2020年贵州省黔南中考数学试卷附答案解析版
- 格式:pptx
- 大小:236.96 KB
- 文档页数:15
2020年贵州省黔南州中考试卷数学答案解析一、1.【答案】A【解析】解:根据相反数的定义,可得3的相反数是:3-.故选:A .2.【答案】D【解析】解:A 、不是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项错误;C 、不是中心对称图形,故本选项错误;D 、是中心对称图形,故本选项正确.故选:D .3.【答案】C【解析】解:493 4009.3410=⨯.故选:C .4.【答案】D【解析】解:因为圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形,故选:D .5.【答案】A【解析】解:A 、()4312a a =,故原题计算正确;B 、347a a a ⋅=,故原题计算错误;C 、2222a a a +=,故原题计算错误;D 、()222ab a b =,故原题计算错误;故选:A .6.【答案】D【解析】解:∵矩形纸条ABCD 中,AD BC ∥, '30AEG BGD ∠=∠=︒∴,18030150DEG ∠=︒-︒=︒∴,由折叠可得,111507522DEG ∠α∠==⨯︒=, 故选:D .7.【答案】B【解析】解:∵在Rt ADE △中,6DE =,1AE AB BE AB CD x =-=-=-,55ADE ∠=︒,sin55AE AD ︒=∴,cos55DE AD ︒=,1tan556AE x DE -︒==, 故选:B .8.【答案】C【解析】解:设该商品每件的进价为x 元,依题意,得:120.82x ⨯-=,解得:7.6x =.故选:C .9.【答案】D【解析】解:分两种情况:当腰为4时,449+<,所以不能构成三角形;当腰为9时,994+>,994-<,所以能构成三角形,周长是:99422++=.故选:D .10.【答案】C【解析】解:45∵,314∴<,1在3和4之间,即34a <<.故选:C .二、11.【答案】()2a ab -【解析】解:3222a a b ab -+, ()222a a ab b =-+,()2a ab =-.12.【答案】9【解析】解:27m n a b -+∵与443a b -的和仍是一个单项式,24m -=∴,74n +=,解得:6m =,3n =-,故()639m n -=--=.故答案为:9.13.【答案】4【解析】解:∵2,3,x ,1,5,7的众数为7,7x =∴,把这组数据从小到大排列为:1、2、3、5、6、7, 则中位数为3542+=; 故答案为:4.14.【答案】二【解析】解:由已知,得:0k >,0b <.故直线必经过第一、三、四象限.则不经过第二象限.故答案为:二.15.【答案】()【解析】解:∵直线443y x =+与x 轴、y 轴分别交于A 、B 两点, ∴点A 的坐标为()3,0,点B 的坐标为()0,4.过点C 作CE y ⊥轴于点E ,如图所示.BC OC OA ==∵,3OC =∴,2OE =,CE ==∴∴点C 的坐标为().故答案为:().16.【答案】10【解析】解:在Rt ABC △中,2AB =∵,1sin 3AB ACB AC ∠==, 1263AC =÷=∴ 在Rt ADC △中,AD =10=.故答案为:10.17.【答案】4【解析】解:如图所示:∵两条对角线的和为6,6AC BD +=∴,∵菱形的周长为,AB ∴AC BD ⊥,12AO AC =,12BO BD =, 3AO BO +=∴, 222AO BO AB +=∴,()29AO BO +=,即225AO BO +=,2229AO AO BO BO +⋅+=, 24AO BO ⋅=∴,∴菱形的面积1242AC BD AO BO =⋅=⋅=; 故答案为:4.18.【答案】12y x =【解析】解:如图,过点C 作CE y ⊥轴于E ,∵四边形ABCD 是正方形,10AB BC ==∴,90ABC ∠=︒,6OB ===∴,90ABC AOB ∠=∠=︒∵,90ABO CBE ∠+∠=︒∴,90ABO BAO ∠+∠=︒,BAO CBE ∠=∠∴,又90AOB BEC ∠=∠=︒∵,()ABO BCE AAS △≌△∴,6CE OB ==∴,8BE AO ==,2OE =∴,∴点()6,2C ,∵反比例函数()0ky k x =≠的图象过点C ,6212k =⨯=∴,∴反比例函数的解析式为12y x =, 故答案为:12y x =.19.【答案】5210258x y x y +=⎧⎨+=⎩【解析】解:根据题意得:5210258x y x y +=⎧⎨+=⎩.故答案为:5210258x y x y +=⎧⎨+=⎩. 20.【答案】0【解析】解:28160x x -+=,解得:4x =,即124x x ==,则2121?22*16160x x x x x =-=-=,故答案为0.三、21.【答案】解:(1)原式01232 2 0202⎛⎫=--⨯- ⎪⎝⎭ ()221 2 020=---02 2 019=--21=--1=--(2)解不等式312x -≤,得:1x ≥, 解不等式是324x +≥,得:23x ≥, 则不等式组的解集为1x ≥.【解析】具体解题过程参照答案。
数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前2020年贵州省黔南州初中学业水平考试数 学一、选择题(本题10小题,每题4分,共40分)1.3的相反数是( ) A .3-B .3C .13-D .13 2.观察下列图形,是中心对称图形的是( )ABCD3.某市2020年参加中考的考生人数的为93 400人,将93 400用科学记数法表示为( ) A .293410⨯ B .393.410⨯ C .49.3410⨯D .50.93410⨯ 4.下列四个几何体中,左视图为圆的是( )ABC D5.下列运算正确的是( )A .()4312a a = B .3412a a a ⋅= C .224a a a +=D .()22ab ab =6.如图,将矩形纸条ABCD 折叠,折痕为EF ,折叠后点C ,D 分别落在点C ',D '处,D E '与BF 交于点G .已知30BGD ∠'=︒,则α∠的度数是 ( )A .30°B .45°C .74°D .75°第6题图第7题图7.如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D 处测得旗杆顶端A 的仰角ADE ∠为55°,测角仪CD 的高度为1米,其底端C 与旗杆底端B 之间的距离为6米,设旗杆AB 的高度为x 米,则下列关系式正确的是( )A .6tan551x ︒=- B .1tan556x -︒=C .1sin556x -︒=D .1cos556x -︒=8.某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为( )A .7.4元B .7.5元C .7.6元D .7.7元 9.已知等腰三角形的一边长等于4,一边长等于9,则它的周长为( )A .9B .17或22C .17D .2210.已知1a ,a 介于两个连续自然数之间,则下列结论正确的是 ( )A .12a <<B .23a <<C .34a <<D .45a <<二、填空(本题10小题,每题3分,共30分)11.分解因式:3222a a b ab -+=_________.12.若单项式27m n a b -+与单项式443a b -的和仍是一个单项式,则m n -=_________. 13.若一组数据2,3,x ,1,5,7的众数为7,则这组数据的中位数为_________. 14.函数1y x =-的图象一定不经过第_________象限.15.如图,在平面直角坐标系中,直线443y x =-+与x 轴、y 轴分别交于A 、B 两点,点C 在第二象限,若BC OC OA ==,则点C 的坐标为_________.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)第15题图第16题图16.如图所示,在四边形ABCD 中,90B ∠=︒,2AB =,8CD =.连接AC ,AC CD ⊥,若1sin 3ACB ∠=,则AD 长度是_________.17.已知菱形的周长为6,则菱形的面积为_________. 18.如图,正方形ABCD 的边长为10,点A 的坐标为()8,0-,点B 在y 轴上,若反比例函数()0ky k x=≠的图象过点C ,则该反比例函数的解析式为_________.19.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为_________.20.对于实数a ,b ,定义运算“*”,()()22a ab a b a b ab b a b *⎧-⎪=⎨-⎪⎩>例如4*2,因为42>,所以24*24428=-⨯=.若1x ,2x 是一元二次方程28160x x -+=的两个根,则12*x x =_________.三、解析题(本题6小题,共80分)21.(12分)(1)计算()113tan 60|2cos60 2 0202-⎛⎫--+︒︒+- ⎪⎝⎭;(2)解不等式组:312324xx -⎧⎪⎨⎪+⎩≤≥.22.(12分)古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的圆”,请研究如下美丽的圆,如图,Rt ABC △中,90BCA ∠=︒,3AC =,4BC =,点O 在线段BC上,且32OC =,以O 为圆心.OC 为半径的O 交线段AO 于点D ,交线段AO 的延长线于点E .(1)求证:AB 是O 的切线; (2)研究过短中,小明同学发现AD DEDE AE=,回答小明同学发现的结论是否正确?如果正确,给出证明;如果不正确,说明理由.23.(14分)勤劳是中生民的传統美德,学校要求学们在家帮助父母做一些力所能及的家务.在学期初,小丽同学随机调查了七年级部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x 小时,将做家务的总时间分为五个类别:()010A x ≤<,()1020B x ≤<,()2030C x ≤<,()3040D x ≤<,()40E x ≥.并将调查结果绘制了如图两幅不完整的统计图:根据统计图提供的作息,解析下列问题:(1)本次共调查了_________名学生;(2)根据以上信息直接在答题卡上补全条形统计图;(3)扇形統计图中m =_________,类别D 所对应的扇形圆心角α的度数是_________度;(4)若该校七年级共有400名学生,根据抽样调查的结果,估计该校七年級有多少名学生寒假在家做家务的总时间不低于20小时?24.(14分)某单位计划购买甲、乙两种品牌的消毒剂,乙种品牌消毒剂每瓶的价格比数学试卷 第5页(共6页) 数学试卷 第6页(共6页)甲种品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲种品牌消毒剂的数量与用400元购买乙种品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该单位从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙种品牌消毒剂?25.(12分)在2020年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级1班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有48名同学,若每两名同学之间仅通过一次电话,那么全同学共通过多少次电话呢?我们可以用下面的方式来解决问题.用点1A 、2A 、348A A ⋯分表示第1名同学、第2名同学、第3名同学…第48名同学,把该班级人数x 与通电话次数y 之间的关系用如图模型表示:(1)填写上图中第四个图中y 的值为_________,第五个图中y 的值为_________. (2)通过探索发现,通电话次数y 与该班级人数x 之间的关系式为_________,当48x = 时,对应的y =_________.(3)若九年级1班全体女生相互之间共通话190次,问:该班共有多少名女生? 26.(14分)如图,已知AB 是O 的直径,O 经过Rt ACD △的直角边DC 上的点F ,交AC 边于点E ,点F 是弧EB 的中点,90C ∠=︒,连接AF . (1)求证:直线CD 是O 切线.(2)若2BD =,4OB =,求tan AFC ∠的值.27.(12分)如图(1),在平面直角坐标系中,抛物线()240y ax bx a =++≠与y 轴交于点A ,与x 轴交于点()2,0C -,且经过点()8,4B ,连接AB ,BO ,作AM OB ⊥于点M ,将Rt OMA △沿y 轴翻折,点M 的对应点为点N .解析下列问题: (1)抛物线的解析式为_________,顶点坐标为_________; (2)判断点N 是否在直线AC 上,并说明理由;(3)如图(2),将图(1)中Rt OMA △沿着OB 平移后,得到Rt DEF △.若DE 边在线段OB 上,点F 在抛物线上,连接AF ,求四边形AMEF 的面积.-------------在------------------此------------------卷------------------上-------------------答-------------------题-------------------无-------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________2020年贵州省黔南州中考试卷数学答案解析一、 1.【答案】A【解析】解:根据相反数的定义,可得 3的相反数是:3-. 故选:A . 2.【答案】D【解析】解:A 、不是中心对称图形,故本选项错误; B 、不是中心对称图形,故本选项错误; C 、不是中心对称图形,故本选项错误; D 、是中心对称图形,故本选项正确. 故选:D . 3.【答案】C【解析】解:493 4009.3410=⨯. 故选:C . 4.【答案】D【解析】解:因为圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形, 故选:D . 5.