθ|∈[0,1],∴|TM|•|TN|的取值范围是[0,1].【选修4-5:不等式选讲】24.已知“∀a>b>c,”是真,记t的最大值为m,“∀n∈R,”是假,其中.(Ⅰ)求m的值;(Ⅱ)求n的取值范围.【考点】全称.【分析】(Ⅰ)问题转化为,利用基本不等式的性质求出即可;(Ⅱ)问题转化为∃n∈R,”是真,根据三角函数以及绝对值的意义求出n的范围即可.【解答】解:(Ⅰ)因为“∀a>b>c,”是真,所以∀a>b>c,恒成立,又a>b>c,所以恒成立,所以,.…又因为=,“=”成立当且仅当b﹣c=a﹣b时.因此,t≤4,于是m=4.…(Ⅱ)由(Ⅰ)得,因为“∀n∈R,”是假,所以“∃n∈R,”是真.…因为|n+sinγ|﹣|n﹣cosγ|=|n+sinγ|﹣|cosγ﹣n|≤|sinγ+cosγ|(),因此,,此时,即时.…∴,由绝对值的意义可知,.…2016年7月6日。
2018年辽宁省沈阳市高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若集合A={x|x2﹣2x﹣3<0},集合B={x|x<1},则A∩B等于()A.(1,3)B.(﹣∞,﹣1)C.(﹣1,1)D.(﹣3,1)2.(5分)已知i为虚数单位,复数的共轭复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知平面向量,,且,则实数x的值为()A.B.C.D.4.(5分)已知tanθ=2,则的值为()A.B.C.D.5.(5分)已知一个算法的程序框图如图所示,当输出的结果为0时,输入的x 的值为()A.﹣3B.﹣3或9C.3或﹣9D.﹣9或﹣3 6.(5分)某四棱锥的三视图如图所示,则该四棱锥的侧面积是()A.B.C.D.7.(5分)在等差数列{a n}中,若S n为前n项和,2a7=a8+5,则S11的值是()A.55B.11C.50D.608.(5分)甲、乙、丙三人中,一人是教师、一人是记者、一人是医生.已知:丙的年龄比医生大;甲的年龄和记者不同;记者的年龄比乙小.根据以上情况,下列判断正确的是()A.甲是教师,乙是医生,丙是记者B.甲是医生,乙是记者,丙是教师C.甲是医生,乙是教师,丙是记者D.甲是记者,乙是医生,丙是教师9.(5分)已知函数,以下命题中假命题是()A.函数f(x)的图象关于直线对称B.是函数f(x)的一个零点C.函数f(x)的图象可由g(x)=sin2x的图象向左平移个单位得到D.函数f(x)在上是增函数10.(5分)设函数f(x)=xe x+1,则()A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=﹣1为f(x)的极大值点D.x=﹣1为f(x)的极小值点11.(5分)已知双曲线,O为坐标原点,F为双曲线的右焦点,以OF为直径的圆与双曲线的渐近线交于一点A,若,则双曲线C的离心率为()A.2B.C.D.12.(5分)设函数f(x)是定义在R上的偶函数,且f(x+2)=f(2﹣x),当x∈[﹣2,0]时,,则在区间(﹣2,6)内关于x的方程f(x)﹣log8(x+2)=0解的个数为()A.1B.2C.3D.4二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)设变量x,y满足约束条件:,则z=x﹣3y的最小值为.14.(5分)已知抛物线y2=4x的一条弦AB恰好以P(1,1)为中点,则弦AB 所在直线方程是.15.(5分)在数列{a n}中,a1=1,a2=2,a n+1=3a n﹣2a n﹣1(n≥2),则a n=.16.(5分)已知正四棱锥S﹣ABCD中,,那么当该棱锥的体积最大时,它的高为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足,.(1)求△ABC的面积;(2)若b+c=6,求a的值.18.(12分)高中生在被问及“家,朋友聚集的地方,个人空间”三个场所中“感到最幸福的场所在哪里?”这个问题时,从中国某城市的高中生中,随机抽取了55人,从美国某城市的高中生中随机抽取了45人进行答题.中国高中生答题情况是:选择家的占、朋友聚集的地方占、个人空间占.美国高中生答题情况是:朋友聚集的地方占、家占、个人空间占.(Ⅰ)请根据以上调查结果将下面2×2列联表补充完整;并判断能否有95%的把握认为“恋家(在家里感到最幸福)”与国别有关;(Ⅱ)从被调查的不“恋家”的美国学生中,用分层抽样的方法选出4人接受进一步调查,再从4人中随机抽取2人到中国交流学习,求2人中含有在“个人空间”感到幸福的学生的概率.附:,其中n=a+b+c+d.19.(12分)如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,AB∥CD,AB=2,CD=3,M为PC上一点,且PM=2MC.(1)求证:BM∥平面P AD;(2)若AD=2,PD=3,,求三棱锥P﹣ADM的体积.20.(12分)已知椭圆的左、右焦点分别为F1、F2,点在椭圆上,且有.(1)求椭圆C的标准方程;(2)过F2的直线l与椭圆交于A、B两点,求△AOB面积的最大值.21.(12分)已知函数f(x)=(x+1)2﹣3alnx,a∈R.(1)求函数f(x)图象经过的定点坐标;(2)当a=1时,求曲线f(x)在点(1,f(1))处的切线方程及函数f(x)单调区间;(3)若对任意x∈[1,e],f(x)≤4恒成立,求实数a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,已知曲线C1的参数方程为(t 为参数),曲线C2的直角坐标方程为x2+(y﹣2)2=4.以直角坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,射线l的极坐标方程为θ=α,(0<α<π)(1)求曲线C1、C2的极坐标方程;(2)设点A、B为射线l与曲线C1、C2除原点之外的交点,求|AB|的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣a|+3x,其中a∈R.(1)当a=1时,求不等式f(x)≥3x+|2x+1|的解集;(2)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.2018年辽宁省沈阳市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若集合A={x|x2﹣2x﹣3<0},集合B={x|x<1},则A∩B等于()A.(1,3)B.(﹣∞,﹣1)C.(﹣1,1)D.(﹣3,1)【解答】解:A={x|x2﹣2x﹣3<0}={x|﹣1<x<3},集合B={x|x<1},则A∩B={x|﹣1<x<1}=(﹣1,1),故选:C.2.(5分)已知i为虚数单位,复数的共轭复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵=,∴复数的共扼复数为,在复平面内对应的点的坐标为(),位于第二象限.故选:B.3.(5分)已知平面向量,,且,则实数x的值为()A.B.C.D.【解答】解:根据题意,向量,,则﹣=(﹣3,x﹣),又由,则(﹣)•=(﹣3)×1+(x﹣)×=0,解可得x=2,故选:B.4.(5分)已知tanθ=2,则的值为()A.B.C.D.【解答】解:∵tanθ=2,则=1++=1++=+=,故选:C.5.(5分)已知一个算法的程序框图如图所示,当输出的结果为0时,输入的x 的值为()A.﹣3B.﹣3或9C.3或﹣9D.﹣9或﹣3【解答】解:输出才结果为零,有y=0由程序框图可知,当:y=()x﹣8=0时,解得选x=﹣3;当y=2﹣log3x=0,解得x=9.综上,有x=﹣3,或者9.故选:B.6.(5分)某四棱锥的三视图如图所示,则该四棱锥的侧面积是()A.B.C.D.