第四章_静态场的解
- 格式:ppt
- 大小:1.48 MB
- 文档页数:60
《电磁场理论》知识点第一章 矢量分析一、基本概念、规律矢量微分算子在不同坐标系中的表达,标量场的梯度、矢量场的散度和旋度在不同坐标系中的计算公式,常用的矢量恒等式(见附录一1.和2.)、矢量积分定理(高斯散度定理、斯托克斯旋度定理及亥姆霍兹定理)。
二、基本技能练习1、已知位置矢量z y x e z e y ex r ˆˆˆ++=ρ,r 是它的模。
在直角坐标系中证明 (1)r r r ρ=∇ (2)3=•∇r ρ (3)∇×0=r ρ (4)∇×(0)=∇r (5)03=•∇r rρ2、已知矢量z y e xy e x eA z y x 2ˆˆˆ++=ϖ,求出其散度和旋度。
3、在直角坐标系证明0A ∇⋅∇⨯=r4、已知矢量y x e eA ˆ2ˆ+=ϖ,z x e eB ˆ3ˆ-=ϖ,分别求出矢量A ϖ和B ϖ的大小及B A ϖϖ⋅ 5、证明位置矢量x y z r e x e y e z =++r r r r的散度,并由此说明矢量场的散度与坐标的选择无关。
6、矢量函数z y x e x e y ex A ˆˆˆ2++-=ϖ,试求 (1)A ϖ⋅∇(2)若在xy 平面上有一边长为2的正方形,且正方形的中心在坐标原点,试求该矢量A ϖ穿过此正方形的通量。
第二章 静电场一、基本常数真空中介电常数0ε二、基本概念、规律静电场、库仑定律、电场强度、电位及其微分方程、电荷密度、电偶极子模型、高斯定理、环路定理、极化强度矢量、电位移矢量、场方程(真空中和电介质中)、介质性能方程,边界条件,场能及场能密度。
三、基本技能练习1、设非均匀介质中的自由电荷密度为ρ,试证明其中的束缚电荷密度为)(00εεερεεερ-∇•---=D b ρ。
2、证明极化介质中,极化电荷体密度b ρ与自由电荷体密度ρ的关系为:ρεεερ0--=b 。
3、一半径为a 内部均匀分布着体密度为0ρ的电荷的球体。
求任意点的电场强度及电位。
第四章 准静态电磁场4.1 准静态电磁场1.电准静态场由麦克斯韦方程组知,时变电场由时变电荷和时变磁场产生的感应电压产生。
时变电荷产生库仑电场,时变磁场产生感应电场。
在低频情况下,一般时变磁场产生的感应电场远小于时变电荷产生的库仑电场,可以忽略。
此时,时变电场满足ρ=∙∇≈⨯∇D 0E 称为电准静态场。
可见,电准静态场与静电场类似,可以定义时变电位函数ϕ ,即ϕ-∇=E且满足泊松方程ερϕ-=∇2 与电准静态场对应的时变磁场满足 0t =∙∇∂∂+=⨯∇B DE H γ 2.磁准静态场由麦克斯韦方程组知,时变磁场由时变传导电流和时变电场产生的位移电流产生。
在低频情况下,一般位移电流密度远小于时变传导电流密度,可以忽略。
此时,时变磁场满足0=∙∇≈⨯∇B J H c称为磁准静态场。
可见,磁准静态场与恒定磁场类似,可以定义时变矢量位函数A ,即A B ⨯∇=且满足矢量泊松方程c J A μ-=∇2与磁准静态场对应的时变电场满足ρ=∙∇∂∂-=⨯∇D B E t例1:图示圆形平板电容器,极板间距d = 0.5 cm ,电容器填充εr =5.4的云母介质。
忽略边缘效应,极板间外施电压t t u 314cos 2110)(=V ,求极板间的电场与磁场。
[解]:极板间的电场由极板上的电荷和时变磁场产生。
在工频情况下,忽略时变磁场的影响,即极板间的电场为电准静态场。
在如示坐标系下,得()()()V/m t 31410113t 31410501102d u z 4z 2z e e e E -⨯=-⨯⨯=-=-cos .cos . 由全电流定律得出,即由()z z 20r 4Sl t 31431410113d t H 2d e e S D l H ∙-π⨯⨯-=∙∂∂=π=∙⎰⎰ρεερφsin . 极板间磁场为φφφρe e H t 314103352H 4sin .-⨯== A/m也可以由麦克斯韦方程直接求解磁场强度,如下tt 0r ∂∂=∂∂=⨯∇E D H εε 展开,得t 314106694H 14sin .)(-⨯=∂∂φρρρ 解得φφφρe e H t 314103352H 4sin .-⨯== A/m 讨论:若考虑时变磁场产生的感应电场,则有tt ∂∂-=∂∂-=⨯∇H B E 0μ 展开,得t E z 314cos 103.231440ρμρ-⨯⨯-=∂∂- 解得 t E z 314cos 10537.428ρ-⨯= V/m可见,在工频情况下,由时变磁场产生的感应电场远小于库仑电场。
第四章 静态效应4.1 静态效应的物理原因和特点在频率域电磁测深中,静态效应是较为麻烦的问题。
这种效应总是与二维或三维构造相关的。
一般,它主要是由于近地表的电性横向不均匀性或地形起伏引起的,并且可能在某种程度上影响所有的电场测量。