【答案】A 【解析】解:A 、()4312a a =,故原题计算正确;B 、347a a a ⋅=,故原题计算错误;C 、2222a a a +=,故原题计算错误;D 、()222ab a b =,故原题计算错误; 故选:A . 6.【答案】D【解析】解:∵矩形纸条ABCD 中,AD BC ∥,'30AEG BGD ∠=∠=︒∴, 18030150DEG ∠=︒-︒=︒∴,由折叠可得,111507522DEG ∠α∠==⨯︒=,故选:D . 7.【答案】B【解析】解:∵在Rt ADE △中,6DE =,1AE AB BE AB CD x =-=-=-,55ADE ∠=︒,sin55AEAD︒=∴,cos55DE AD ︒=,1tan556AE x DE -︒==, 故选:B . 8.【答案】C【解析】解:设该商品每件的进价为x 元, 依题意,得:120.82x ⨯-=, 解得:7.6x =. 故选:C . 9.【答案】D【解析】解:分两种情况:当腰为4时,449+<,所以不能构成三角形;当腰为9时,994+>,994-<,所以能构成三角形,周长是:99422++=. 故选:D . 10.【答案】C【解析】解:45∵,314∴<,1在3和4之间,即34a <<.故选:C . 二、11.【答案】()2a ab - 【解析】解:3222a a b ab -+,()222a a ab b =-+,()2a ab =-.12.【答案】9【解析】解:27m n a b -+∵与443a b -的和仍是一个单项式,24m -=∴,74n +=,解得:6m =,3n =-, 故()639m n -=--=. 故答案为:9. 13.【答案】4【解析】解:∵2,3,x ,1,5,7的众数为7,7x =∴,把这组数据从小到大排列为:1、2、3、5、6、7,则中位数为3542+=;故答案为:4. 14.【答案】二【解析】解:由已知,得:0k >,0b <.故直线必经过第一、三、四象限. 则不经过第二象限. 故答案为:二.15.【答案】()【解析】解:∵直线443y x =+与x 轴、y 轴分别交于A 、B 两点, ∴点A 的坐标为()3,0,点B 的坐标为()0,4.过点C 作CE y ⊥轴于点E ,如图所示.BC OC OA ==∵, 3OC =∴,2OE =,CE ==∴∴点C 的坐标为().故答案为:().16.【答案】10【解析】解:在Rt ABC △中,2AB =∵,1sin 3AB ACB AC ∠==, 1263AC =÷=∴在Rt ADC △中,AD10=.故答案为:10.17.【答案】4【解析】解:如图所示:∵两条对角线的和为6, 6AC BD +=∴,∵菱形的周长为AB =∴AC BD ⊥,12AO AC =,12BO BD =,3AO BO +=∴,222AO BO AB +=∴,()29AO BO +=,即225AO BO +=,2229AO AO BO BO +⋅+=,24AO BO ⋅=∴,∴菱形的面积1242AC BD AO BO =⋅=⋅=;故答案为:4.18.【答案】12y x=【解析】解:如图,过点C 作CE y ⊥轴于E ,∵四边形ABCD 是正方形, 10AB BC ==∴,90ABC ∠=︒,6OB ==∴, 90ABC AOB ∠=∠=︒∵,90ABO CBE ∠+∠=︒∴,90ABO BAO ∠+∠=︒, BAO CBE ∠=∠∴,又90AOB BEC ∠=∠=︒∵,()ABO BCE AAS △≌△∴, 6CE OB ==∴,8BE AO ==, 2OE =∴,∴点()6,2C ,∵反比例函数()0ky k x=≠的图象过点C , 6212k =⨯=∴,∴反比例函数的解析式为12y x=, 故答案为:12y x=. 19.【答案】5210258x y x y +=⎧⎨+=⎩【解析】解:根据题意得:5210258x y x y +=⎧⎨+=⎩.故答案为:5210258x y x y +=⎧⎨+=⎩.20.【答案】0【解析】解:28160x x -+=,解得:4x =, 即124x x ==,则2121?22*16160x x x x x =-=-=, 故答案为0. 三、21.【答案】解:(1)原式01232 2 0202⎛⎫=--⨯- ⎪⎝⎭()221 2 020=---02 2 019=--21=--1=--(2)解不等式312x-≤,得:1x ≥, 解不等式是324x +≥,得:23x ≥,则不等式组的解集为1x ≥. 【解析】具体解题过程参照答案。
2020年贵州省黔东南州中考数学试卷参考答案与试题解析一.选择题(共10小题)1.﹣2020的倒数是()A.﹣2020B.﹣C.2020D.【分析】根据倒数的概念解答.【解答】解:﹣2020的倒数是﹣,故选:B.2.下列运算正确的是()A.(x+y)2=x2+y2B.x3+x4=x7C.x3•x2=x6D.(﹣3x)2=9x2【分析】直接利用完全平方公式以及合并同类项、同底数幂的乘法运算和积的乘方运算法则分别计算得出答案.【解答】解:A、(x+y)2=x2+2xy+y2,故此选项错误;B、x3+x4,不是同类项,无法合并,故此选项错误;C、x3•x2=x5,故此选项错误;D、(﹣3x)2=9x2,正确.故选:D.3.实数2介于()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】首先化简2=,再估算,由此即可判定选项.【解答】解:∵2=,且6<<7,∵6<2<7.故选:C.4.已知关于x的一元二次方程x2+5x﹣m=0的一个根是2,则另一个根是()A.﹣7B.7C.3D.﹣3【分析】根据根与系数的关系即可求出答案.【解答】解:设另一个根为x,则x+2=﹣5,解得x=﹣7.故选:A.5.如图,将矩形ABCD沿AC折叠,使点B落在点B′处,B′C交AD于点E,若∵l=25°,则∵2等于()A.25°B.30°C.50°D.60°【分析】由折叠的性质可得出∵ACB′的度数,由矩形的性质可得出AD∵BC,再利用“两直线平行,内错角相等”可求出∵2的度数.【解答】解:由折叠的性质可知:∵ACB′=∵1=25°.∵四边形ABCD为矩形,∵AD∵BC,∵∵2=∵1+∵ACB′=25°+25°=50°.故选:C.6.桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图所示,则组成这个几何体的小正方体的个数最多有()A.12个B.8个C.14个D.13个【分析】易得此几何体有三行,三列,判断出各行各列最多有几个正方体组成即可.【解答】解:底层正方体最多有9个正方体,第二层最多有4个正方体,所以组成这个几何体的小正方体的个数最多有13个.故选:D.7.如图,∵O的直径CD=20,AB是∵O的弦,AB∵CD,垂足为M,OM:OC=3:5,则AB的长为()A.8B.12C.16D.2【分析】连接OA,先根据∵O的直径CD=20,OM:OD=3:5求出OD及OM的长,再根据勾股定理可求出AM的长,进而得出结论.【解答】解:连接OA,∵∵O的直径CD=20,OM:OD=3:5,∵OD=10,OM=6,∵AB∵CD,∵AM===8,∵AB=2AM=16.故选:C.8.若菱形ABCD的一条对角线长为8,边CD的长是方程x2﹣10x+24=0的一个根,则该菱形ABCD的周长为()A.16B.24C.16或24D.48【分析】解方程得出x=4,或x=6,分两种情况:∵当AB=AD=4时,4+4=8,不能构成三角形;∵当AB=AD=6时,6+6>8,即可得出菱形ABCD的周长.【解答】解:如图所示:∵四边形ABCD是菱形,∵AB=BC=CD=AD,∵x2﹣10x+24=0,因式分解得:(x﹣4)(x﹣6)=0,解得:x=4或x=6,分两种情况:∵当AB=AD=4时,4+4=8,不能构成三角形;∵当AB=AD=6时,6+6>8,∵菱形ABCD的周长=4AB=24.故选:B.9.如图,点A是反比例函数y═(x>0)上的一点,过点A作AC∵y轴,垂足为点C,AC交反比例函数y=的图象于点B,点P是x轴上的动点,则∵P AB的面积为()A.2B.4C.6D.8【分析】连接OA、OB、PC.由于AC∵y轴,根据三角形的面积公式以及反比例函数比例系数k的几何意义得到S∵APC=S∵AOC=3,S∵BPC=S∵BOC=1,然后利用S∵P AB =S∵APC﹣S∵APB进行计算.【解答】解:如图,连接OA、OB、PC.∵AC∵y轴,∵S∵APC=S∵AOC=×|6|=3,S∵BPC=S∵BOC=×|2|=1,∵S∵P AB=S∵APC﹣S∵BPC=2.故选:A.10.如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧,再分别以E、F为圆心,1为半径作圆弧、,则图中阴影部分的面积为()A.π﹣1B.π﹣2C.π﹣3D.4﹣π【分析】根据题意和图形,可知阴影部分的面积是以2为半径的四分之一个圆的面积减去以1为半径的半圆的面积再减去2个以边长为1的正方形的面积减去以1半径的四分之一个圆的面积,本题得以解决.【解答】解:由题意可得,阴影部分的面积是:•π×22﹣﹣2(1×1﹣•π×12)=π﹣2,故选:B.二.填空题(共10小题)11.cos60°=.【分析】根据记忆的内容,cos60°=即可得出答案.【解答】解:cos60°=.故答案为:.12.2020年以来,新冠肺炎橫行,全球经济遭受巨大损失,人民生命安全受到巨大威胁.截止6月份,全球确诊人数约3200000人,其中3200000用科学记数法表示为3.2×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3200000=3.2×106. 故答案为:3.2×106.13.在实数范围内分解因式:xy 2﹣4x = x (y +2)(y ﹣2) . 【分析】本题可先提公因式x ,再运用平方差公式分解因式即可求解. 【解答】解:xy 2﹣4x =x (y 2﹣4) =x (y +2)(y ﹣2). 故答案为:x (y +2)(y ﹣2). 14.不等式组的解集为 2<x ≤6 .【分析】先根据解不等式的基本步骤求出每个不等式的解集,再根据“大小小大中间找”可确定不等式组的解集.【解答】解:解不等式5x ﹣1>3(x +1),得:x >2, 解不等式x ﹣1≤4﹣x ,得:x ≤6, 则不等式组的解集为2<x ≤6, 故答案为:2<x ≤6.15.把直线y =2x ﹣1向左平移1个单位长度,再向上平移2个单位长度,则平移后所得直线的解析式为 y =2x +3 .【分析】直接利用一次函数的平移规律进而得出答案.【解答】解:把直线y =2x ﹣1向左平移1个单位长度,得到y =2(x +1)﹣1=2x +1, 再向上平移2个单位长度,得到y =2x +3. 故答案为:y =2x +3.16.抛物线y =ax 2+bx +c (a ≠0)的部分图象如图所示,其与x 轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,则当y <0时,x 的取值范围是 ﹣3<x <1 .【分析】根据物线与x 轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x 轴的另一个交点,再根据抛物线的增减性可求当y <0时,x 的取值范围.【解答】解:∵物线y =ax 2+bx +c (a ≠0)与x 轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,∵抛物线与x 轴的另一个交点为(1,0),由图象可知,当y <0时,x 的取值范围是﹣3<x <1. 故答案为:﹣3<x <1.17.以∵ABCD 对角线的交点O 为原点,平行于BC 边的直线为x 轴,建立如图所示的平面直角坐标系.若A 点坐标为(﹣2,1),则C 点坐标为 (2,﹣1) .【分析】根据平行四边形是中心对称图形,再根据∵ABCD 对角线的交点O 为原点和点A 的坐标,即可得到点C 的坐标.【解答】解:∵∵ABCD 对角线的交点O 为原点,A 点坐标为(﹣2,1), ∵点C 的坐标为(2,﹣1),故答案为:(2,﹣1).18.某校九(1)班准备举行一次演讲比赛,甲、乙、丙三人通过抽签方式决定出场顺序,则出场顺序恰好是甲、乙、丙的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与出场顺序恰好是甲、乙、丙的情况,再利用概率公式求解即可求得答案.【解答】解:画出树状图得:∵共有6种等可能的结果,其中出场顺序恰好是甲、乙、丙的只有1种结果,∵出场顺序恰好是甲、乙、丙的概率为,故答案为:.19.如图,AB是半圆O的直径,AC=AD,OC=2,∵CAB=30°,则点O到CD的距离OE为.【分析】在等腰∵ACD中,顶角∵A=30°,易求得∵ACD=75°;根据等边对等角,可得:∵OCA=∵A=30°,由此可得,∵OCD=45°;即∵COE是等腰直角三角形,则OE =.【解答】解:∵AC=AD,∵A=30°,∵∵ACD=∵ADC=75°,∵AO=OC,∵∵OCA=∵A=30°,∵∵OCD=45°,即∵OCE是等腰直角三角形,在等腰Rt∵OCE中,OC=2;因此OE=.故答案为:.20.如图,矩形ABCD中,AB=2,BC=,E为CD的中点,连接AE、BD交于点P,过点P作PQ∵BC于点Q,则PQ=.【分析】根据矩形的性质得到AB∵CD,AB=CD,AD=BC,∵BAD=90°,根据线段中点的定义得到DE=CD=AB,根据相似三角形的性质即可得到结论.【解答】解:∵四边形ABCD是矩形,∵AB∵CD,AB=CD,AD=BC,∵BAD=90°,∵E为CD的中点,∵DE=CD=AB,∵∵ABP∵∵EDP,∵=,∵=,∵=,∵PQ∵BC,∵PQ∵CD,∵∵BPQ∵∵DBC,∵==,∵CD=2,∵PQ=,故答案为:.三.解答题(共6小题)21.(1)计算:()﹣2﹣|﹣3|+2tan45°﹣(2020﹣π)0;(2)先化简,再求值:(﹣a+1)÷,其中a从﹣1,2,3中取一个你认为合适的数代入求值.【分析】(1)先算负整数指数幂,绝对值,特殊角的三角函数值,零指数幂,再算加减法即可求解;(2)先通分,把除法转化成乘法,再把分式的分子与分母因式分解,然后约分,最后代入一个合适的数即可.【解答】解:(1)()﹣2﹣|﹣3|+2tan45°﹣(2020﹣π)0=4+﹣3+2×1﹣1=4+﹣3+2﹣1=2+;(2)(﹣a+1)÷=×==﹣a﹣1,要使原式有意义,只能a=3,则当a=3时,原式=﹣3﹣1=﹣4.22.某校对九年级学生进行一次综合文科中考模拟测试,成绩x分(x为整数)评定为优秀、良好、合格、不合格四个等级(优秀、良好、合格、不合格分别用A、B、C、D 表示),A等级:90≤x≤100,B等级:80≤x<90,C等级:60≤x<80,D等级:0≤x<60.该校随机抽取了一部分学生的成绩进行调查,并绘制成如图不完整的统计图表.等级频数(人数)频率A a20%B1640%C b mD410%请你根据统计图表提供的信息解答下列问题:(1)上表中的a8,b=12,m=30%.(2)本次调查共抽取了多少名学生?请补全条形图.(3)若从D等级的4名学生中抽取两名学生进行问卷调查,请用画树状图或列表的方法求抽取的两名学生恰好是一男一女的概率.。