【解答】解:由四棱锥的三视图得到该四棱锥是P﹣ABCD,其中,底面ABCD是边长为2的正方形,PC⊥平面ABCD,如图,PB=PD==2,∴该四棱锥的侧面积是:S=S△PBC+S△PDC+S△P AB+S△P AD==4+4.故选:A.7.(5分)在等差数列{a n}中,若S n为前n项和,2a7=a8+5,则S11的值是()A.55B.11C.50D.60【解答】解:由等差数列{a n}的性质可得:a6=2a7﹣a8=5,则S11==11a6=55.故选:A.8.(5分)甲、乙、丙三人中,一人是教师、一人是记者、一人是医生.已知:丙的年龄比医生大;甲的年龄和记者不同;记者的年龄比乙小.根据以上情况,下列判断正确的是()A.甲是教师,乙是医生,丙是记者B.甲是医生,乙是记者,丙是教师C.甲是医生,乙是教师,丙是记者D.甲是记者,乙是医生,丙是教师【解答】解:由甲的年龄和记者不同,记者的年龄比乙小,得到丙是记者,从而排除B和D;由丙的年龄比医生大,得到乙不是医生,从而乙是教师,甲是医生.故选:C.9.(5分)已知函数,以下命题中假命题是()A.函数f(x)的图象关于直线对称B.是函数f(x)的一个零点C.函数f(x)的图象可由g(x)=sin2x的图象向左平移个单位得到D.函数f(x)在上是增函数【解答】解:对于A,当x=时,函数f(x)=sin(2×+)=1为最大值,∴f(x)的图象关于直线对称,A正确;对于B,当x=﹣时,函数f(x)=sin(﹣2×+)=0,∴x=﹣是函数f(x)的一个零点,B正确;对于C,函数f(x)=sin(2x+)=sin2(x+),其图象可由g(x)=sin2x的图象向左平移个单位得到,∴C错误;对于D,x∈[0,]时,2x+∈[,],∴函数f(x)=sin(2x+)在上是增函数,D正确.故选:C.10.(5分)设函数f(x)=xe x+1,则()A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=﹣1为f(x)的极大值点D.x=﹣1为f(x)的极小值点【解答】解:由于f(x)=xe x,可得f′(x)=(x+1)e x,令f′(x)=(x+1)e x=0可得x=﹣1,令f′(x)=(x+1)e x>0可得x>﹣1,即函数在(﹣1,+∞)上是增函数令f′(x)=(x+1)e x<0可得x<﹣1,即函数在(﹣∞,﹣1)上是减函数所以x=﹣1为f(x)的极小值点.故选:D.11.(5分)已知双曲线,O为坐标原点,F为双曲线的右焦点,以OF为直径的圆与双曲线的渐近线交于一点A,若,则双曲线C的离心率为()A.2B.C.D.【解答】解:由直径所对的圆周角为直角,可得∠OAF=90°,在△OAF中,,可得AF=OF cos30°=c,由AF为焦点(c,0)到渐近线bx﹣ay=0的距离,即为==b,即有b=c,e====2,故选:A.12.(5分)设函数f(x)是定义在R上的偶函数,且f(x+2)=f(2﹣x),当x∈[﹣2,0]时,,则在区间(﹣2,6)内关于x的方程f(x)﹣log8(x+2)=0解的个数为()A.1B.2C.3D.4【解答】解:对于任意的x∈R,都有f(2+x)=f(2﹣x),∴f(x+4)=f[2+(x+2)]=f[(x+2)﹣2]=f(x),∴函数f(x)是一个周期函数,且T=4.又∵当x∈[﹣2,0]时,f(x)=()x﹣1,且函数f(x)是定义在R上的偶函数,且f(6)=1,则函数y=f(x)与y=log 8(x+2)在区间(﹣2,6)上的图象如下图所示:根据图象可得y=f(x)与y=log 8(x+2)在区间(﹣2,6)上有3个不同的交点.故选:C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)设变量x,y满足约束条件:,则z=x﹣3y的最小值为﹣10.【解答】解:画出约束条件:可行域如下图,由z=x﹣3y得y=x﹣;平移直线y=x﹣,由图象可知当直线经过点B时,直线y =x ﹣的截距最大,此时z 最小, 由解得,B (﹣1,3);故此时z =﹣1﹣3×3=﹣10; 故答案为:﹣1014.(5分)已知抛物线y 2=4x 的一条弦AB 恰好以P (1,1)为中点,则弦AB 所在直线方程是 2x ﹣y ﹣1=0 . 【解答】解:设A (x 1,y 1),B (x 2,y 2), 代入抛物线方程得y 12=4x 1,①,y 22=4x 2,②,①﹣②整理得k ===2,则弦AB 所在直线方程为y ﹣1=2(x ﹣1), 即为2x ﹣y ﹣1=0. 故答案为:2x ﹣y ﹣1=0.15.(5分)在数列{a n }中,a 1=1,a 2=2,a n +1=3a n ﹣2a n ﹣1(n ≥2),则a n = 2n﹣1(n ∈N *) .【解答】解:∵a n +1=3a n ﹣2a n ﹣1(n ≥2), ∴a n +1﹣a n =2a n ﹣2a n ﹣1=2(a n ﹣a n ﹣1)(n ≥2), 可得:a 3﹣a 2=2(a 2﹣a 1)a4﹣a3=2(a3﹣a2)…a n+1﹣a n=2(a n﹣a n﹣1)相加可得:a n+1﹣a2=2(a n﹣a1),可得:a n+1﹣2=2(a n﹣1),即:a n+1=2a n,∴数列{a n}是等比数列,n∈N*,∴.故答案为:2n﹣1(n∈N*).16.(5分)已知正四棱锥S﹣ABCD中,,那么当该棱锥的体积最大时,它的高为6.【解答】解:设正四棱锥S﹣ABCD的底面边长为a,则高h==,∴体积V=a2h=,设y=108a4﹣a6,则y′=432a3﹣3a5,由y′=432a3﹣3a5=0,解得a=0或a=12,∴当a=12时,体积最大,此时h==6,故答案为:6.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足,.(1)求△ABC的面积;(2)若b+c=6,求a的值.【解答】解:(1)因为,所以,.又由得bc cos A=3,所以bc=5因此.(2)由(1)知,bc=5,又b+c=6,由余弦定理,得,所以18.(12分)高中生在被问及“家,朋友聚集的地方,个人空间”三个场所中“感到最幸福的场所在哪里?”这个问题时,从中国某城市的高中生中,随机抽取了55人,从美国某城市的高中生中随机抽取了45人进行答题.中国高中生答题情况是:选择家的占、朋友聚集的地方占、个人空间占.美国高中生答题情况是:朋友聚集的地方占、家占、个人空间占.(Ⅰ)请根据以上调查结果将下面2×2列联表补充完整;并判断能否有95%的把握认为“恋家(在家里感到最幸福)”与国别有关;(Ⅱ)从被调查的不“恋家”的美国学生中,用分层抽样的方法选出4人接受进一步调查,再从4人中随机抽取2人到中国交流学习,求2人中含有在“个人空间”感到幸福的学生的概率.附:,其中n=a+b+c+d.【解答】解:(Ⅰ)由已知得,∴=,∴有95%的把握认为“恋家”与否与国别有关;(Ⅱ)用分层抽样的方法抽出4人,其中在“朋友聚焦的地方”感到幸福的有3人,在“个人空间”感到幸福的有1人,分别设为a1,a2,a3,b;∵Ω={(a1,a2),(a1,a3),(a1,b),(a2,a3),(a2,b),(a3,b)},∴n=6;设“含有在“个人空间”感到幸福的学生”为事件A,A={(a1,b),(a2,b),(a3,b)},∴m=3;则所求的概率为.19.(12分)如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,AB∥CD,AB=2,CD=3,M为PC上一点,且PM=2MC.(1)求证:BM∥平面P AD;(2)若AD=2,PD=3,,求三棱锥P﹣ADM的体积.【解答】(1)证明:法一、过M作MN∥CD交PD于点N,连接AN.∵PM=2MC,∴.又∵,且AB∥CD,∴AB∥MN,AB=MN,则四边形ABMN为平行四边形,∴BM∥AN.又∵BM⊄平面P AD,AN⊂平面P AD,∴BM∥平面P AD.法二、过点M作MN⊥CD于点N,N为垂足,连接BN.由题意,PM=2MC,则DN=2NC,又∵DC=3,DN=2,∴AB=DN,AB∥DN,∴四边形ABND为平行四边形,则BN∥AD.