这些非均匀体表面上的电荷分布可能使电场数据向上或向下移动一个数值,这个数值与频率无关。
因此视电阻率曲线也发生移动,但相位曲线不受影响。
如果视电阻率曲线向上或向下移动一个数值,并仍保持平行,但相位曲线仍保持重合,则定义为静态位移。
静态效应的强度可达两个数量级,在推断深度时会引起大的误差,并使构造的解释复杂化。
在不均匀体的界面上,所有穿过边界的场和位都是连续的,只有电感应强度的法向分量不连续:s n n q D D =-21 (4.1.1)此处q s 为物体表面的面电荷密度。
利用D =εE ,将(4.1.1)改写为:εs n n q E E =-21 (4.1.2) 由欧姆定律的微分形式:E J σ=及电流连续性方程,并假定频率依从关系为e -i ωt ,在交流情况下,(4.1.2)式可写为:()()201012n n E i E i ωεσωεσ-=- (4.1.3) 由(4.1.2)和(4.1.3)可得:ωεσσσε011202i E q n s --= (4.1.4) 在准静态极限下(ωεσ0>>),则有:11202σσσε-=n s E q (4.1.5) 这个表面电荷密度是很小的,然而它对电场的作用却不可忽略,它是所谓静态位移的物理原因。
正如Ward 和Hohmann(1987)的表达式所所示:⎰-=-∇=ds r q V V s04πεE (4.1.6)式中ds 为分布有电荷的表面上的面积微元。
当趋肤深度比不均匀体的尺寸大许多时,便可察觉到这种表面电荷的影响。
这表明,在地表或地表附近小的二维或三维不均匀体可能对整个电场测量都有影响。
当然,较深的物体也能引起静态位移,但地表附近的不均匀性是最麻烦的。
《电磁场理论》知识点第一章矢量分析一、基本概念、规律矢量微分算子在不同坐标系中的表达,标量场的梯度、矢量场的散度和旋度在不同坐标系中的计算公式,常用的矢量恒等式(见附录一1•和2.)、矢量积分定理(高斯散度定理、斯托克斯旋度定理及亥姆霍兹定理)。
二、基本技能练习1、已知位置矢量r x? y@y ze?z,r是它的模。
在直角坐标系中证明r r(1) r (2) ?r 3 (3) x r 0 (4) x( r) 0 (5) ?-y 0r r22、已知矢量A e x x e y xy gy z,求出其散度和旋度。
r3、在直角坐标系证明 A 04、已知矢量A e x 2?y, B e x3e z,分别求出矢量A和B的大小及A B5、证明位置矢量r £x X e『y e z Z的散度,并由此说明矢量场的散度与坐标的选择无关。
6、矢量函数A x2e x y?y x?z,试求(1)A(2)若在xy平面上有一边长为2的正方形,且正方形的中心在坐标原点,试求该矢量A穿过此正方形的通量。
第二章静电场一、基本常数二、基本概念、规律静电场、库仑定律、电场强度、电位及其微分方程、电荷密度、电偶极子模型、高斯定理、环路定理、极化强度矢量、电位移矢量、场方程(真空中和电介质中)、介质性能方程,边界条件,场能及场能密度。
三、基本技能练习2、证明极化介质中,极化电荷体密度b与自由电荷体密度的关系为:bD?(—)。
3、一半径为a内部均匀分布着体密度为0的电荷的球体。
求任意点的电场强度及电位。
媒质2。
已知空气中的电场强度为E14e x e z,求(1)空气中的电位移矢量(2)媒质2中的电场强度。
5、半径为a的均匀带电无限长圆柱导体,单位长度上的电荷量为,求空间电场强度分布。
6、半径为a的导体球外套一层厚为(b a)的电介质(其介电系数为),设导体球带电为q,求任意点的电位。
7、一个半径为a的电介质球内含有均匀分布的自由电荷,电荷体密度为证明其中心点的电位是(2 r 1) a 厶8、一个半径为a,带电量为Q的导体球,球外套有半径为b的同心介质球壳,壳外是空气,壳内介质的介电系数为「求空间任一点的D, E, P及束缚电荷密度。
电磁场与电磁波第二版(周克定著)课后
习题答案下载
电磁场与电磁波第二版(周克定著)课后答案下载
第一章矢量分析
第二章静电场
第三章恒定电流的电场和磁场
第四章静态场的解
第五章时变电磁场
第六章平面电磁波
第七章电磁波的辐射
第八章导行电磁波
附录一重要的矢量公式
附录二常用数学公式
附录三量和单位
电磁场与电磁波第二版(周克定著):内容提要
全书共分八章,内容包括:矢量分析、静电场、恒定电流的`电场和磁场、静电场的解、时变电磁场、平面电磁波、电磁波的辐射及导行电磁波。
本书内容精练,概念清晰,语言流畅,注重实践性与新颖性。
为便于学习使用,书中安排有较
多的例题。
本书可作为高等学校本科相关专业“电磁场与电磁波”课程的教材,也可作为有关科技人员的自学参考书。
电磁场与电磁波第二版(周克定著):图书目录
点击此处下载电磁场与电磁波第二版(周克定著)课后答案。