2020年贵州省黔南州中考数学试卷一、选择题(共13小题,每小题4分,满分52分)1.(4分)2020的相反数是()A. - 2020B. 2020 C D2017 20172.(4分)下列计算正确的是()A. 弧=8B. (x+3)2=x2+9C. (ab3)2=ab6D. ( l 3.14)0=13.(4分)如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是(A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线和已知直线平行4.(4分)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()G ®®®A. B. C. D.5.(4分)2020年春节黄金周期间,受旅行发展大会宣传效应的影响,都匀毛尖茶、平塘大射电、罗间高原千岛湖、三都水族文化、荔波世界自然遗产等,吸引了大批国内外游客,黔南州旅游接待人次和收入实现双增长,据统计,全州共接待游客4138900人次,比上年同期增长58.79%,将4138900用科学记数法表示为()A. 41.389X 105B. 4.1389X 105C. 4.1389X 106D. 0.41389X 1066.(4分)我国古代数学家利用牟合方盖”找到了球体体积的计算方法. 牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成牟合方盖”的一种模型,它的主视图是主视A. B. C. D.7.(4分)如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE点P是对角线AC上的一个动点,则PE+PD的最小值是(A. 3 .B. 10 三C. 9D. 9 三8.(4分)如果一个正多边形的内角和等于外角和2倍,则这个正多边形是(A.正方形B.正五边形C.正六边形D,正八边形9.(4分)下列调查中,适宜采用全面调查(普查)方式的是(A.了解我国民众对乐大集团萨德事件”的看法B.了解湖南卫视《人们的名义》反腐剧的收视率C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况10.(4分)如图,已知直线AD是。
2020年贵州省黔西南州中考数学试卷(附解析)一、选择题(本题10小题,每题4分,共40分)1. 2的倒数是( )A.−2B.2C.−12D.122. 某市为做好“稳就业、保民生”工作,将新建保障性住房360000套,缓解中低收入人群和新参加工作大学生的住房需求.把360000用科学记数法表示应是()A.0.36×106B.3.6×105C.3.6×106D.36×1053. 如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为()A. B.C. D.4. 下列运算正确的是()A.a3+a2=a5B.a3÷a=a3C.a2⋅a3=a5D.(a2)4=a65. 某学校九年级1班九名同学参加定点投篮测试,每人投篮六次,投中的次数统计如下:4,3,5,5,2,5,3,4,1,这组数据的中位数、众数分别为()A.4,5B.5,4C.4,4D.5,56. 如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=37∘时,∠1的度数为()A.37∘B.43∘C.53∘D.54∘7. 如图,某停车场入口的栏杆AB,从水平位置绕点O旋转到A′B′的位置,已知AO的长为4米.若栏杆的旋转角∠AOA′=α,则栏杆A端升高的高度为()A.4sinα米 B.4sinα米 C.4cosα米 D.4cosα米8. 已知关于x的一元二次方程(m−1)x2+2x+1=0有实数根,则m的取值范围是()A.m<2B.m≤2C.m<2且m≠1D.m≤2且m≠19. 如图,在菱形ABOC中,AB=2,∠A=60∘,菱形的一个顶点C在反比例函数y=kx(k≠0)的图象上,则反比例函数的解析式为()A.y=−3√3x B.y=−√3xC.y=−3xD.y=√3x10. 如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=52,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B坐标为(5, 4)B.AB=ADC.a=−16D.OC⋅OD=16二、填空题(本题10小题,每题3分,共30分)把多项式a3−4a分解因式,结果是________.若7a x b 2与−a 3b y 的和为单项式,则y x =________.不等式组{2x −6<3x ,x+25−x−14≥0 的解集为________.如图,在Rt △ABC 中,∠C =90∘,点D 在线段BC 上,且∠B =30∘,∠ADC =60∘,BC =3√3,则BD 的长度为________.如图,正比例函数的图象与一次函数y =−x +1的图象相交于点P ,点P 到x 轴的距离是2,则这个正比例函数的解析式是________.如图,对折矩形纸片ABCD ,使AB 与DC 重合得到折痕EF ,将纸片展平,再一次折叠,使点D 落到EF 上点G 处,并使折痕经过点A ,已知BC =2,则线段EG 的长度为________.如图,是一个运算程序的示意图,若开始输入x 的值为625,则第2020次输出的结果为________.有一人患了流感,经过两轮传染后,共有121人患了流感,每轮传染中平均每人传染了________个人.如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑦个图形中菱形的个数为________.如图,在△ABC中,CA=CB,∠ACB=90∘,AB=2,点D为AB的中点,以点D为圆心作圆心角为90∘的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为________.三、解答题(本题6小题,共80分)(1)计算(−2)2−|−√2|−2cos45∘+(2020−π)0;(2)先化简,再求值:(2a+1+a+2a2−1)÷aa−1,其中a=√5−1.规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0∘<α≤180∘)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90∘或180∘后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是________;A.矩形B.正五边形C.菱形D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:________(填序号);(3)下列三个命题:①中心对称图形是旋转对称图形;②等腰三角形是旋转对称图形;③圆是旋转对称图形.其中真命题的个数有________个;A.0B.1C.2D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45∘,90∘,135∘,180∘,将图形补充完整.新学期,某校开设了“防疫宣传”“心理疏导”等课程.为了解学生对新开设课程的掌握情况,从八年级学生中随机抽取了部分学生进行了一次综合测试.测试结果分为四个等级:A级为优秀,B级为良好,C级为及格,D级为不及格.将测试结果绘制了如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是________名;(2)扇形统计图中表示A级的扇形圆心角α的度数是________,并把条形统计图补充完整;(3)该校八年级共有学生500名,如果全部参加这次测试,估计优秀的人数为________;(4)某班有4名优秀的同学(分别记为E,F,G,H,其中E为小明),班主任要从中随机选择两名同学进行经验分享.利用列表法或画树状图法,求小明被选中的概率.随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.请研究如下美丽的圆.如图,线段AB是⊙O的直径,延长AB至点C,使BC=OB,点E是线段OB的中点,DE⊥AB交⊙O于点D,点P是⊙O上一动点(不与点A,B重合),连接CD,PE,PC.(1)求证:CD是⊙O的切线;是一个确定的值.回答这个确定的值是多少?并对小明(2)小明在研究的过程中发现PEPC发现的结论加以证明.已知抛物线y=ax2+bx+6(a≠0)交x轴于点A(6, 0)和点B(−1, 0),交y轴于点C.(1)求抛物线的解析式和顶点坐标;(2)如图(1),点P是抛物线上位于直线AC上方的动点,过点P分别作x轴,y轴的平行线,交直线AC于点D,E,当PD+PE取最大值时,求点P的坐标;(3)如图(2),点M为抛物线对称轴l上一点,点N为抛物线上一点,当直线AC垂直平分△AMN的边MN时,求点N的坐标.参考答案与试题解析2020年贵州省黔西南州中考数学试卷一、选择题(本题10小题,每题4分,共40分)1.【答案】D【考点】倒数【解答】=1 (a≠0),就说解:根据倒数的定义:乘积是1的两数互为倒数.一般地,a⋅1aa(a≠0)的倒数是1.a所以,2的倒数是1,2故选D.2.【答案】B【考点】科学记数法--表示较大的数【解答】解:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.则360000=3.6×105,故选B.3.【答案】D【考点】简单组合体的三视图【解答】解:从上面看可得四个并排的正方形,如图所示:故选D.4.【答案】C【考点】幂的乘方及其应用同底数幂的除法同底数幂的乘法合并同类项【解答】解:A ,a 3与a 2不是同类项,无法合并,故此选项错误; B ,a 3÷a =a 2,故此选项错误; C ,a 2⋅a 3=a 5,故此选项正确; D ,(a 2)4=a 8,故此选项错误. 故选C. 5. 【答案】 A 【考点】 众数 中位数【解答】解:中位数:把一组数据按从小到大的顺序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数.众数:一般来说,一组数据中,出现次数最多的数就叫这组数据的众数. 将数据从小到大排列为:1,2,3,3,4,4,5,5,5, 所以这组数据的中位数为4,众数为5. 故选A. 6.【答案】 C【考点】 平行线的性质 余角和补角 【解答】 解:如图,∵ AB // CD ,∠2=37∘, ∴ ∠2=∠3=37∘. ∵ ∠1+∠3=90∘, ∴ ∠1=53∘. 故选C. 7.【答案】 B【考点】 解直角三角形锐角三角函数的定义【解答】解:过点A′作A′C ⊥AB 于点C ,由题意可知:A′O =AO =4, ∴ sin α=A ′CA ′O , ∴ A′C =4sin α, 故选B.8. 【答案】 D【考点】 根的判别式一元二次方程的定义 【解答】解:∵ 关于x 的一元二次方程(m −1)x 2−2x +1=0有实数根, ∴ {m −1≠0,Δ=22−4×1×(m −1)≥0,解得:m ≤2且m ≠1. 故选D. 9. 【答案】 B【考点】 解直角三角形 菱形的性质反比例函数系数k 的几何意义 【解答】解:∵ 在菱形ABOC 中,∠A =60∘,菱形边长为2, ∴ OC =2,∠COB =60∘, ∴ 点C 的坐标为(−1, √3),∵ 顶点C 在反比例函数y =kx 的图象上, ∴ √3=k−1,得k =−√3, 即y =−√3x , 故选B.10. 【答案】D【考点】二次函数y=ax^2+bx+c (a≠0)的图象和性质待定系数法求二次函数解析式勾股定理【解答】解:∵ 抛物线y =ax 2+bx +4交y 轴于点A ,∴ A(0, 4),∵ 对称轴为直线x =52,AB // x 轴, ∴ B(5, 4),故A 正确;如图,过点B 作BE ⊥x 轴于点E ,则BE =4,AB =5,∵ AB // x 轴,∴ ∠BAC =∠ACO .∵ 点B 关于直线AC 的对称点恰好落在线段OC 上,∴ ∠ACO =∠ACB ,∴ ∠BAC =∠ACB ,∴ BC =AB =5,∴ 在Rt △BCE 中,由勾股定理得:EC =3,∴ C(8, 0).∵ 对称轴为直线x =52,∴ D(−3, 0). ∵ 在Rt △ADO 中,OA =4,OD =3, ∴ AD =5,二、填空题(本题10小题,每题3分,共30分)【答案】 a(a +2)(a −2)【考点】因式分解-运用公式法因式分解-提公因式法【解答】解:原式=a(a 2−4)=a(a +2)(a −2).故答案为:a(a +2)(a −2).【答案】8【考点】列代数式求值同类项的概念【解答】解:∵ 7a x b 2与−a 3b y 的和为单项式,∴ 7a x b 2与−a 3b y 是同类项,∴ x =3,y =2, ∴ y x =23=8. 故答案为:8. 【答案】−6<x ≤13 【考点】解一元一次不等式组【解答】解:{2x −6<3x ,①x+25−x−14≥0,② 解不等式①得:x >−6,解不等式②得:x ≤13,不等式组的解集为:−6<x ≤13,故答案为:−6<x ≤13.【答案】 2√3【考点】三角形的外角性质含30度角的直角三角形等腰三角形的判定与性质【解答】解:∵ ∠C =90∘,∠ADC =60∘,∴ ∠DAC =30∘,∴ CD =12AD .∵ ∠B =30∘,∠ADC =60∘,∴ ∠BAD =30∘,∴ BD =AD ,∴ DB =2√3.故答案为:2√3. 【答案】 y =−2x【考点】一次函数图象上点的坐标特点待定系数法求正比例函数解析式【解答】解:∵ 点P 到x 轴的距离为2,∴ 点P 的纵坐标为2.