∵PD⊥平面ABCD,DC⊂平面ABCD,∴PD⊥DC.又MN⊥DC,∴PD∥MN.又∵BN⊂平面MBN,MN⊂平面MBN,BN∩MN=N;∵AD⊂平面P AD,PD⊂平面P AD,AD∩PD=D;∴平面MBN∥平面P AD.∵BM⊂平面MBN,∴BM∥平面P AD;(2)解:过B作AD的垂线,垂足为E.∵PD⊥平面ABCD,BE⊂平面ABCD,∴PD⊥BE.又∵AD⊂平面P AD,PD⊂平面P AD,AD∩PD=D.∴BE⊥平面P AD.由(1)知,BM∥平面P AD,∴M到平面P AD的距离等于B到平面P AD的距离,即BE.在△ABC中,AB=AD=2,,∴.∴.20.(12分)已知椭圆的左、右焦点分别为F1、F2,点在椭圆上,且有.(1)求椭圆C的标准方程;(2)过F2的直线l与椭圆交于A、B两点,求△AOB面积的最大值.【解答】解:(1)由,得,∴.将代入,得b2=1.∴椭圆C的方程为;(2)由已知,直线l的斜率为零时,不合题意;设直线方程为x﹣1=my,点A(x1,y1),B(x2,y2),联立,得(m2+2)y2+2my﹣1=0,由韦达定理,得,∴=====,当且仅当,即m=0时,等号成立.∴△AOB面积的最大值为.21.(12分)已知函数f(x)=(x+1)2﹣3alnx,a∈R.(1)求函数f(x)图象经过的定点坐标;(2)当a=1时,求曲线f(x)在点(1,f(1))处的切线方程及函数f(x)单调区间;(3)若对任意x∈[1,e],f(x)≤4恒成立,求实数a的取值范围.【解答】解:(1)当x=1时,ln1=0,所以f(1)=4,所以函数f(x)的图象无论a为何值都经过定点(1,4).(2)当a=1时,f(x)=(x+1)2﹣3lnx.f(1)=4,,f'(1)=1,则切线方程为y﹣4=1×(x﹣1),即y=x+3.在x∈(0,+∞)时,如果,即时,函数f(x)单调递增;如果,即时,函数f(x)单调递减.(3),x>0.当a≤0时,f'(x)>0,f(x)在[1,e]上单调递增.f(x)min=f(1)=4,f(x)≤4不恒成立.当a>0时,设g(x)=2x2+2x﹣3a,x>0.∵g(x)的对称轴为,g(0)=﹣3a<0,∴g(x)在(0,+∞)上单调递增,且存在唯一x0∈(0,+∞),使得g(x0)=0.∴当x∈(0,x0)时,g(x)<0,即f'(x)<0,f(x)在(0,x0)上单调递减;∴当x∈(x0,+∞)时,g(x)>0,即f'(x)>0,f(x)在(x0,+∞)上单调递增.∴f(x)在[1,e]上的最大值f(x)max=max{f(1),f(e)}.∴,得(e+1)2﹣3a≤4,解得.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,已知曲线C1的参数方程为(t 为参数),曲线C2的直角坐标方程为x2+(y﹣2)2=4.以直角坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,射线l的极坐标方程为θ=α,(0<α<π)(1)求曲线C1、C2的极坐标方程;(2)设点A、B为射线l与曲线C1、C2除原点之外的交点,求|AB|的最大值.【解答】解(1)由曲线C1的参数方程(t为参数)消去参数t得x2+(y﹣1)2=1,即x2+y2﹣2y=0,∴曲线C1的极坐标方程为ρ=2sinθ.由曲线C2的直角坐标方程x2+(y﹣2)2=4,得x2+y2﹣4y=0,∴曲线C2的极坐标方程ρ=4sinθ.(2)联立,得A(2sinα,α),∴|OA|=2sinα,联立,得B(4sinα,α),∴|OB|=4sinα.∴|AB|=|OB|﹣|OA|=2sinα.∵0<α<π,∴当时,|AB|有最大值2.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣a|+3x,其中a∈R.(1)当a=1时,求不等式f(x)≥3x+|2x+1|的解集;(2)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.【解答】解:(1)a=1时,f(x)=|x﹣1|+3x由f(x)≥|2x+1|+3x,得|x﹣1|﹣|2x+1|≥0,故|x﹣1|≥|2x+1|,解得:﹣2≤x≤0,∴不等式的解集为{x|﹣2≤x≤0}.(2)由|x﹣a|+3x≤0,可得,或.即,或.①当a>0时,不等式的解集为.由,得a=2.②当a=0时,解集为{0},不合题意.③当a<0时,不等式的解集为.由,得a=﹣4.综上,a=2,或a=﹣4.。
2018年沈阳市大东区高三质量监测数学试卷(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22-24题为选考题,其它为必考题。
共150分,考试时间为120分钟。
考生做答时,将答案答在答题卡上,在本试卷上答题无效。
第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. {}{}2|(1)4,,1,0,1,2,3M x x x R N =-<∈=-,则=N M IA.{}2,1,0B.{}2,1,0,1-C.{}3,2,0,1-D.{}3,2,1,0 2.在复平面内,复数i z i 2)1(=+ (i 为虚数单位)的共轭复数对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 3.已知n m ,为异面直线,⊥m 平面α,⊥n 平面β.直线l 满足,,,l m l n l l αβ⊥⊥⊄⊄,则A .βα//,且α//lB .βα⊥,且β⊥lC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l4. 某校为了研究学生的性别和对待某一活动的态度(支持和不支持两种态度)的关系,运用错误!未找到引用源。
列联表进行独立性检验,经计算错误!未找到引用源。
,则所得到的统计学结论是:有( )的把握说“学生性别”与“支持该活动”是有关的 .A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
附: 0.100 0.010 0.0012.7063.841 5.024 6.635 10.828 5.设数列{}n a ,1a =1,前n 项和为n S ,若13n n S S +=()*n N ∈,则数列{}n a 的第5项是 A . 81 B . 181C. 54D.1626. 在ABC ∆中,c b a ,,分别是角A 、B 、C 的对边,且c cb A 22sin 2+=⎪⎭⎫ ⎝⎛-π,则 ABC ∆的形状是( )A .直角三角形 B.等腰三角形或直角三角形C.正三角形D.等腰直角三角形7.若变量,x y 满足约束条件211y xx y y ≤⎧⎪+≤⎨⎪≥-⎩,则y x 2-最小值为A .0B .23C . -1D .48.在半径为R 球面上有A ,B ,C 三点,且AB= 38,∠ACB=60°,球心O 到平面ABC 的距离为6,则半径R=A.8B. 10 C .12 D.149.函数⎪⎩⎪⎨⎧>-≤-=1||,1||11||,1)(2x x x x x f 的大致图像是10.阅读如图所示的程序框图,若输入的10k =,则该算法的功能是A .计算数列{}12n -的前10项和B .计算数列{}12n -的前9项和C .计算数列{}21n -的前10项和D .计算数列{}21n -的前9项和11.直线λ过抛物线2y =2px(p>0)的焦点,且与抛物线交于A ,B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线方程是 ( )A .2y =12xB .2y =8xC .2y =6xD .2y =4x12.