∵ 点P 在一次函数y =−x +1上,∴ 2=−x +1,得x =−1,∴ 点P 的坐标为(−1, 2). 设正比例函数解析式为y =kx , 则2=−k ,得k =−2, ∴ 正比例函数解析式为y =−2x , 故答案为:y =−2x . 【答案】 √3【考点】矩形的性质 勾股定理翻折变换(折叠问题)含30度角的直角三角形平行线的性质【解答】解:如图所示:由题意可得:∠1=∠2,AN =MN ,∠MGA =90∘,则NG =12AM , 故AN =NG ,∴ ∠2=∠4.∵ EF // AB ,∴ ∠4=∠3,∴ ∠1=∠2=∠3=∠4=13×90∘=30∘.∵ 四边形ABCD 是矩形,对折矩形纸片ABCD ,使AB 与DC 重合得到折痕EF , ∴ AE =12AD =12BC =1,1【考点】列代数式求值规律型:数字的变化类【解答】解:当x=625时,15x=125,当x=125时,15x=25,当x=25时,15x=5,当x=5时,15x=1,当x=1时,x+4=5,当x=5时,15x=1,…依此类推,以5,1循环,(2020−2)÷2=1009,即输出的结果是1,故答案为:1.【答案】10【考点】一元二次方程的应用——增长率问题【解答】解:设每轮传染中平均每人传染了x人.依题意,得1+x+x(1+x)=121,即(1+x)2=121,解方程,得x1=10,x2=−12(舍去).故答案为:10.【答案】57【考点】规律型:图形的变化类【解答】解:第①个图形中一共有3个菱形,即2+1×1=3;第②个图形中一共有7个菱形,即3+2×2=7;第③个图形中一共有13个菱形,即4+3×3=13;…,按此规律排列下去,所以第⑦个图形中菱形的个数为:8+7×7=57.故答案为:57.【答案】π4−1 2求阴影部分的面积全等三角形的性质与判定解直角三角形扇形面积的计算角平分线的定义【解答】解:连接CD,作DM⊥BC于点M,DN⊥AC于点N.∵CA=CB,∠ACB=90∘,点D为AB的中点,∴DC=12AB=1,四边形DMCN是正方形,DM=√22.则扇形DEF的面积是:90π×12360=π4.∵CA=CB,∠ACB=90∘,点D为AB的中点,∴CD平分∠BCA.∵∠EDF=∠MDN=90∘,∴∠FDM=∠EDN,在△DMG和△DNH中,{∠DMG=∠DNH,DM=DN,∠GDM=∠HDN,∴△DMG≅△DNH(ASA),∴S四边形DGCH =S四边形DMCN=12.则阴影部分的面积是:π4.故答案为:π4−12.三、解答题(本题6小题,共80分)【答案】解:(1)原式=4−√2−2×√2+1=4−√2−√2+1=5−2√2.(2)原式=[2(a−1)(a−1)(a+1)+a+2(a−1)(a+1)]⋅a−1a=3a(a−1)(a+1)⋅a−1a=3a+1,当a=√5−1时,原式=√5−1+1=3√55.【考点】零指数幂、负整数指数幂特殊角的三角函数值分式的化简求值实数的运算绝对值【解答】解:(1)原式=4−√2−2×√22+1 =4−√2−√2+1=5−2√2.(2)原式=[2(a−1)(a−1)(a+1)+a+2(a−1)(a+1)]⋅a−1a=3a(a−1)(a+1)⋅a−1a=3a+1,当a=√5−1时,原式=√5−1+1=3√55.【答案】B(1)(3)(5)C(4)图形如图所示:【考点】作图—应用与设计作图作图-旋转变换中心对称图形旋转对称图形【解答】解:(1)在平面内,把一个图形绕着某个点旋转180∘,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.由定义可知:正五边形是旋转对称图形,不是中心对称图形.故选B.(2)是旋转对称图形,且有一个旋转角是60度的有(1)(3)(5).故答案为:(1)(3)(5).(3)根据旋转对称图形的定义可知:中心对称图形是旋转对称图形,①正确;等腰三角形不是旋转对称图形,②错误;圆是旋转对称图形,③正确;综上,命题①③正确,故选C.(4)图形如图所示:【答案】40×100%=15%,(2)∵A级的百分比为:640∴∠α=360∘×15%=54∘.故答案为:54∘;C级人数为:40−6−12−8=14(名).补充条形统计图如图所示:75名(4)画树状图得:∵ 共有12种等可能的结果,选中小明的有6种情况,∴ 选中小明的概率为12.【考点】列表法与树状图法条形统计图扇形统计图用样本估计总体【解答】解:(1)本次抽样测试的学生人数是:12÷30%=40(名); 故答案为:40.(2)∵ A 级的百分比为:640×100%=15%,∴ ∠α=360∘×15%=54∘.故答案为:54∘;C 级人数为:40−6−12−8=14(名).补充条形统计图如图所示:(3)500×15%=75(名),故估计优秀的人数为 75名.故答案为:75名.(4)画树状图得:∵ 共有12种等可能的结果,选中小明的有6种情况,∴ 选中小明的概率为12.【答案】解:(1)设去年A 型车每辆售价x 元,则今年售价每辆为(x −200)元,由题意得,80000x =80000(1−10%)x−200,解得:x =2000.经检验,x =2000是原方程的根.答:A 型自行车去年每辆售价为2000元.(2)设今年新进A 型车a 辆,则B 型车(60−a)辆,获利y 元,由题意得, y =(1800−1500)a +(2400−1800)(60−a),y =−300a +36000.∵ B 型车的进货数量不超过A 型车数量的两倍,∴ 60−a ≤2a ,∴ a ≥20.∵ y =−300a +36000,∴ k =−300<0,∴ y 随a 的增大而减小,∴ 当a =20时,y 有最大值, ∴ 获利最大时B 型车的数量为:60−20=40(辆).∴ 当新进A 型车20辆,B 型车40辆时,这批车获利最大. 【考点】一次函数的应用 分式方程的应用【解答】解:(1)设去年A 型车每辆售价x 元, 则今年售价每辆为(x −200)元,由题意得, 80000x =80000(1−10%)x−200, 解得:x =2000.经检验,x =2000是原方程的根.答:A 型自行车去年每辆售价为2000元.(2)设今年新进A 型车a 辆,则B 型车(60−a)辆,获利y 元,由题意得, y =(1800−1500)a +(2400−1800)(60−a),y =−300a +36000.∵ B 型车的进货数量不超过A 型车数量的两倍,∴ 60−a ≤2a ,∴ a ≥20.∵ y =−300a +36000,∴ k =−300<0,∴ y 随a 的增大而减小, ∴ 当a =20时,y 有最大值,∴ 获利最大时B 型车的数量为:60−20=40(辆).【答案】(1)证明:连接OD ,DB ,∵ 点E 是线段OB 的中点,DE ⊥AB 交⊙O 于点D , ∴ DE 垂直平分OB ,∴ DB =DO .∵ 在⊙O 中,DO =OB ,∴ DB =DO =OB ,∴ △ODB 是等边三角形,∴ ∠BDO =∠DBO =60∘.∵ BC =OB =BD ,且∠DBE 为△BDC 的外角, ∴ ∠BCD =∠BDC =12∠DBO . ∵ ∠DBO =60∘,∴ ∠CDB =30∘.∴ ∠ODC =∠BDO +∠BDC =60∘+30∘=90∘,即OD ⊥CD ,∴ CD 是⊙O 的切线. (2)解:PE PC =12. 证明:连接OP ,如图: 由已知可得:OP =OB =BC =2OE . ∴ OE OP =OP OC =12,又∵ ∠COP =∠POE ,∴ △OEP ∼△OPC ,∴ PE PC =OP OC =12. 【考点】 相似三角形的性质与判定等边三角形的性质与判定三角形的外角性质切线的判定【解答】(1)证明:连接OD ,DB ,试卷第21页,总25页∵ 点E 是线段OB 的中点,DE ⊥AB 交⊙O 于点D ,∴ DE 垂直平分OB ,∴ DB =DO .∵ 在⊙O 中,DO =OB ,∴ DB =DO =OB ,∴ △ODB 是等边三角形,∴ ∠BDO =∠DBO =60∘.∵ BC =OB =BD ,且∠DBE 为△BDC 的外角, ∴ ∠BCD =∠BDC =12∠DBO . ∵ ∠DBO =60∘,∴ ∠CDB =30∘.∴ ∠ODC =∠BDO +∠BDC =60∘+30∘=90∘,即OD ⊥CD ,∴ CD 是⊙O 的切线. (2)解:PE PC =12. 证明:连接OP ,如图: 由已知可得:OP =OB =BC =2OE . ∴ OE OP =OP OC =12,又∵ ∠COP =∠POE ,∴ △OEP ∼△OPC ,∴ PE PC =OP OC =12. 【答案】 解:(1)∵ 抛物线y =ax 2+bx +6经过点A(6, 0),B(−1, 0),∴ {a −b +6=0,36a +6b +6=0,∴ {a =−1,b =5,∴ 抛物线的解析式为y =−x 2+5x +6=−(x −52)2+494,试卷第22页,总25页∴ 抛物线的解析式为y =−x 2+5x +6,顶点坐标为(52, 494). (2)由(1)知,抛物线的解析式为y =−x 2+5x +6,∴ C(0, 6),∴ OC =6.∵ A(6, 0),∴ OA =6,∴ OA =OC ,∴ ∠OAC =45∘.∵ PD 平行于x 轴,PE 平行于y 轴,∴ ∠DPE =90∘,∠PDE =∠DAO =45∘,∴ ∠PED =45∘,∴ ∠PDE =∠PED ,∴ PD =PE ,∴ PD +PE =2PE ,∴ 当PE 的长度最大时,PE +PD 取最大值.∵ A(6, 0),C(0, 6),∴ 直线AC 的解析式为y =−x +6,设E(t, −t +6)(0<t <6),则P(t, −t 2+5t +6),∴ PE =−t 2+5t +6−(−t +6)=−t 2+6t =−(t −3)2+9,当t =3时,PE 最大,此时,y P =12,∴ P(3, 12).(3)如图(2),设直线AC 与抛物线的对称轴l 的交点为F ,连接NF ,∵ 点F 在线段MN 的垂直平分线AC 上,∴ FM =FN ,∠NFC =∠MFC .∵ l // y 轴,∴ ∠MFC =∠OCA =45∘,试卷第23页,总25页 ∴ ∠MFN =∠NFC +∠MFC =90∘,∴ NF // x 轴.由(2)知,直线AC 的解析式为y =−x +6,当x =52时,y =72,∴ F(52, 72),∴ 点N 的纵坐标为72,设N 的坐标为(m, −m 2+5m +6),∴ −m 2+5m +6=72,解得,m =5+√352或m =5−√352,∴ 点N 的坐标为(5+√352, 72)或(5−√352, 72). 【考点】 等腰三角形的性质:三线合一二次函数y=ax^2+bx+c (a≠0)的图象和性质待定系数法求一次函数解析式二次函数综合题待定系数法求二次函数解析式二次函数的最值等腰直角三角形【解答】解:(1)∵ 抛物线y =ax 2+bx +6经过点A(6, 0),B(−1, 0),∴ {a −b +6=0,36a +6b +6=0,∴ {a =−1,b =5,∴ 抛物线的解析式为y =−x 2+5x +6=−(x −52)2+494,∴ 抛物线的解析式为y =−x 2+5x +6,顶点坐标为(52, 494). (2)由(1)知,抛物线的解析式为y =−x 2+5x +6, ∴ C(0, 6),∴ OC =6.∵ A(6, 0),∴ OA =6,∴ OA =OC ,∴ ∠OAC =45∘.试卷第24页,总25页∴ ∠PED =45∘,∴ ∠PDE =∠PED ,∴ PD =PE ,∴ PD +PE =2PE ,∴ 当PE 的长度最大时,PE +PD 取最大值.∵ A(6, 0),C(0, 6),∴ 直线AC 的解析式为y =−x +6,设E(t, −t +6)(0<t <6),则P(t, −t 2+5t +6),∴ PE =−t 2+5t +6−(−t +6)=−t 2+6t =−(t −3)2+9,当t =3时,PE 最大,此时,y P =12,∴ P(3, 12).(3)如图(2),设直线AC 与抛物线的对称轴l 的交点为F ,连接NF ,∵ 点F 在线段MN 的垂直平分线AC 上,∴ FM =FN ,∠NFC =∠MFC .∵ l // y 轴,∴ ∠MFC =∠OCA =45∘,∴ ∠MFN =∠NFC +∠MFC =90∘,∴ NF // x 轴.由(2)知,直线AC 的解析式为y =−x +6,当x =52时,y =72,∴ F(52, 72),∴ 点N 的纵坐标为72,解得,m=5+√352或m=5−√352,∴点N的坐标为(5+√352, 72)或(5−√352, 72).试卷第25页,总25页。
2020年贵州省黔西南州中考数学试卷参考答案与试题解析一、选择题(本题10小题,每题4分,共40分)1.(4分)2的倒数是()A.﹣2B.2C.﹣D.【分析】根据倒数的定义:乘积是1的两数互为倒数.一般地,a•=1 (a≠0),就说a(a≠0)的倒数是.【解答】解:2的倒数是,故选:D.2.(4分)某市为做好“稳就业、保民生”工作,将新建保障性住房360000套,缓解中低收入人群和新参加工作大学生的住房需求.把360000用科学记数法表示应是()A.0.36×106B.3.6×105C.3.6×106D.36×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:360000=3.6×105,故选:B.3.(4分)如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看可得四个并排的正方形,如图所示:故选:D.4.(4分)下列运算正确的是()A.a3+a2=a5B.a3÷a=a3C.a2•a3=a5D.(a2)4=a6【分析】直接利用同底数幂的乘除运算法则以及幂的乘方运算法则分别化简得出答案.【解答】解:A、a3+a2,不是同类项,无法合并,故此选项错误;B、a3÷a=a2,故此选项错误;C、a2•a3=a5,正确;D、(a2)4=a8,故此选项错误;故选:C.5.(4分)某学校九年级1班九名同学参加定点投篮测试,每人投篮六次,投中的次数统计如下:4,3,5,5,2,5,3,4,1,这组数据的中位数、众数分别为()A.4,5B.5,4C.4,4D.5,5【分析】根据众数及中位数的定义,结合所给数据即可作出判断.【解答】解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,这组数据的中位数为4;众数为5.故选:A.6.(4分)如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=37°时,∠1的度数为()A.37°B.43°C.53°D.54°【分析】根据平行线的性质,可以得到∠2和∠3的关系,从而可以得到∠3的度数,然后根据∠1+∠3=90°,即可得到∠1的度数.【解答】解:∠AB∠CD,∠2=37°,∠∠2=∠3=37°,∠∠1+∠3=90°,∠∠1=53°,故选:C.7.(4分)如图,某停车场入口的栏杆AB,从水平位置绕点O旋转到A′B′的位置,已知AO的长为4米.若栏杆的旋转角∠AOA′=α,则栏杆A端升高的高度为()A.米B.4sinα米C.米D.4cosα米【分析】过点A′作A′C∠AB于点C,根据锐角三角函数的定义即可求出答案.【解答】解:过点A′作A′C∠AB于点C,由题意可知:A′O=AO=4,∠sinα=,∠A′C=4sinα,故选:B.8.(4分)已知关于x的一元二次方程(m﹣1)x2+2x+1=0有实数根,则m的取值范围是()A.m<2B.m≤2C.m<2且m≠1D.m≤2且m≠1【分析】根据二次项系数非零及根的判别式∠≥0,即可得出关于m的一元一次不等式组,解之即可得出m 的取值范围.【解答】解:∠关于x的一元二次方程(m﹣1)x2﹣2x+1=0有实数根,∠,解得:m≤2且m≠1.故选:D.9.(4分)如图,在菱形ABOC中,AB=2,∠A=60°,菱形的一个顶点C在反比例函数y═(k≠0)的图象上,则反比例函数的解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=【分析】根据菱形的性质和平面直角坐标系的特点可以求得点C的坐标,从而可以求得k的值,进而求得反比例函数的解析式.【解答】解:∠在菱形ABOC中,∠A=60°,菱形边长为2,∠OC=2,∠COB=60°,∠点C的坐标为(﹣1,),∠顶点C在反比例函数y═的图象上,∠=,得k=﹣,即y=﹣,故选:B.10.(4分)如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B坐标为(5,4)B.AB=ADC.a=﹣D.OC•OD=16【分析】由抛物线y=ax2+bx+4交y轴于点A,可得点A的坐标,然后由抛物线的对称性可得点B的坐标,由点B关于直线AC的对称点恰好落在线段OC上,可知∠ACO=∠ACB,再结合平行线的性质可判断∠BAC =∠ACB,从而可知AB=AD;过点B作BE∠x轴于点E,由勾股定理可得EC的长,则点C坐标可得,然后由对称性可得点D的坐标,则OC•OD的值可计算;由勾股定理可得AD的长,由双根式可得抛物线的解析式,根据以上计算或推理,对各个选项作出分析即可.【解答】解:∠抛物线y=ax2+bx+4交y轴于点A,∠A(0,4),∠对称轴为直线x=,AB∠x轴,∠B(5,4).故A无误;如图,过点B作BE∠x轴于点E,则BE=4,AB=5,∠AB∠x轴,∠∠BAC=∠ACO,∠点B关于直线AC的对称点恰好落在线段OC上,∠∠ACO=∠ACB,∠∠BAC=∠ACB,∠BC=AB=5,∠在Rt∠BCE中,由勾股定理得:EC=3,∠C(8,0),∠对称轴为直线x=,∠D(﹣3,0)∠在Rt∠ADO中,OA=4,OD=3,∠AD=5,∠AB=AD,故B无误;设y=ax2+bx+4=a(x+3)(x﹣8),将A(0,4)代入得:4=a(0+3)(0﹣8),∠a=﹣,故C无误;∠OC=8,OD=3,∠OC•OD=24,故D错误.综上,错误的只有D.故选:D.二、填空题(本题10小题,每题3分,共30分)11.(3分)把多项式a3﹣4a分解因式,结果是a(a+2)(a﹣2).【分析】首先提公因式a,再利用平方差进行二次分解即可.【解答】解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).12.(3分)若7a x b2与﹣a3b y的和为单项式,则y x=8.【分析】直接利用合并同类项法则进而得出x,y的值,即可得出答案.【解答】解:∠7a x b2与﹣a3b y的和为单项式,∠7a x b2与﹣a3b y是同类项,∠x=3,y=2,∠y x=23=8.故答案为:8.13.(3分)不等式组的解集为﹣6<x≤13.【分析】首先分别计算出两个不等式的解集,再确定不等式组的解集即可.【解答】解:,解∠得:x>﹣6,解∠得:x≤13,不等式组的解集为:﹣6<x≤13,故答案为:﹣6<x≤13.14.(3分)如图,在Rt∠ABC中,∠C=90°,点D在线段BC上,且∠B=30°,∠ADC=60°,BC=3,则BD的长度为2.【分析】首先证明DB=AD=CD,然后再由条件BC=3可得答案.【解答】解:∠∠C=90°,∠ADC=60°,∠∠DAC=30°,∠CD=AD,∠∠B=30°,∠ADC=60°,∠∠BAD=30°,∠BD=AD,∠BD=2CD,∠BC=3,∠CD+2CD=3,∠CD=,∠DB=2,故答案为:2.15.(3分)如图,正比例函数的图象与一次函数y=﹣x+1的图象相交于点P,点P到x轴的距离是2,则这个正比例函数的解析式是y=﹣2x.【分析】根据图象和题意,可以得到点P的纵坐标,然后代入一次函数解析式,即可得到点P的坐标,然后代入正比例函数解析式,即可得到这个正比例函数的解析式.【解答】解:∠点P到x轴的距离为2,∠点P的纵坐标为2,∠点P在一次函数y=﹣x+1上,∠2=﹣x+1,得x=﹣1,∠点P的坐标为(﹣1,2),设正比例函数解析式为y=kx,则2=﹣k,得k=﹣2,∠正比例函数解析式为y=﹣2x,故答案为:y=﹣2x.16.(3分)如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平,再一次折叠,使点D落到EF上点G处,并使折痕经过点A,已知BC=2,则线段EG的长度为.【分析】直接利用翻折变换的性质以及直角三角形的性质得出∠2=∠4,再利用平行线的性质得出∠1=∠2=∠3,进而得出答案.【解答】解:如图所示:由题意可得:∠1=∠2,AN=MN,∠MGA=90°,则NG=AM,故AN=NG,∠∠2=∠4,∠EF∠AB,∠∠4=∠3,∠∠1=∠2=∠3=∠4=×90°=30°,∠四边形ABCD是矩形,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,∠AE=AD=BC=1,∠AG=2,∠EG==,故答案为:.17.(3分)如图,是一个运算程序的示意图,若开始输入x的值为625,则第2020次输出的结果为1.【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案.【解答】解:当x=625时,x=125,当x=125时,x=25,当x=25时,x=5,当x=5时,x=1,当x=1时,x+4=5,当x=5时,x=1,…依此类推,以5,1循环,(2020﹣2)÷2=1009,能够整除,所以输出的结果是1,故答案为:118.(3分)有一人患了流感,经过两轮传染后,共有121人患了流感,每轮传染中平均每人传染了10个人.【分析】设每轮传染中平均每人传染了x人.开始有一人患了流感,第一轮的传染源就是这个人,他传染了x人,则第一轮后共有(1+x)人患了流感;第二轮传染中,这些人中的每个人又传染了x人,则第二轮后共有[1+x+x(x+1)]人患了流感,而此时患流感人数为121,根据这个等量关系列出方程.【解答】解:设每轮传染中平均每人传染了x人.依题意,得1+x+x(1+x)=121,即(1+x)2=121,解方程,得x1=10,x2=﹣12(舍去).答:每轮传染中平均每人传染了10人.19.(3分)如图图形都是由同样大小的菱形按照一定规律所组成的,其中第∠个图形中一共有3个菱形,第∠个图形中一共有7个菱形,第∠个图形中一共有13个菱形,…,按此规律排列下去,第∠个图形中菱形的个数为57.【分析】根据图形的变化规律即可得第∠个图形中菱形的个数.【解答】解:第∠个图形中一共有3个菱形,即2+1×1=3;第∠个图形中一共有7个菱形,即3+2×2=7;第∠个图形中一共有13个菱形,即4+3×3=13;…,按此规律排列下去,所以第∠个图形中菱形的个数为:8+7×7=57.故答案为:57.20.(3分)如图,在∠ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为﹣.【分析】连接CD,作DM∠BC,DN∠AC,证明∠DMG∠∠DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE 的面积,则阴影部分的面积即可求得.【解答】解:连接CD,作DM∠BC,DN∠AC.∠CA=CB,∠ACB=90°,点D为AB的中点,∠DC=AB=1,四边形DMCN是正方形,DM=.则扇形FDE的面积是:=.∠CA=CB,∠ACB=90°,点D为AB的中点,∠CD平分∠BCA,又∠DM∠BC,DN∠AC,∠DM=DN,∠∠GDH=∠MDN=90°,∠∠GDM=∠HDN,在∠DMG和∠DNH中,,∠∠DMG∠∠DNH(AAS),∠S四边形DGCH=S四边形DMCN=.则阴影部分的面积是:﹣.故答案为﹣.三、解答题(本题6小题,共80分)21.(12分)(1)计算(﹣2)2﹣|﹣|﹣2cos45°+(2020﹣π)0;(2)先化简,再求值:(+),其中a=﹣1.【分析】(1)直接利用零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案;(2)直接将括号里面通分运算进而利用分式的混合运算法则计算得出答案.【解答】解:(1)原式=4﹣﹣2×+1=4﹣﹣+1=5﹣2;(2)原式=[+]•=•=,当a=﹣1时,原式==.22.(12分)规定:在平面内,如果一个图形绕一个定点旋转一定的角度α(0°<α≤180°)后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角度α称为这个图形的一个旋转角.例如:正方形绕着两条对角线的交点O旋转90°或180°后,能与自身重合(如图1),所以正方形是旋转对称图形,且有两个旋转角.根据以上规定,回答问题:(1)下列图形是旋转对称图形,但不是中心对称图形的是B;A.矩形B.正五边形C.菱形D.正六边形(2)下列图形中,是旋转对称图形,且有一个旋转角是60度的有:(1)(3)(5)(填序号);(3)下列三个命题:∠中心对称图形是旋转对称图形;∠等腰三角形是旋转对称图形;∠圆是旋转对称图形.其中真命题的个数有C个;A.0B.1C.2D.3(4)如图2的旋转对称图形由等腰直角三角形和圆构成,旋转角有45°,90°,135°,180°,将图形补充完整.【分析】(1)根据旋转图形,中心对称图形的定义判断即可.(2)旋转对称图形,且有一个旋转角是60度判断即可.(3)根据旋转图形的定义判断即可.(4)根据要求画出图形即可.【解答】解:(1)是旋转图形,不是中心对称图形是正五边形,故选B.(2)是旋转对称图形,且有一个旋转角是60度的有(1)(3)(5).故答案为(1)(3)(5).(3)命题中∠∠正确,故选C.(4)图形如图所示:23.(14分)新学期,某校开设了“防疫宣传”“心理疏导”等课程.为了解学生对新开设课程的掌握情况,从八年级学生中随机抽取了部分学生进行了一次综合测试.测试结果分为四个等级:A级为优秀,B级为良好,C级为及格,D级为不及格.将测试结果绘制了如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是40名;(2)扇形统计图中表示A级的扇形圆心角α的度数是54°,并把条形统计图补充完整;(3)该校八年级共有学生500名,如果全部参加这次测试,估计优秀的人数为75人;(4)某班有4名优秀的同学(分别记为E、F、G、H,其中E为小明),班主任要从中随机选择两名同学进行经验分享.利用列表法或画树状图法,求小明被选中的概率.【分析】(1)由题意可得本次抽样测试的学生人数是:12÷30%=40(人),(2)首先可求得A级人数的百分比,继而求得∠α的度数,然后补出条形统计图;(3)根据A级人数的百分比,列出算式即可求得优秀的人数;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选中小明的情况,再利用概率公式即可求得答案.【解答】解:(1)本次抽样测试的学生人数是:12÷30%=40(人);(2)∠A级的百分比为:×100%=15%,∠∠α=360°×15%=54°;C级人数为:40﹣6﹣12﹣8=14(人).如图所示:(3)500×15%=75(人).故估计优秀的人数为75人;(4)画树状图得:∠共有12种等可能的结果,选中小明的有6种情况,∠选中小明的概率为.故答案为:40;54°;75人.24.(14分)随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?【分析】(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由条件表示出y与a之间的关系式,由a 的取值范围就可以求出y的最大值.【解答】解:(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由题意,得=,解得:x=2000.经检验,x=2000是原方程的根.答:去年A型车每辆售价为2000元;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由题意,得y=(1800﹣1500)a+(2400﹣1800)(60﹣a),y=﹣300a+36000.∠B型车的进货数量不超过A型车数量的两倍,∠60﹣a≤2a,∠a≥20.∠y=﹣300a+36000.∠k=﹣300<0,∠y随a的增大而减小.∠a=20时,y有最大值∠B型车的数量为:60﹣20=40辆.∠当新进A型车20辆,B型车40辆时,这批车获利最大.25.(12分)古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.请研究如下美丽的圆.如图,线段AB是∠O的直径,延长AB至点C,使BC=OB,点E是线段OB的中点,DE∠AB交∠O于点D,点P是∠O上一动点(不与点A,B重合),连接CD,PE,PC.(1)求证:CD是∠O的切线;(2)小明在研究的过程中发现是一个确定的值.回答这个确定的值是多少?并对小明发现的结论加以证明.