给出下列四个命题:①“0,2>-∈∃x x R x ”的否定是“0,2≤-∈∀x x R x ”; ②对于任意实数x,有)()(),()(x g x g x f x f =--=-且0>x 时, ,0)(>'x f ,0)(>'x g )()(0x g x f x '>'<时,则 ③函数)1,0(33log )(≠>-+=a a xxx f a是偶函数;④已知0>a ,则0x 满足关于x的方程b ax =的充要条件是"2121,"0202bx ax bx ax R x -≥-∈∃,其中真命题的个数是为A.1B.2C.3D.4第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13-21为必考题,每个试题考生都必须做答,第22-24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题纸中横线上.13. 某企业有三个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1:2:1,用分层抽样方法(每个分厂的产品为一层)从三个分厂生产的电子产品中共抽取100件作为使用寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分别为980h ,1020h ,1032h ,则抽取的100件产品的使用寿命的平均值为_____________14.某几何体的三视图如图所示,则该几何体的体积为_______15.已知正方形ABCD 的边长为2,P 是正方形ABCD 的外接圆上的动点,则•的最大值为 _______________.16.已知双曲线)0,0(1:2222>>=-b a by a x C ,右顶点是A ,若双曲线C 右支上存在两点B 、C ,使ΔABC 为正三角形,则双曲线C 的离心率e 的取值范围是 ________________三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤。
2018 届沈阳市高考文科数学模拟试卷及答案数学其实是一门日积月累的学科,通过多做一些数学模拟试卷来熟悉掌握好其中的数学高考题型,这样才能在高考中取得好成绩。
以下是为你的2018 届沈阳市高考文科数学模拟试卷,希望能帮到你。
一、选择题:本大题共12小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,,则()A.B.C.D.2. 已知,为虚数单位,若,则()A.B.C.D.3. 下列函数的图像关于轴对称的是()A.B.C.D.4. 已知平面向量,且,则实数的值为()A.B.C.D.5. 在等差数列中,为其前项和,若,则A.60B.75C.90D.1056. 在抛物线上,横坐标为4 的点到焦点的距离为5,则的值为A.B.1C.2D.47. 某几何体的三视图如图所示,则其表面积为A.B.C.D.8. 设点在不等式组表示的平面区域上,则的最小值为A.B.C.D.9. 若函数与存在相同的零点,则的值为A.4 或B.4 或C.5 或D.6 或10. 若将函数的图像向左平移个单位长度,则平移后图像的一个对称中心可以为()A.B.C.D.11. “”是“是函数的极小值点”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件12. 已知函数,若正实数满,则的最小值是A.1B.C.9D.18二.填空题:本大题共 4 小题,每小题 5 分.13. 在如右图所示程序框图中,任意输入一次与,则能输出“恭喜中奖! ”的概率为.14. 已知方程表示双曲线,则的取值范围是.15. 已知函数,则在处的切线方程为.16. 若,则.三.解答题:共70分。
解答应写出文字说明、解答过程或演算步骤。
第题为必做题,每个试题考生都必须作答。
第22、23 题为选考题,考生根据要求作答。
( 一) 必考题:共60 分.17. ( 本小题满分12 分)已知数列是公差不为0 的等差数列,首项,且成等比数列(I) 求数列的通项公式;(II) 设数列满足,求数列的前项和为.18. ( 本小题满分12 分) 已知幂函数在上单调递增,函数.( I )求的值;( I )当时,记,的值域分别为集合,设命题, 命题,若命题是成立的必要条件,求实数的取值范围.19. ( 本小题共12 分) 已知在△中,.( I ) 若,求;( I ) 求的最大值.20. ( 本小题共12 分) 如图,边长为 3 的正方形所在平面与等腰直角三角形所在平面互相垂直,,且,.( I ) 求证:平面; ( I ) 求三棱锥的体积.21. ( 本小题共12 分) 已知函数,(为自然对数的底数).( I ) 讨论的单调性;( I ) 当时,不等式恒成立,求实数的值.( 二)选考题:共10分。
2018—2019学年度高三年级第一次模拟考试数学科试卷(文科)答题时间:120分钟;满分:150分第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}3213A x x =-≤-≤,集合B 为函数()lg 1y x =-的定义域,则A B =( )A .()1,2B .[]1,2C .[)1,2D .(]1,2 2.2018是第( )象限角.A .一B .二C .三D .四3.已知曲线3y x =在点()1,1处的切线与直线10ax y ++=垂直,则a 的值是( ) A .1- B .1 C .13 D .13- 4.下列说法正确的是( )A .若命题,p q ⌝都是真命题,则命题“p q ∧”为真命题B .命题:“若0xy =,则0x =或0y =”的否命题为“若0xy ≠,则0x ≠或0y ≠”C .命题“R,20xx ∀∈>”的否定是“00R,20x x ∃∈≤”D .“1x =-”是“2560x x --=”的必要不充分条件5.设函数2)(xx e e x f --=,则下列结论错误的是( )A .()||f x 是偶函数B .()f x -是奇函数C .()()f x f x ⋅是奇函数D .()()f x f x ⋅是偶函数6.函数()2lg(1)2xf x x =++-的零点的个数为( )A .0B .1C .2D .37.已知52)cos(=+πα,则=+)22sin(πα( )A .725 B .725- C .1725 D .1725- 8.已知函数()2,143,1x x f x x x x ⎧≤⎪=⎨+->⎪⎩,则()f x 的值域是( ) A .[)1,+∞ B .[)0,+∞ C .()1,+∞ D .[)()0,11,+∞9.为了得到函数cos 23y x π⎛⎫=- ⎪⎝⎭的图象,只需把函数sin 2y x =的图象( )A .向左平移12π个单位长度 B .向右平移12π个单位长度C .向左平移6π个单位长度 D .向右平移6π个单位长度 10.已知()f x 是定义在R 上的奇函数,当0x ≥时,()3xf x m =+(m 为常数),则()3log 5f -的值为( ) A .4B .4-C .6D .6-11.若2018tan 1tan 1=-+αα,则=+αα2tan 2cos 1( )A .2017B .2018C .2019D .100412.已知关于x 的方程()22ln 2x x x k x +=++在1,2⎡⎫+∞⎪⎢⎣⎭上有两解,则实数k 的取值范围为( )A .ln 21,15⎛⎤+ ⎥⎝⎦B .9ln 21,105⎛⎤+ ⎥⎝⎦C .(]1,2D .(]1,e 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.若函数()1,0,0,x x f x x ⎧-<⎪=⎨⎪≥⎩,则()()2f f -= .14.设⎩⎨⎧+∞∈-∞∈=),[,),(,)(2a x x a x x x f ,若4)2(=f ,则a 的取值范围为_____________.15.求值:=-)120tan 3(10cos 70tan ____ .16.