【分析】(1)连接OD、DB,由已知可知DE垂直平分OB,则DB=DO,再由圆的半径相等,可得DB=DO=OB,即∠ODB是等边三角形,则∠BDO=60°,再由等腰三角形的性质及三角形的外角性质可得∠CDB =30°,从而可得∠ODC=90°,按照切线的判定定理可得结论;(2)连接OP,先由已知条件得OP=OB=BC=2OE,再利用两组边成比例,夹角相等来证明∠OEP∠∠OPC,按照相似三角形的性质得出比例式,则可得答案.【解答】解:(1)连接OD、DB,∠点E是线段OB的中点,DE∠AB交∠O于点D,∠DE垂直平分OB,∠DB=DO.∠在∠O中,DO=OB,∠DB=DO=OB,∠∠ODB是等边三角形,∠∠BDO=∠DBO=60°,∠BC=OB=BD,且∠DBE为∠BDC的外角,∠∠BCD=∠BDC=∠DBO.∠∠DBO=60°,∠∠CDB=30°.∠∠ODC=∠BDO+∠BDC=60°+30°=90°,∠CD是∠O的切线;(2)答:这个确定的值是.连接OP,如图:由已知可得:OP=OB=BC=2OE.∠==,又∠∠COP=∠POE,∠∠OEP∠∠OPC,∠==.26.(16分)已知抛物线y=ax2+bx+6(a≠0)交x轴于点A(6,0)和点B(﹣1,0),交y轴于点C.(1)求抛物线的解析式和顶点坐标;(2)如图(1),点P是抛物线上位于直线AC上方的动点,过点P分别作x轴、y轴的平行线,交直线AC 于点D,E,当PD+PE取最大值时,求点P的坐标;(3)如图(2),点M为抛物线对称轴l上一点,点N为抛物线上一点,当直线AC垂直平分∠AMN的边MN时,求点N的坐标.【分析】(1)将点A,B坐标代入抛物线解析式中,解方程组即可得出结论;(2)先求出OA=OC=6,进而得出∠OAC=45°,进而判断出PD=PE,即可得出当PE的长度最大时,PE+PD 取最大值,设出点E坐标,表示出点P坐标,建立PE=﹣t2+6t=﹣(t﹣3)2+9,即可得出结论;(3)先判断出NF∠x轴,进而求出点N的纵坐标,即可建立方程求解得出结论.【解答】解:(1)∠抛物线y=ax2+bx+6经过点A(6,0),B(﹣1,0),∠,∠,∠抛物线的解析式为y=﹣x2+5x+6=﹣(x﹣)2+,∠抛物线的解析式为y=﹣x2+5x+6,顶点坐标为(,);(2)由(1)知,抛物线的解析式为y=﹣x2+5x+6,∠C(0,6),∠OC=6,∠A(6,0),∠OA=6,∠OA=OC,∠∠OAC=45°,∠PD平行于x轴,PE平行于y轴,∠∠DPE=90°,∠PDE=∠DAO=45°,∠∠PED=45°,∠∠PDE=∠PED,∠PD=PE,∠PD+PE=2PE,∠当PE的长度最大时,PE+PD取最大值,∠A(6,0),C(0,6),∠直线AC的解析式为y=﹣x+6,设E(t,﹣t+6)(0<t<6),则P(t,﹣t2+5t+6),∠PE=﹣t2+5t+6﹣(﹣t+6)=﹣t2+6t=﹣(t﹣3)2+9,当t=3时,PE最大,此时,﹣t2+5t+6=12,∠P(3,12);(3)如图(2),设直线AC与抛物线的对称轴l的交点为F,连接NF,∠点F在线段MN的垂直平分线AC上,∠FM=FN,∠NFC=∠MFC,∠l∠y轴,∠∠MFC=∠OCA=45°,∠∠MFN=∠NFC+∠MFC=90°,∠NF∠x轴,由(2)知,直线AC的解析式为y=﹣x+6,当x=时,y=,∠F(,),∠点N的纵坐标为,设N的坐标为(m,﹣m2+5m+6),∠﹣m2+5m+6=,解得,m=或m=,∠点N的坐标为(,)或(,).初中怎样提高数学成绩1.课内重视听讲,培养学生的思维能力初中新生往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,因此,重视听法指导,使他们学会听课,是提高学习效率的关键。
2020年贵州省黔南州中考数学试卷一、选择题(共13小题,每小题4分,满分52分)1.(4分)2020的相反数是()A.﹣2020 B.2020 C.﹣D.2.(4分)下列计算正确的是()A.=8 B.(x+3)2=x2+9 C.(ab3)2=ab6D.(π﹣3.14)0=13.(4分)如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线和已知直线平行4.(4分)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.5.(4分)2020年春节黄金周期间,受旅行发展大会宣传效应的影响,都匀毛尖茶、平塘大射电、罗间高原千岛湖、三都水族文化、荔波世界自然遗产等,吸引了大批国内外游客,黔南州旅游接待人次和收入实现双增长,据统计,全州共接待游客4138900人次,比上年同期增长58.79%,将4138900用科学记数法表示为()A.41.389×105 B.4.1389×105 C.4.1389×106 D.0.41389×1066.(4分)我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.7.(4分)如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P 是对角线AC上的一个动点,则PE+PD的最小值是()A.3B.10C.9 D.98.(4分)如果一个正多边形的内角和等于外角和2倍,则这个正多边形是()A.正方形B.正五边形C.正六边形D.正八边形9.(4分)下列调查中,适宜采用全面调查(普查)方式的是()A.了解我国民众对乐天集团“萨德事件”的看法B.了解湖南卫视《人们的名义》反腐剧的收视率C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况10.(4分)如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为()A.54°B.36°C.30°D.27°11.(4分)反比例函数y=﹣(x<0)如图所示,则矩形OAPB的面积是()A.3 B.﹣3 C.D.﹣12.(4分)“一带一路”国际合作高峰论坛于2020年5月14日至15日在北京举行,在论坛召开之际,福田欧辉陆续向缅甸仰光公交公司应付1000台清洁能源公交车,以2020客车海外出口第一大单的成绩,创下了客车行业出口之最,同时,这也是在国家“一带一路”战略下,福田欧辉代表“中国制造”走出去的成果,预计到2019年,福田公司将向海外出口清洁能源公交车达到3000台,设平均每年的出口增长率为x,可列方程为()A.1000(1+x%)2=3000 B.1000(1﹣x%)2=3000C.1000(1+x)2=3000 D.1000(1﹣x)2=300013.(4分)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac <b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0正确的有()A.3个 B.4个 C.5个 D.6个二、填空题(共6小题,每小题4分,满分24分)14.(4分)因式分解:2x2﹣8=.15.(4分)一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集为.16.(4分)如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE的度数是.17.(4分)如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,OA=6,则的长为.18.(4分)如图,在△ABC中,AB=3,AC=6,将△ABC绕点C按逆时针方向旋转得到△A1B1C,使CB1∥AD,分别延长AB、CA1相交于点D,则线段BD的长为.19.(4分)杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a+b)5=.三、解答题(共7小题,满分74分)20.(10分)(1)计算:|﹣1|+(﹣1)2020+4sin60°+.(2)先化简再求值:(﹣)÷,其中x、y满足|x﹣1|+(y+2)2=0.21.(10分)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(顶点是网格线的交点)(1)先将△ABC竖直向上平移5个单位,再水平向右平移4个单位得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;(3)求线段B1C1变换到B1C2的过程中扫过区域的面积.22.(10分)全面二孩政策于2016年1月1日正式实施,黔南州某中学对八年级部分学生进行了随机问卷调查,其中一个问题“你爸妈如果给你添一个弟弟(或妹妹),你的态度是什么?”共有如下四个选项(要求仅选择一个选项):A.非常愿意B.愿意C.不愿意D.无所谓如图是根据调查结果绘制的两幅不完整的统计图,请结合图中信息解答以下问题:(1)试问本次问卷调查一共调查了多少名学生?并补全条形统计图;(2)若该年级共有450名学生,请你估计全年级可能有多少名学生支持(即态度为“非常愿意”和“愿意”)爸妈给自己添一个弟弟(或妹妹)?(3)在年级活动课上,老师决定从本次调查回答“不愿意”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“不愿意”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率.23.(10分)阅读材料:一般地,当α、β为任意角时,tan(α+β)与tan(α﹣β)的值可以用下面的公式求得:tan(α±β)=.例如:tan15°=tan(45°﹣30°)======2﹣.根据以上材料,解决下列问题:(1)求tan75°的值;(2)都匀文峰塔,原名文笔塔,始建于明代万历年间,系五层木塔,文峰塔的木塔年久倾毁,仅存塔基,1983年,人民政府拨款维修文峰塔,成为今天的七层六面实心石塔(图1),小华想用所学知识来测量该铁搭的高度,如图2,已知小华站在离塔底中心A处5.7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.72米,请帮助小华求出文峰塔AB的高度.(精确到1米,参考数据≈1.732,≈1.414)24.(10分)2016年12月29日至31日,黔南州第十届旅游产业发展大会在“中国长寿之乡”﹣﹣罗甸县举行,从中寻找到商机的人不断涌现,促成了罗甸农民工返乡创业热潮,某“火龙果”经营户有A、B两种“火龙果”促销,若买2件A种“火龙果”和1件B种“火龙果”,共需120元;若买3件A种“火龙果”和2件B种“火龙果”,共需205元.(1)设A,B两种“火龙果”每件售价分别为a元、b元,求a、b的值;(2)B种“火龙果”每件的成本是40元,根据市场调查:若按(1)中求出的单价销售,该“火龙果”经营户每天销售B种“火龙果”100件;若销售单价每上涨1元,B种“火龙果”每天的销售量就减少5件.①求每天B种“火龙果”的销售利润y(元)与销售单价(x)元之间的函数关系?②求销售单价为多少元时,B种“火龙果”每天的销售利润最大,最大利润是多少?25.(12分)如图所示,以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A=∠CBD,过点C作CF⊥AB于点F,交BD于点G,过C作CE∥BD 交AB的延长线于点E.(1)求证:CE是⊙O的切线;(2)求证:CG=BG;(3)若∠DBA=30°,CG=4,求BE的长.26.(12分)如图,已知直角坐标系中,A、B、D三点的坐标分别为A(8,0),B(0,4),D(﹣1,0),点C与点B关于x轴对称,连接AB、AC.(1)求过A、B、D三点的抛物线的解析式;(2)有一动点E从原点O出发,以每秒2个单位的速度向右运动,过点E作x 轴的垂线,交抛物线于点P,交线段CA于点M,连接PA、PB,设点E运动的时间为t(0<t<4)秒,求四边形PBCA的面积S与t的函数关系式,并求出四边形PBCA的最大面积;(3)抛物线的对称轴上是否存在一点H,使得△ABH是直角三角形?若存在,请直接写出点H的坐标;若不存在,请说明理由.2020年贵州省黔南州中考数学试卷参考答案与试题解析一、选择题(共13小题,每小题4分,满分52分)1.(4分)(2020•黔南州)2020的相反数是()A.﹣2020 B.2020 C.﹣D.【分析】根据相反数特性:若a.b互为相反数,则a+b=0即可解题.【解答】解:∵2020+(﹣2020)=0,∴2020的相反数是(﹣2020),故选A.【点评】本题考查了相反数之和为0的特性,熟练掌握相反数特性是解题的关键.2.(4分)(2020•黔南州)下列计算正确的是()A.=8 B.(x+3)2=x2+9 C.(ab3)2=ab6D.(π﹣3.14)0=1【分析】A、根据立方根的定义解答;B、根据完全平方公式解答;C、根据积的乘方和幂乘方解答;D、根据非零数的0次方解答.【解答】解:A、=4≠8,故本选项错误;B、(x+3)2=x2+6x+9≠x2+9,故本选项错误;C、(ab3)2=a2b6=ab6,故本选项错误;D、∵π﹣3.14≠0,∴(π﹣3.14)0=1,故本选项正确;故选D.【点评】本题考查了立方根、积的乘方和幂的乘方、完全平方公式、0指数幂,综合性较强,要细心.3.(4分)(2020•黔南州)如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线和已知直线平行【分析】直接利用直线的性质分析得出答案.【解答】解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法运用到的数学原理是:两点确定一条直线.故选:B.【点评】此题主要考查了直线的性质,正确把握直线的性质联系实际生活是解题关键.4.(4分)(2020•黔南州)下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(4分)(2020•黔南州)2020年春节黄金周期间,受旅行发展大会宣传效应的影响,都匀毛尖茶、平塘大射电、罗间高原千岛湖、三都水族文化、荔波世界自然遗产等,吸引了大批国内外游客,黔南州旅游接待人次和收入实现双增长,据统计,全州共接待游客4138900人次,比上年同期增长58.79%,将4138900用科学记数法表示为()A.41.389×105 B.4.1389×105 C.4.1389×106 D.0.41389×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将4138900用科学记数法表示为:4.1389×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(4分)(2020•黔南州)我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是()A.B.C.D.