直线x a =分别与曲线21y x =+,ln y x x =+交于A 、B 两点,则||AB 的最小值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本题满分10分)已知函数()log (1)log (3)a a f x x x =-++(01a <<). (Ⅰ)求函数()f x 的定义域;(Ⅱ)若函数()f x 的最小值为4-,求实数a 的值.18.(本题满分12分)已知函数()sin cos f x x a x =+(x ∈R ),4π是函数()f x 的一个零点. (Ⅰ)求a 的值;(Ⅱ)若α,0,2πβ⎛⎫∈ ⎪⎝⎭,且45f πα⎛⎫+= ⎪⎝⎭345f πβ⎛⎫+=⎪⎝⎭,求()sin αβ+的值.19.(本题满分12分)函数)2||,0,0)(sin()(πϕωϕω<>>+=A x A x f 部分图象如图所示.(Ⅰ)求()f x 的最小正周期及解析式; (Ⅱ)设()()c o s2g x f x x =-,求函数()g x 在区间[0,]2x π∈上的最大值和最小值.20.(本题满分12分)设函数()2ln 2x f x k x =-,0k >. (Ⅰ)求()f x 的单调区间和极值;(Ⅱ)证明:若()f x 存在零点,则()f x 在区间(上仅有一个零点.21.(本小题满分12分)已知函数4()log (41)x f x kx =++()k R ∈是偶函数. (Ⅰ)求k 的值;(Ⅱ)设44()log (2)3xg x a a =⋅-,若函数()f x 与()g x 的图象有且只有一个公共点, 求实数a 的取值范围.22.(本小题满分12分)已知函数()()ln f x ax x a a R =--∈. (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)当()0,a ∈+∞,()1,x ∈+∞时,证明:()ln f x ax x <.2018—2019学年度高三年级第一次模拟考试数学科试卷(文科)答题时间:120分钟;满分:150分;命题人:高三备课组第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}3213A x x =-≤-≤,集合B 为函数()lg 1y x =-的定义域,则A B =( )A .()1,2B .[]1,2C .[)1,2D .(]1,2 答案:D2.2018是第( )象限角.A .一B .二C .三D .四 答案:C3.已知曲线3y x =在点()1,1处的切线与直线10ax y ++=垂直,则a 的值是( )A .1-B .1C .13D .13- 答案:C4.下列说法正确的是( )A .若命题,p q ⌝都是真命题,则命题“p q ∧”为真命题B .命题:“若0xy =,则0x =或0y =”的否命题为“若0xy ≠,则0x ≠或0y ≠”C .命题“R,20xx ∀∈>”的否定是“00R,20x x ∃∈≤”D .“1x =-”是“2560x x --=”的必要不充分条件答案:C5.设函数2)(xx e e x f --=,则下列结论错误的是( )A .()||f x 是偶函数B .()f x -是奇函数C .()()f x f x ⋅是奇函数D .()()f x f x ⋅是偶函数 答案:D6.函数()2lg(1)2xf x x =++-的零点的个数为( )A .0B .1C .2D .3答案:B7.已知52)cos(=+πα,则=+)22sin(πα( ) A .725 B .725- C .1725 D .1725- 答案:D8.已知函数()2,143,1x x f x x x x ⎧≤⎪=⎨+->⎪⎩,则()f x 的值域是( ) A .[)1,+∞ B .[)0,+∞ C .()1,+∞ D .[)()0,11,+∞答案:B9.为了得到函数cos 23y x π⎛⎫=- ⎪⎝⎭的图象,只需把函数sin 2y x =的图象( )A .向左平移12π个单位长度 B .向右平移12π个单位长度C .向左平移6π个单位长度D .向右平移6π个单位长度 答案:A10.已知()f x 是定义在R 上的奇函数,当0x ≥时,()3xf x m =+(m 为常数),则()3log 5f -的值为( ) A .4B .4-C .6D .6-答案:B 11.若2018tan 1tan 1=-+αα,则=+αα2tan 2cos 1( )A .2017B .2018C .2019D .1004答案:B12.已知关于x 的方程()22ln 2x x x k x +=++在1,2⎡⎫+∞⎪⎢⎣⎭上有两解,则实数k 的取值范围为( )A .ln 21,15⎛⎤+ ⎥⎝⎦B .9ln 21,105⎛⎤+ ⎥⎝⎦ C .(]1,2 D .(]1,e 答案:B第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若函数()1,0,0,x x f x x ⎧-<⎪=⎨⎪≥⎩,则()()2f f -= .14.设⎩⎨⎧+∞∈-∞∈=),[,),(,)(2a x x a x x x f ,若4)2(=f ,则a 的取值范围为_____________.答案:]2,(-∞15.求值:=-)120tan 3(10cos 70tan ____ . 答案:-116.直线x a =分别与曲线21y x =+,ln y x x =+交于A 、B 两点,则||AB 的最小值为 . 答案:2三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本题满分10分)已知函数()log (1)log (3)a a f x x x =-++(01a <<). (Ⅰ)求函数()f x 的定义域;(Ⅱ)若函数()f x 的最小值为4-,求实数a 的值.解:(Ⅰ)由1030x x ->⎧⎨+>⎩,得31x -<<∴定义域为{}.13<<-x x(Ⅱ)函数化为22()log (1)(3)log (23)log (1)4a a a f x x x x x x ⎡⎤=-+=--+=-++⎣⎦∵31x -<<,∴20(1)44x <-++≤ ∵01a <<,2log (1)4log 4a a x ⎡⎤-++≥⎣⎦∴,即min ()log 4a f x =由log 44a =-,得44a -=,1442a -==∴ 故实数a 的值为.2218.(本题满分12分)已知函数()sin cos f x x a x =+(x ∈R ),4π是函数()f x 的一个零点. (Ⅰ)求a 的值;(Ⅱ)若α,0,2πβ⎛⎫∈ ⎪⎝⎭,且4f πα⎛⎫+= ⎪⎝⎭34f πβ⎛⎫+=⎪⎝⎭()sin αβ+的值. 解:(Ⅰ)∵4π是函数()f x 的一个零点, ∴ sin cos 0444f a πππ⎛⎫=+=⎪⎝⎭. ∴ 1a =-.(Ⅱ)()sin cos f x x x =-cos 22x x ⎫=-⎪⎪⎭4x π⎛⎫=- ⎪⎝⎭.∴45f πα⎛⎫+= ⎪⎝⎭ 5α=. ∴ sin 5α=.∵ 0,2πα⎛⎫∈ ⎪⎝⎭,∴ cos 5α==.∵34f πβ⎛⎫+= ⎪⎝⎭ 2πβ⎛⎫+= ⎪⎝⎭cos β=.∵0,2πβ⎛⎫∈ ⎪⎝⎭,∴ sin β==.∴()sin sin cos cos sin αβαβαβ+=+=2=. 19.(本题满分12分)函数)2||,0,0)(sin()(πϕωϕω<>>+=A x A x f 部分图象如图所示.(Ⅰ)求()f x 的最小正周期及解析式;(Ⅱ)设()()c o s2g x f x x =-,求函数()g x 在区间[0,]2x π∈上的最大值和最小值. 解:(Ⅰ)由图可得1A =,22362T πππ=-=,∴T =π ∴2ω= 当6x π=时,()1f x =,可得 sin(2)16ϕπ⋅+=,∵ ||2ϕπ<∴6ϕπ=∴()sin(2)6f x x π=+(Ⅱ)()()cos 2sin(2)cos 26g x f x x x x π=-=+-sin 2coscos 2sin cos 266x x x ππ=+-12cos 222x x =-sin(2)6x π=- ∵02x π≤≤,∴52666x πππ-≤-≤ 当262x ππ-=,即3x π=时,()g x 有最大值为1;当266x ππ-=-,即0x =时,()g x 有最小值12-.20.