【分析】根据主视图的定义,得出圆柱以及立方体的摆放即可得出主视图为3个正方形组合体,进而得出答案即可.【解答】解:利用圆柱直径等于立方体边长,得出此时摆放,圆柱主视图是正方得出圆柱以及立方体的摆放的主视图为两列,左边一个正方形,右边两个正方形,故选:B.【点评】此题主要考查了几何体的三视图;掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.7.(4分)(2020•黔南州)如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()A.3B.10C.9 D.9【分析】由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PE+PD=BE最小,而BE是直角△CBE的斜边,利用勾股定理即可得出结果.【解答】解:如图,连接BE,设BE与AC交于点P′,∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==3.故选A.【点评】此题考查了轴对称﹣﹣最短路线问题,正方形的性质,要灵活运用对称性解决此类问题.找出P点位置是解题的关键.8.(4分)(2020•黔南州)如果一个正多边形的内角和等于外角和2倍,则这个正多边形是()A.正方形B.正五边形C.正六边形D.正八边形【分析】设这个多边形的边数为n.根据题意列出方程即可解决问题.【解答】解:设这个多边形的边数为n.由题意(n﹣2)•180°=2×360°,解得n=6,答:这个多边形是正六边形.故选C.【点评】本题考查多边形的内角和、外角和等知识,解题的关键是学会构建方程解决问题.9.(4分)(2020•黔南州)下列调查中,适宜采用全面调查(普查)方式的是()A.了解我国民众对乐天集团“萨德事件”的看法B.了解湖南卫视《人们的名义》反腐剧的收视率C.调查我校某班学生喜欢上数学课的情况D.调查某类烟花爆竹燃放的安全情况【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、了解我国民众对乐天集团“萨德事件”的看法调查范围广适合抽样调查,故A不符合题意;B、了解湖南卫视《人们的名义》反腐剧的收视率调查范围广适合抽样调查,故B不符合题意;C、调查我校某班学生喜欢上数学课的情况适合普查,故C符合题意;D、调查某类烟花爆竹燃放的安全情况调查具有破坏性适合抽样调查,故D不符合题意;故选:C.【点评】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考察的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.(4分)(2020•黔南州)如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为()A.54°B.36°C.30°D.27°【分析】由AD为圆O的切线,利用切线的性质得到OA与AD垂直,在直角三角形OAD中,由直角三角形的两锐角互余,根据∠ODA的度数求出∠AOD的度数,再利用同弧所对的圆心角等于所对圆周角的2倍即可求出∠ACB的度数.【解答】解:∵AD为圆O的切线,∴AD⊥OA,即∠OAD=90°,∵∠ODA=36°,∴∠AOD=54°,∵∠AOD与∠ACB都对,∴∠ACB=∠AOD=27°.故选D.【点评】此题考查了切线的性质,以及圆周角定理,熟练掌握切线的性质是解本题的关键.11.(4分)(2020•黔南州)反比例函数y=﹣(x<0)如图所示,则矩形OAPB 的面积是()A.3 B.﹣3 C.D.﹣【分析】可设出点P的坐标,则可表示出矩形OAPB的面积.【解答】解:∵点P在反比例函数y=﹣(x<0)的图象上,∴可设P(x,﹣),∴OA=﹣x,PA=﹣,∴S=OA•PA=﹣x•(﹣)=3,矩形OAPB故选A.【点评】本题主要考查反比例函数上点的坐标特征,利用P点坐标表示出矩形OABPB的面积是解题的关键.12.(4分)(2020•黔南州)“一带一路”国际合作高峰论坛于2020年5月14日至15日在北京举行,在论坛召开之际,福田欧辉陆续向缅甸仰光公交公司应付1000台清洁能源公交车,以2020客车海外出口第一大单的成绩,创下了客车行业出口之最,同时,这也是在国家“一带一路”战略下,福田欧辉代表“中国制造”走出去的成果,预计到2019年,福田公司将向海外出口清洁能源公交车达到3000台,设平均每年的出口增长率为x,可列方程为()A.1000(1+x%)2=3000 B.1000(1﹣x%)2=3000C.1000(1+x)2=3000 D.1000(1﹣x)2=3000【分析】根据题意得出2018年的台数为1000(1+x)台,2019年为1000(1+x)2台,列出方程即可.【解答】解:根据题意:2019年为1000(1+x)2台.则1000(1+x)2=3000;故选:C.【点评】此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a(1+x)2=b (a<b);平均降低率问题,在理解的基础上,可归结为a(1﹣x)2=b(a>b).13.(4分)(2020•黔南州)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0正确的有()A.3个 B.4个 C.5个 D.6个【分析】根据二次函数的性质和二次函数的图象可以判断题目中各个小题的结论是否成立,从而可以解答本题.【解答】解:由图象可知,抛物线开口向上,则a>0,顶点在y轴右侧,则b<0,与y轴交于负半轴,则c<0,∴abc>0,故①正确,函数图象与x轴有两个不同的交点,则b2﹣4ac>0,即4ac<b2,故②正确,由图象可知,,则2b=﹣2a,2a+b=﹣b>0,故③正确,由抛物线过点(﹣1,0),(0,﹣2),(2,0),可得,,得,∴y=x2﹣x﹣2=,∴顶点坐标是(,﹣),故④错误,∴当x<时,y随x的增大而减小,故⑤正确,当x=1时,y=a+b+c<0,故⑥错误,由上可得,正确是①②③⑤,故选B.【点评】本题考查二次函数图象与系数的关系,解答本题的关键是明确二次函数的性质,利用数形结合的思想解答.二、填空题(共6小题,每小题4分,满分24分)14.(4分)(2020•黔南州)因式分解:2x2﹣8=2(x+2)(x﹣2).【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2x2﹣8=2(x+2)(x﹣2).【点评】本题考查提公因式法分解因式,是基础题.15.(4分)(2020•黔南州)一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集为x<1.【分析】根据一次函数与一元一次不等式的关系即可求出答案.【解答】解:∵y=kx+b,kx+b<0∴y<0,由图象可知:x<1故答案为:x<1【点评】本题考查一次函数与一元一次不等式,解题的关键是正确理解一次函数与一元一次不等式的关系,本题属于基础题型.16.(4分)(2020•黔南州)如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠FPE=100°,则∠PFE的度数是40°.【分析】根据三角形中位线定理得到EP=AD,FP=BC,得到PE=PF,根据等腰三角形的性质、三角形内角和定理计算即可.【解答】解:∵P是对角线BD的中点,E是AB的中点,∴EP=AD,同理,FP=BC,∵AD=BC,∴PE=PF,∵∠FPE=100°,∴∠PFE=40°,故答案为:40°.【点评】本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17.(4分)(2020•黔南州)如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,OA=6,则的长为π.【分析】连接OC,如图,利用等腰三角形的性质和三角形内角和可计算出∠AOC=60°,则∠BOC=70°,然后根据弧长公式计算的长.【解答】解:连接OC,如图,∴∠OCA=∠CAO=60°,∴∠AOC=60°,∴∠BOC=130°﹣60°=70°,∴的长==π.故答案为π.【点评】本题考查了弧长的计算:圆周长公式:C=2πR;弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),在弧长的计算公式中,n是表示1°的圆心角的倍数,n和180都不要带单位.18.(4分)(2020•黔南州)如图,在△ABC中,AB=3,AC=6,将△ABC绕点C 按逆时针方向旋转得到△A1B1C,使CB1∥AD,分别延长AB、CA1相交于点D,则线段BD的长为9.【分析】利用平行线的性质以及旋转的性质得出△CAD∽△B′A′C,再利用相似三角形的性质得出AD的长,进而得出BD的长.【解答】解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,∴AC=CA′=6,AB=B′A′=3,∠A=∠CA′B′,∵CB′∥AB,∴∠B′CA′=∠D,∴△CAD∽△B′A′C,∴,解得AD=12,∴BD=AD﹣AB=12﹣3=9.故答案为:9.【点评】此题主要考查了旋转的性质以及相似三角形的判定与性质等知识,得出△CAD∽△B′A′C是解题关键.19.(4分)(2020•黔南州)杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则(a+b)5=1a5+5a4b+10a3b2+10a2b3+5ab4+1b5.【分析】观察图形,找出二项式系数与杨辉三角之间的关系,即可得出(a+b)5=1a5+5a4b+10a3b2+10a2b3+5ab4+1b5,此题得解.【解答】解:观察图形,可知:(a+b)5=1a5+5a4b+10a3b2+10a2b3+5ab4+1b5.故答案为:1a5+5a4b+10a3b2+10a2b3+5ab4+1b5.【点评】本题考查了完全平方公式以及规律型中数字的变化,观察图形,找出二项式系数与杨辉三角之间的关系是解题的关键.三、解答题(共7小题,满分74分)20.(10分)(2020•黔南州)(1)计算:|﹣1|+(﹣1)2020+4sin60°+.(2)先化简再求值:(﹣)÷,其中x、y满足|x﹣1|+(y+2)2=0.【分析】(1)根据绝对值、乘方、三角函数、平方根的定义解答;(2)先将括号内通分,再将除法转化为乘法解答.【解答】解:(1)原式=﹣1﹣1+4×+2=3;(2)∵x、y满足|x﹣1|+(y+2)2=0,∴x﹣1=0,y+2=0,∴x=1,y=﹣2.原式=×=,当x=1,y=﹣2时,原式==﹣1.【点评】(1)本题考查了绝对值、乘方、三角函数、平方根,熟悉定义是解题的关键;(2)本题考查了分式的化简求值,熟悉约分、通分是解题的关键.21.(10分)(2020•黔南州)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(顶点是网格线的交点)(1)先将△ABC竖直向上平移5个单位,再水平向右平移4个单位得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;(3)求线段B1C1变换到B1C2的过程中扫过区域的面积.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用旋转的性质进而得出对应点位置,进而得出答案;(3)首先得出圆心角以及半径,再利用扇形面积公式直接计算得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B1C2,即为所求;(3)线段B1C1变换到B1C2的过程中扫过区域的面积为:=π.【点评】此题主要考查了平移变换以及旋转变换和扇形面积求法,正确得出对应点位置是解题关键.22.(10分)(2020•黔南州)全面二孩政策于2016年1月1日正式实施,黔南州某中学对八年级部分学生进行了随机问卷调查,其中一个问题“你爸妈如果给你添一个弟弟(或妹妹),你的态度是什么?”共有如下四个选项(要求仅选择一个选项):A.非常愿意B.愿意C.不愿意D.无所谓如图是根据调查结果绘制的两幅不完整的统计图,请结合图中信息解答以下问题:(1)试问本次问卷调查一共调查了多少名学生?并补全条形统计图;(2)若该年级共有450名学生,请你估计全年级可能有多少名学生支持(即态度为“非常愿意”和“愿意”)爸妈给自己添一个弟弟(或妹妹)?(3)在年级活动课上,老师决定从本次调查回答“不愿意”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“不愿意”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率.【分析】(1)用选D的人数除以它所占的百分比即可得到调查的总人数,再用总人数乘以选B所占的百分比得到选B的人数,然后用总人数分别减去选B、C、D的人数得到选A的人数,再补全条形统计图;(2)利用样本估计总体,用450乘以样本中选A和选B所占的百分比可估计全年级支持的学生数;(3)“非常愿意”的四名同学分别用1、2、3、4表示,其中1表示男同学,画树状图展示所有12种等可能的结果数,再找出选取到两名同学中刚好有这位男同学的结果数,然后根据概率公式计算.【解答】解:(1)20÷50%=40(名),所以本次问卷调查一共调查了40名学生,选B的人数=40×30%=12(人),选A的人数=40﹣12﹣20﹣4=4(人)补全条形统计图为:(2)450×=180,所以估计全年级可能有180名学生支持;(3)“非常愿意”的四名同学分别用1、2、3、4表示,其中1表示男同学,画树状图为:共有12种等可能的结果数,其中选取到两名同学中刚好有这位男同学的结果数为6,所以选取到两名同学中刚好有这位男同学的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.23.