(本题满分12分)设函数()2ln 2x f x k x =-,0k >.(Ⅰ)求()f x 的单调区间和极值;(Ⅱ)证明:若()f x 存在零点,则()f x 在区间(上仅有一个零点.所以,()f x 的单调递减区间是,单调递增区间是)+∞;()f x 在x =处取得极小值(1ln )2k k f -=.无极大值(Ⅱ)由(Ⅰ)知,()f x 在区间(0,)+∞上的最小值为(1ln )2k k f -=. 因为()f x 存在零点,所以(1ln )02k k -≤,从而k e ≥.当k e =时,()f x 在区间上单调递减,且0f =,所以x =是()f x 在区间上的唯一零点.当k e >时,()f x 在区间上单调递减,且1(1)02f =>,02e kf -=<,所以()f x 在区间上仅有一个零点.综上可知,若()f x 存在零点,则()f x 在区间上仅有一个零点. 21.(本小题满分12分)已知函数4()log (41)x f x kx =++()k R ∈是偶函数. (Ⅰ)求k 的值;(Ⅱ)设44()log (2)3xg x a a =⋅-,若函数()f x 与()g x 的图象有且只有一个公共点, 求实数a 的取值范围. 解:(Ⅰ)由函数()f x 是偶函数可知:()()f x f x =-44log (41)log (41)x x kx kx -∴++=+-441log 241x x kx -+=-+ 即2x kx =-对一切x R ∈恒成立 12k ∴=-(Ⅱ)函数()f x 与()g x 的图象有且只有一个公共点即方程4414log (41)log (2)23x xx a a +-=⋅-有且只有一个实根化简得:方程142223x xx a a +=⋅-有且只有一个实根令20xt =>,则方程24(1)103a t at ---=有且只有一个正根(1)314a t =⇒=-,不合题意;(2)304a ∆=⇒=或3-若3142a t =⇒=-,不合题意;若132a t =-⇒=(3)一个正根与一个负根,即1011a a -<⇒>- 以上结果经过验证均满足4203xa a ->(此步没有可不扣分)综上,实数a 的取值范围是),1(}3{+∞-22.(本小题满分12分)已知函数()()ln f x ax x a a R =--∈. (Ⅰ)讨论函数()f x 的单调性;- 11 - (Ⅱ)当()0,a ∈+∞,()1,x ∈+∞时,证明:()ln f x ax x <. 解:(Ⅰ)()f x 的定义域为()0,+∞,()()110ax f x a x x x -'=-=>, 当0a ≤时,()0,x ∈+∞,()0f x '<,函数()f x 单调递减;当0a >时,10,x a ⎛⎫∈ ⎪⎝⎭,()0f x '<,函数()f x 单调递减,1x a ⎛⎫∈+∞ ⎪⎝⎭,()0f x '>,函数()f x 单调递增,所以当0a ≤时,函数()f x 在()0,+∞单调递减; 当0a >时,函数()f x 在10,a ⎛⎫⎪⎝⎭单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭单调递增.(Ⅱ)设()()ln ln ln g x ax x f x ax x ax x a =-=-++,()1ln g x a x x '=+,设()1ln x a x x ϕ=+,()2211a ax x x x x ϕ-'=-=.①当0a ≥时,10ax ->,()0x ϕ'>,所以()x ϕ'在()1,+∞上单调递增; ∴()()110x ϕϕ>=>,即()0g x '>,()g x 在()1,+∞上单调递增, ∴()()10g x g a a >=-+=,不等式成立;②当01a <<时,11,x a ⎛⎫∈ ⎪⎝⎭,()0x ϕ'<;1,x a ⎛⎫∈+∞ ⎪⎝⎭,()0x ϕ'>,所以()x ϕ在11,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增;∴()()11ln 0x a a a ϕϕ⎛⎫>=-> ⎪⎝⎭,即()0g x '>,()g x 在()1,+∞上单调递增. ∴()()10g x g a a >=-+=。
2018年辽宁省沈阳市高考数学一模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若集合A={x|x2﹣2x﹣3<0},集合B={x|x<1},则A∩B等于()A.(1,3) B.(﹣∞,﹣1)C.(﹣1,1)D.(﹣3,1)2.(5分)已知i为虚数单位,复数的共扼复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知平面向量,,且,则实数x的值为()A.B.C.D.4.(5分)已知tanθ=2,则的值为()A.B.C.D.5.(5分)已知一个算法的程序框图如图所示,当输出的结果为0时,输入的x的值为()A.﹣3 B.﹣3或9 C.3或﹣9 D.﹣9或﹣36.(5分)某四棱锥的三视图如图所示,则该四棱锥的侧面积是()A.B.C.D.7.(5分)在等差数列{a n}中,若S n为前n项和,2a7=a8+5,则S11的值是()A.55 B.11 C.50 D.608.(5分)甲、乙、丙三人中,一人是教师、一人是记者、一人是医生.已知:丙的年龄比医生大;甲的年龄和记者不同;记者的年龄比乙小.根据以上情况,下列判断正确的是()A.甲是教师,乙是医生,丙是记者B.甲是医生,乙是记者,丙是教师C.甲是医生,乙是教师,丙是记者D.甲是记者,乙是医生,丙是教师9.(5分)已知函数,以下命题中假命题是()A.函数f(x)的图象关于直线对称B.是函数f(x)的一个零点C.函数f(x)的图象可由g(x)=sin2x的图象向左平移个单位得到D.函数f(x)在上是增函数10.(5分)设函数f(x)=xe x+1,则()A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=﹣1为f(x)的极大值点D.x=﹣1为f(x)的极小值点11.(5分)已知双曲线,O为坐标原点,F为双曲线的右焦点,以OF为直径的圆与双曲线的渐近线交于一点A,若,则双曲线C的离心率为()A.2 B.C.D.12.(5分)设函数f(x)是定义在R上的偶函数,且f(x+2)=f(2﹣x),当x∈[﹣2,0]时,,则在区间(﹣2,6)内关于x的方程f(x)﹣log8(x+2)=0解的个数为()A.1 B.2 C.3 D.4二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)设变量x,y满足约束条件:,则z=x﹣3y的最小值为.14.(5分)已知抛物线y2=4x的一条弦AB恰好以P(1,1)为中点,则弦AB所在直线方程是.15.(5分)在数列{a n}中,a1=1,a2=2,a n+1=3a n﹣2a n﹣1(n≥2),则a n=.16.(5分)已知正四棱锥S﹣ABCD中,,那么当该棱锥的体积最大时,它的高为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足,.(1)求△ABC的面积;(2)若b+c=6,求a的值.18.(12分)高中生在被问及“家,朋友聚集的地方,个人空间”三个场所中“感到最幸福的场所在哪里?”这个问题时,从中国某城市的高中生中,随机抽取了55人,从美国某城市的高中生中随机抽取了45人进行答题.中国高中生答题情况是:选择家的占、朋友聚集的地方占、个人空间占.美国高中生答题情况是:朋友聚集的地方占、家占、个人空间占.(Ⅰ)请根据以上调查结果将下面2×2列联表补充完整;并判断能否有95%的把握认为“恋家(在家里感到最幸福)”与国别有关;(Ⅱ)从被调查的不“恋家”的美国学生中,用分层抽样的方法选出4人接受进一步调查,再从4人中随机抽取2人到中国交流学习,求2人中含有在“个人空间”感到幸福的学生的概率.附:,其中n=a+b+c+d.19.(12分)如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,AB∥CD,AB=2,CD=3,M为PC 上一点,且PM=2MC.(1)求证:BM∥平面PAD;(2)若AD=2,PD=3,,求三棱锥P﹣ADM的体积.20.(12分)已知椭圆的左、右焦点分别为F1、F2,点在椭圆上,且有.(1)求椭圆C的标准方程;(2)过F2的直线l与椭圆交于A、B两点,求△AOB面积的最大值.21.(12分)已知函数f(x)=(x+1)2﹣3alnx,a∈R.(1)求函数f(x)图象经过的定点坐标;(2)当a=1时,求曲线f(x)在点(1,f(1))处的切线方程及函数f(x)单调区间;(3)若对任意x∈[1,e],f(x)≤4恒成立,求实数a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,已知曲线C1的参数方程为(t为参数),曲线C2的直角坐标方程为x2+(y﹣2)2=4.以直角坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,射线l的极坐标方程为θ=α,(0<α<π)(1)求曲线C1、C2的极坐标方程;(2)设点A、B为射线l与曲线C1、C2除原点之外的交点,求|AB|的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣a|+3x,其中a∈R.(1)当a=1时,求不等式f(x)≥3x+|2x+1|的解集;(2)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.2018年辽宁省沈阳市高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若集合A={x|x2﹣2x﹣3<0},集合B={x|x<1},则A∩B等于()A.(1,3) B.(﹣∞,﹣1)C.(﹣1,1)D.(﹣3,1)【解答】解:A={x|x2﹣2x﹣3<0}={x|﹣1<x<3},集合B={x|x<1},则A∩B={x|﹣1<x<1}=(﹣1,1),故选:C2.(5分)已知i为虚数单位,复数的共扼复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵=,∴复数的共扼复数为,在复平面内对应的点的坐标为(),位于第二象限.故选:B.3.(5分)已知平面向量,,且,则实数x的值为()A.B.C.D.【解答】解:根据题意,向量,,则﹣=(﹣3,x﹣),又由,则(﹣)•=(﹣3)×1+(x﹣)×=0,解可得x=2,故选:B.4.(5分)已知tanθ=2,则的值为()A.B.C.D.【解答】解:∵tanθ=2,则=1++=1++=+=,故选:C.5.(5分)已知一个算法的程序框图如图所示,当输出的结果为0时,输入的x的值为()A.﹣3 B.﹣3或9 C.3或﹣9 D.﹣9或﹣3【解答】解:输出才结果为零,有y=0由程序框图可知,当:y=()x﹣8=0时,解得选x=﹣3;当y=2﹣log3x=0,解得x=9.综上,有x=﹣3,或者9.故选:B.6.(5分)某四棱锥的三视图如图所示,则该四棱锥的侧面积是()A.B.C.D.【解答】解:由四棱锥的三视图得到该四棱锥是P﹣ABCD,其中,底面ABCD是边长为2的正方形,PC⊥平面ABCD,如图,PB=PD==2,∴该四棱锥的侧面积是:S=S△PBC+S△PDC+S△PAB+S△PCD==4+4.故选:A.7.(5分)在等差数列{a n}中,若S n为前n项和,2a7=a8+5,则S11的值是()A.55 B.11 C.50 D.60【解答】解:设等差数列{a n}的公差为d,∵2a7=a8+5,∴2a1+12d=a1+7d+5,∴a1+5d=5=a6,则S11==11a6=55.故选:A.8.(5分)甲、乙、丙三人中,一人是教师、一人是记者、一人是医生.已知:丙的年龄比医生大;甲的年龄和记者不同;记者的年龄比乙小.根据以上情况,下列判断正确的是()A.甲是教师,乙是医生,丙是记者B.甲是医生,乙是记者,丙是教师C.甲是医生,乙是教师,丙是记者D.甲是记者,乙是医生,丙是教师【解答】解:由甲的年龄和记者不同,记者的年龄比乙小,得到丙是记者,从而排除B和D;由丙的年龄比医生大,得到乙不是医生,从而乙是教师,甲是医生.故选:C.9.(5分)已知函数,以下命题中假命题是()A.函数f(x)的图象关于直线对称B.是函数f(x)的一个零点C.函数f(x)的图象可由g(x)=sin2x的图象向左平移个单位得到D.函数f(x)在上是增函数【解答】解:对于A,当x=时,函数f(x)=sin(2×+)=1为最大值,∴f(x)的图象关于直线对称,A正确;对于B,当x=﹣时,函数f(x)=sin(﹣2×+)=0,∴x=﹣是函数f(x)的一个零点,B正确;对于C,函数f(x)=sin(2x+)=sin2(x+),其图象可由g(x)=sin2x的图象向左平移个单位得到,∴C错误;对于D,x∈[0,]时,2x+∈[,],∴函数f(x)=sin(2x+)在上是增函数,D正确.故选:C.10.(5分)设函数f(x)=xe x+1,则()A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=﹣1为f(x)的极大值点D.x=﹣1为f(x)的极小值点【解答】解:由于f(x)=xe x,可得f′(x)=(x+1)e x,令f′(x)=(x+1)e x=0可得x=﹣1,令f′(x)=(x+1)e x>0可得x>﹣1,即函数在(﹣1,+∞)上是增函数令f′(x)=(x+1)e x<0可得x<﹣1,即函数在(﹣∞,﹣1)上是减函数所以x=﹣1为f(x)的极小值点.故选:D.11.(5分)已知双曲线,O为坐标原点,F为双曲线的右焦点,以OF为直径的圆与双曲线的渐近线交于一点A,若,则双曲线C的离心率为()A.2 B.C.D.【解答】解:由直径所对的圆周角为直角,可得∠OAF=90°,在△OAF中,,可得AF=OFcos30°=c,由AF为焦点(c,0)到渐近线bx﹣ay=0的距离,即为==b,即有b=c,e====2,故选A.12.(5分)设函数f(x)是定义在R上的偶函数,且f(x+2)=f(2﹣x),当x∈[﹣2,0]时,,则在区间(﹣2,6)内关于x的方程f(x)﹣log8(x+2)=0解的个数为()A.1 B.2 C.3 D.4【解答】解:对于任意的x∈R,都有f(2+x)=f(2﹣x),∴f(x+4)=f[2+(x+2)]=f[(x+2)﹣2]=f(x),∴函数f(x)是一个周期函数,且T=4.又∵当x∈[﹣2,0]时,f(x)=()x﹣1,且函数f(x)是定义在R上的偶函数,且f(6)=1,则函数y=f(x)与y=log 8(x+2)在区间(﹣2,6)上的图象如下图所示:根据图象可得y=f(x)与y=log 8(x+2)在区间(﹣2,6)上有3个不同的交点.故选:C..二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)设变量x,y满足约束条件:,则z=x﹣3y的最小值为﹣10.【解答】解:画出约束条件:可行域如下图,由z=x﹣3y得y=x﹣;平移直线y=x﹣,由图象可知当直线经过点B时,直线y=x﹣的截距最大,此时z最小,由解得,B(﹣1,3);故此时z=﹣1﹣3×3=﹣10;故答案为:﹣1014.(5分)已知抛物线y2=4x的一条弦AB恰好以P(1,1)为中点,则弦AB所在直线方程是2x﹣y﹣1=0.【解答】解:设A(x1,y1),B(x2,y2),代入抛物线方程得y12=4x1,①,y22=4x2,②,①﹣②整理得k===2,则弦AB所在直线方程为y﹣1=2(x﹣1),即为2x﹣y﹣1=0.故答案为:2x﹣y﹣1=0.15.(5分)在数列{a n}中,a1=1,a2=2,a n+1=3a n﹣2a n﹣1(n≥2),则a n=2n﹣1(n∈N*).=3a n﹣2a n﹣1(n≥2),【解答】解:∵a n+1∴a n﹣a n=2a n﹣2a n﹣1=2(a n﹣a n﹣1)(n≥2),+1可得:a3﹣a2=2(a2﹣a1)a4﹣a3=2(a3﹣a2)…a n+1﹣a n=2(a n﹣a n﹣1)﹣a2=2(a n﹣a1),可得:a n+1﹣2=2(a n﹣1),即:a n+1=2a n,相加可得:a n+1∴数列{a n}是等比数列,n∈N*,∴.故答案为:2n﹣1(n∈N*).16.(5分)已知正四棱锥S﹣ABCD中,,那么当该棱锥的体积最大时,它的高为6.【解答】解:设正四棱锥S﹣ABCD的底面边长为a,则高h==,∴体积V=a2h=,设y=108a4﹣a6,则y′=432a3﹣3a5,由y′=432a3﹣3a5=0,解得a=0或a=12,∴当a=12时,体积最大,此时h==6,故答案为:6.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足,.(1)求△ABC的面积;(2)若b+c=6,求a的值.【解答】解:(1)因为,所以,.又由得bccosA=3,所以bc=5因此.(2)由(1)知,bc=5,又b+c=6,由余弦定理,得,所以18.(12分)高中生在被问及“家,朋友聚集的地方,个人空间”三个场所中“感到最幸福的场所在哪里?”这个问题时,从中国某城市的高中生中,随机抽取了55人,从美国某城市的高中生中随机抽取了45人进行答题.中国高中生答题情况是:选择家的占、朋友聚集的地方占、个人空间占.美国高中生答题情况是:朋友聚集的地方占、家占、个人空间占.(Ⅰ)请根据以上调查结果将下面2×2列联表补充完整;并判断能否有95%的把握认为“恋家(在家里感到最幸福)”与国别有关;(Ⅱ)从被调查的不“恋家”的美国学生中,用分层抽样的方法选出4人接受进一步调查,再从4人中随机抽取2人到中国交流学习,求2人中含有在“个人空间”感到幸福的学生的概率.附:,其中n=a+b+c+d.【解答】解:(Ⅰ)由已知得,∴=,∴有95%的把握认为“恋家”与否与国别有关;(Ⅱ)用分层抽样的方法抽出4人,其中在“朋友聚焦的地方”感到幸福的有3人,在“个人空间”感到幸福的有1人,分别设为a1,a2,a3,b;∵Ω={(a1,a2),(a1,a3),(a1,b),(a2,a3),(a2,b),(a3,b)},∴n=6;设“含有在“个人空间”感到幸福的学生”为事件A,A={(a1,b),(a2,b),(a3,b)},∴m=3;则所求的概率为.19.(12分)如图,在四棱锥P﹣ABCD中,PD⊥底面ABCD,AB∥CD,AB=2,CD=3,M为PC水秀中华上一点,且PM=2MC.(1)求证:BM∥平面PAD;(2)若AD=2,PD=3,,求三棱锥P﹣ADM的体积.【解答】(1)证明:法一、过M作MN∥CD交PD于点N,连接AN.∵PM=2MC,∴.又∵,且AB∥CD,∴AB∥MN,AB=MN,则四边形ABMN为平行四边形,∴BM∥AN.又∵BM⊄平面PAD,AN⊂平面PAD,∴BM∥平面PAD.法二、过点M作MN⊥CD于点N,N为垂足,连接BN.由题意,PM=2MC,则DN=2NC,又∵DC=3,DN=2,∴AB=DN,AB∥DN,∴四边形ABND为平行四边形,则BN∥AD.∵PD⊥平面ABCD,DC⊂平面ABCD,∴PD⊥DC.又MN⊥DC,∴PD∥MN.又∵BN⊂平面MBN,MN⊂平面MBN,BN∩MN=N;∵AD⊂平面PAD,PD⊂平面PAD,AD∩PD=D;∴平面MBN∥平面PAD.∵BM⊂平面MBN,∴BM∥平面PAD;(2)解:过B作AD的垂线,垂足为E.∵PD⊥平面ABCD,BE⊂平面ABCD,∴PD⊥BE.又∵AD⊂平面PAD,PD⊂平面PAD,AD∩PD=D.∴BE⊥平面PAD.由(1)知,BM∥平面PAD,∴M到平面PAD的距离等于B到平面PAD的距离,即BE.在△ABC中,AB=AD=2,,∴.∴.20.(12分)已知椭圆的左、右焦点分别为F1、F2,点在椭圆上,且有.(1)求椭圆C的标准方程;(2)过F2的直线l与椭圆交于A、B两点,求△AOB面积的最大值.【解答】解:(1)由,得,∴.将代入,得b2=1.∴椭圆C的方程为;(2)由已知,直线l的斜率为零时,不合题意;设直线方程为x﹣1=my,点A(x1,y1),B(x2,y2),联立,得(m2+2)y2+2my﹣1=0,由韦达定理,得,∴=====,当且仅当,即m=0时,等号成立.∴△AOB面积的最大值为.21.(12分)已知函数f(x)=(x+1)2﹣3alnx,a∈R.(1)求函数f(x)图象经过的定点坐标;(2)当a=1时,求曲线f(x)在点(1,f(1))处的切线方程及函数f(x)单调区间;(3)若对任意x∈[1,e],f(x)≤4恒成立,求实数a的取值范围.【解答】解:(1)当x=1时,ln1=0,所以f(1)=4,所以函数f(x)的图象无论a为何值都经过定点(1,4).(2)当a=1时,f(x)=(x+1)2﹣3lnx.f(1)=4,,f'(1)=1,则切线方程为y﹣4=1×(x﹣1),即y=x+3.在x∈(0,+∞)时,如果,即时,函数f(x)单调递增;如果,即时,函数f(x)单调递减.(3),x>0.当a≤0时,f'(x)>0,f(x)在[1,e]上单调递增.f(x)min=f(1)=4,f(x)≤4不恒成立.当a>0时,设g(x)=2x2+2x﹣3a,x>0.∵g(x)的对称轴为,g(0)=﹣3a<0,∴g(x)在(0,+∞)上单调递增,且存在唯一x0∈(0,+∞),使得g(x0)=0.∴当x∈(0,x0)时,g(x)<0,即f'(x)<0,f(x)在(0,x0)上单调递减;∴当x∈(x0,+∞)时,g(x)>0,即f'(x)>0,f(x)在(x0,+∞)上单调递增.∴f(x)在[1,e]上的最大值f(x)max=max{f(1),f(e)}.∴,得(e+1)2﹣3a≤4,解得.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,已知曲线C1的参数方程为(t为参数),曲线C2的直角坐标方程为x2+(y﹣2)2=4.以直角坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,射线l的极坐标方程为θ=α,(0<α<π)(1)求曲线C1、C2的极坐标方程;(2)设点A、B为射线l与曲线C1、C2除原点之外的交点,求|AB|的最大值.【解答】解(1)由曲线C1的参数方程(t为参数)消去参数t得x2+(y﹣1)2=1,即x2+y2﹣2y=0,∴曲线C1的极坐标方程为ρ=2sinθ.由曲线C2的直角坐标方程x2+(y﹣2)2=4,得x2+y2﹣4y=0,∴曲线C2的极坐标方程ρ=4sinθ.(2)联立,得A(2sinα,α),∴|OA|=2sinα,联立,得B(4sinα,α),∴|OB|=4sinα.∴|AB|=|OB|﹣|OA|=2sinα.水秀中华∵0<α<π,∴当时,|AB|有最大值2.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣a|+3x,其中a∈R.(1)当a=1时,求不等式f(x)≥3x+|2x+1|的解集;(2)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.【解答】解:(1)a=1时,f(x)=|x﹣1|+3x由f(x)≥|2x+1|+3x,得|x﹣1|﹣|2x+1|≥0,故|x﹣1|≥|2x+1|,解得:﹣2≤x≤0,∴不等式的解集为{x|﹣2≤x≤0}.(2)由|x﹣a|+3x≤0,可得,或.即,或.①当a>0时,不等式的解集为.由,得a=2.②当a=0时,解集为{0},不合题意.③当a<0时,不等式的解集为.由,得a=﹣4.综上,a=2,或a=﹣4.。