(10分)(2020•黔南州)阅读材料:一般地,当α、β为任意角时,tan(α+β)与tan(α﹣β)的值可以用下面的公式求得:tan(α±β)=.例如:tan15°=tan(45°﹣30°)======2﹣.根据以上材料,解决下列问题:(1)求tan75°的值;(2)都匀文峰塔,原名文笔塔,始建于明代万历年间,系五层木塔,文峰塔的木塔年久倾毁,仅存塔基,1983年,人民政府拨款维修文峰塔,成为今天的七层六面实心石塔(图1),小华想用所学知识来测量该铁搭的高度,如图2,已知小华站在离塔底中心A处5.7米的C处,测得塔顶的仰角为75°,小华的眼睛离地面的距离DC为1.72米,请帮助小华求出文峰塔AB的高度.(精确到1米,参考数据≈1.732,≈1.414)【分析】(1)利用题中的公式和特殊角的三角函数值计算75度的正切值;(2)如图2,先在Rt△BDE中利用正切的定义计算出BE,然后计算BE+AE即可.【解答】解:(1)tan75°=tan(45°+30°)====2+;(2)如图2,易得DE=CA=5.7,AE=CD=1.72,在Rt△BDE中,∵tan∠BDE=,∴BE=DEtan75°=5.7×(2+)≈21.2724,∴AB=BE+AE=21.2724+1.72≈23(m).答:文峰塔AB的高度约为23m.【点评】本题考查了解直角三角形的应用﹣仰角俯角:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.24.(10分)(2020•黔南州)2016年12月29日至31日,黔南州第十届旅游产业发展大会在“中国长寿之乡”﹣﹣罗甸县举行,从中寻找到商机的人不断涌现,促成了罗甸农民工返乡创业热潮,某“火龙果”经营户有A、B两种“火龙果”促销,若买2件A种“火龙果”和1件B种“火龙果”,共需120元;若买3件A种“火龙果”和2件B种“火龙果”,共需205元.(1)设A,B两种“火龙果”每件售价分别为a元、b元,求a、b的值;(2)B种“火龙果”每件的成本是40元,根据市场调查:若按(1)中求出的单价销售,该“火龙果”经营户每天销售B种“火龙果”100件;若销售单价每上涨1元,B种“火龙果”每天的销售量就减少5件.①求每天B种“火龙果”的销售利润y(元)与销售单价(x)元之间的函数关系?②求销售单价为多少元时,B种“火龙果”每天的销售利润最大,最大利润是多少?【分析】(1)根据题意列方程组即可得到结论;(2)①由题意列出y与x之间的关系式即可;②利用配方法,根据二次函数的性质解答即可;【解答】解:(1)根据题意得:,。
2020年贵州黔南中考数学试卷(解析版)一、选择题(本大题共10小题,每小题4分,共40分)1.的相反数是( ).A. B. C. D.2.观察下列图形,是中心对称图形的是( ).A. B. C. D.3.某市年参加中考的考生人数的为人,将用科学记数法表示为( ).A.B.C.D.4.下列四个几何体中,左视图为圆的是( ).A.B.C.D.5.下列运算正确的是( ).A.B.C.D.6.如图,将矩形纸条折叠,折痕为,折叠后点,分别落在点,处,与交于点.已知,则的度数是( ).A.B.C.D.7.如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点处测得旗杆顶端的仰角为,测角仪的高度为米,其底端与旗杆底端之间的距离为米,设旗杆的高度为米,则下列关系式正确的是( ).A.B.C.D.8.某超市正在热销一种商品,其标价为每件元,打折销售后每件可获利元,该商品每件的进价为( ).A.元B.元C.元D.元9.已知等腰三角形的一边长等于,一边长等于,则它的周长为( ).A.B.或C.D.10.已知,介于两个连续自然数之间,则下列结论正确的是( ).A.B.C.D.二、填空题(本大题共10小题,每小题3分,共30分)11.分解因式: .12.若与的和仍是一个单项式,则 .13.若一组数据,,,,,的众数为,则这组数据的中位数为 .14.函数的图象一定不经过第 象限.15.如图,在平面直角坐标系中,直线与轴、轴分别交于、两点,点在第二象限,若,则点的坐标为 .16.如图所示,在四边形中,,,.连接,,若,则长度是 .17.已知菱形的周长为,两条对角线的和为,则菱形的面积为 .18.如图,正方形的边长为,点的坐标为,点在轴上,若反比例函数的图象经过点,则的值为 .19.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有头牛、只羊,值金两;头牛、只羊,值金两.问每头牛、每只羊各值金多少两?”设每头牛值金两,每只羊值金两,可列方程组为 .20.对于实数,,定义运算“”,,例如,因为,所以.若,是一元二次方程的两个根,则.三、解答题(本大题共7小题,共80分)21.计算:.22.解不等式组:.(1)(2)23.古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的圆”,请研究如下美丽的圆,如图,中,,,,点在线段上,且,以为圆心,为半径的⊙交线段于点,交线段的延长线于点.求证:是⊙的切线.研究过程中,小明同学发现,回答小明同学发现的结论是否正确?如果正确,给出证明;如果不正确,说明理由.24.勤劳是中华民族的传统美德,学校要求学们在家帮助父母做一些力所能及的家务.在学期初,小丽同学随机调查了七年级部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为小时,将做家务的总时间分为五个类别:,,,,.并将调查结果绘制了如图两幅不完整的统计图:(1)(2)(3)(4)类别人数做家务总时间条形统计图做家务总时间扇形统计图根据统计图提供的作息,解答下列问题:本次共调查了 名学生.根据以上信息直接在答题卡上补全条形统计图.扇形統计图中 ,类别所对应的扇形圆心角的度数是 度.若该校七年级共有名学生,根据抽样调查的结果,估计该校七年級有多少名学生寒假在家做家务的总时间不低于小时?(1)(2)25.某单位计划购买甲、乙两种品牌的消毒剂,乙种品牌消毒剂每瓶的价格比甲种品牌消毒剂每瓶价格的倍少元,已知用元购买甲种品牌消毒剂的数量与用元购买乙种品牌消毒剂的数量相同.求甲、乙两种品牌消毒剂每瓶的价格各是多少元?若该单位从超市一次性购买甲、乙两种品牌的消毒剂共瓶,且总费用为元,求购买了多少瓶乙种品牌消毒剂?26.在年新冠肺炎疫情期间,某中学响应政府有“停课不停学”的号召,充分利用网络资源进行网上学习,九年级班的全体同学在自主完成学习任务的同时,彼此关怀,全班每两个同学都通过一次电话,互相勉励,共同提高,如果该班共有名同学,若每两名同学之间仅通过一次电话,那么全班同学共通过多少次电话呢?我们可以用下面的方式来解决问题.用点、、分别表示第名同学、第名同学、第名同学第名同学,把该班级人数与通电话次数之间的关系用如图模型表示:(1)(2)(3)填写上图中第四个图中的值为 ,第五个图中的值为 .通过探索发现,通电话次数与该班级人数之间的关系式为 ,当时,对应的.若九年级班全体女生相互之间共通话次,问:该班共有多少名女生?(1)(2)27.如图,已知是⊙的直径,⊙经过的直角边上的点,交边于点,点是弧的中点,,连接.求证:直线是⊙切线.若,,求的值.(1)(2)(3)28.如图(),在平面直角坐标系中,抛物线与轴交于点,与轴交于点,且经过点,连接,,作于点,将沿轴翻折,点的对应点为点.解答下列问题:图抛物线的解析式为 ,顶点坐标为 .判断点是否在直线上,并说明理由.如图(),将图()中沿着平移后,得到.若边在线段上,点在抛物线上,连接,求四边形的面积.【答案】解析:根据相反数的含义,可得的相反数是:.故选.解析:.故选:.图A 1.D 2.C 3.D 4.解析:因为圆柱的左视图是矩形,圆台的左视图是等腰梯形,圆锥的左视图是等腰三角形,球的左视图是圆,∴这个几何体中,左视图为圆的是球.故选:.解析:∵矩形纸条中,,∴,∴,由折叠可得,,故选:.解析:∵在中,,,,∴,,,故选:.解析:设该商品每件的进价为元,依题意,得:,解得:.故选.解析:分两种情况:当腰为时,,所以不能构成三角形;A 5.D 6.B 7.C 8.D 9.当腰为时,,,所以能构成三角形,周长是:.故选.解析:∵,∴,∴在和之间,即.故选:.解析:.解析:∵与的和仍是一个单项式,∴,,解得:,,故.故答案为:.解析:∵,,,,,的众数为,∴,把这组数据从小到大排列为:、、、、、,则中位数为,故答案为:.C 10.11.12.13.解析:由已知,得:,.故直线必经过第一、三、四象限.则不经过第二象限.故答案为:二.解析:∵直线与轴、轴分别交于、两点,∴点的坐标为,点的坐标为.过点作轴于点,如图所示.∵,∴,,∴.∴点的坐标为.故答案为:.解析:在中,∵,,∴,在中,二14.15.16..故答案为:.17.解析:如图所示:∵两条对角线的和为,∴,∵菱形的周长为,∴,,,,∴,∴,,即,,∴,∴菱形的面积;故答案为:.18.解析:如图,过点作轴于,在正方形中,,,∴,∵,∴,∵点的坐标为,∴,∵,∴,在和中,,∴≌,∴,,∴,∴点的坐标为,∵反比例函数的图象过点,∴,∴反比例函数的表达式为,故答案为:.解析:根据题意得:.故答案为:.解析:,解得:,即,则.故答案为.解析:19.20..21.(1)(2).解析:解不等式,得:,解不等式,得:,则不等式组的解集为.解析:如图,过点作于,图∵,,,∴,∵,∴,∴,∴,且,∴是⊙的切线.结论成立;连接,,.22.(1)证明见解析.(2)正确,证明见解析.23.(1)(2)图∵是直径,∴,∴,∵,∴,∴,又∵,∴,∴,∵,∴,∴.故小明同学发现的结论是正确的.解析:本次共调查了名学生,故答案为:.类学生有:(人),类学生有:(人),补全的条形统计图如下图所示.(1)(2)画图见解析.(3); (4)名.24.(3)(4)(1)(2)类别人数做家务总时间条形统计图,即,类别所对应的扇形圆心角的度数是:.故答案为:,.(人),即该校七年级有名学生寒假在家做家务的总时间不低于小时.解析:设甲品牌消毒剂每瓶的价格为元;乙品牌消毒剂每瓶的价格为元,由题意得:,解得:.经检验,是原方程的解且符合实际意义,,答:甲品牌消毒剂每瓶的价格为元;乙品牌消毒剂每瓶的价格为元.设购买甲种品牌的消毒剂瓶,则购买乙种品牌的消毒剂瓶,由题意得:,解得:,∴.答:购买了瓶乙品牌消毒剂.(1)甲品牌消毒剂每瓶的价格为元;乙品牌消毒剂每瓶的价格为元.(2)瓶.25.(1); (2); (3)名.26.(1)(2)(3)(1)解析:观察图形,可知:第四个图中的值为,第五个图中的值为.故答案为:;.∵,,,,,∴,当时,.故答案为:;.依题意,得:,化简,得:,解得:,(不含题意,舍去).答:该班共有名女生.解析:连结,,如图:∵是⊙的直径,∴,∵,∴,∴,∵点是弧的中点,∴,∴,∵为半径,(1)证明见解析.(2).27.(2)(1)(2)∴直线是⊙的切线.∵,∴,∴,∴,∵,,∴,,∴,∴,∵,,∴,即,解得:,∴.解析:∵抛物线与轴交于点,且经过点,∴,解得:,∴抛物线解析式为:,∵,∴顶点坐标为,故答案为:;.∵抛物线与轴交于点,∴点,即,∵点,(1); (2)在,证明见解析.(3).28.(3)∴轴,,∴,∴,∴,∵,∴,∴,∴,∵将沿轴翻折,∴,∴,∵,,∴,∴,∴,∴,共线,∴点在直线上.∵点,点,∴直线解析式为,∵沿着平移后,得到,∴,∴直线的解析式为:,联立方程组:,解得:或,∴点,∵沿着平移后,得到,∴≌,,,∴,四边形是平行四边形,∵四边形四边形,∴.四边形四边形四边形四边形。
2020 年贵州省黔东南州中考数学试卷一.选择题(共10 小题)1.﹣2020 的倒数是()A. ﹣2020B. ﹣ 1C. 2020D. 12020 2020 【答案】B【解析】【分析】根据倒数的概念即可解答.1【详解】解:根据倒数的概念可得,﹣2020的倒数是,2020故选:B.【点睛】本题考查了倒数的概念,熟练掌握是解题的关键.2.下列运算正确的是()A. (x+y)2=x2+y2B. x3+x4=x7C. x3?x2=x6D. (﹣3x)2=9x2【答案】 D 【解析】 【分析】 直接利用完全平方公式以及合并同类项、同底数幂的乘法运算和积的乘方运算法则分别计算得出答案. 【详解】解: A 、 ( x+y ) 2=x 2+2xy+y 2,故此选项错误; B 、 x 3+x 4,不是同类项,无法合并,故此选项错误; C 、 x 3?x 2= x 5,故此选项错误; D 、 (﹣3x ) 2= 9x 2,正确. 故选: D .【点睛】此题主要考查整式的运算,熟练掌握各种整式运算法则是解题关键. 3.实数 2 10 介于( )A. 4 和 5 之间B. 5 和 6之间C. 6 和7 之间D. 7 和 8 之间【解析】【分析】首先化简2 10 =40 ,再估算40 ,由此即可判定选项.【详解】解:∵ 2 10 =40 ,且6< 40 < 7,∴ 6< 2 10 < 7.故选:C.【点睛】本题考查估算实数大小,方法就是用有理数来逼近,求该数的近似值,一般情况下要牢记 1 到20整数的平方,可以快速准确地进行估算.4.已知关于x 的一元二次方程x2+5x﹣m=0 的一个根是2,则另一个根是()A. ﹣7B. 7C. 3D. ﹣3【答案】 A【解析】【分析】根据根与系数的关系即可求出答案.【详解】解:设另一个根为x,则x+2=﹣5,解得x=﹣7.故选:A.【点睛】此题主要考查一元二次方程根与系数的关系,正确理解一元二次方程根与系数的关系是解题关键.5.如图,将矩形ABCD 沿AC 折叠,使点B 落在点B′处,B′ C 交AD 于点E,若∠ 1 =25°,则∠ 2 等于()C.50°D.60°B. 12C. 16D. 2 91由折叠的性质可得出∠ ACB ′的度数,由矩形的性质可得出 AD ∥ BC , 再利用“两直线平行, 内错角相等” 可求出∠ 2 的度数.【详解】解:由折叠的性质可知:∠ ACB ′=∠ 1 = 25°. ∵四边形 ABCD 为矩形, ∴ AD ∥ BC , ∴∠2=∠ 1+∠ ACB ′= 25° +25°= 50°.故选: C .【点睛】本题考查了矩形的折叠问题,解答关键是注意应用折叠前后图形的形状和大小不变,位置变化, 对应边和对应角相等的性质.6. 桌上摆着一个由若干个相同的小正方体组成的几何体, 其主视图和左视图如图所示, 则组成这个几何体的小正方体的个数最多有()A. 12个B. 8 个C. 14个D. 13个【答案】 D 【解析】 【分析】易得此几何体有三行,三列,判断出各行各列最多有几个正方体组成即可. 【详解】 解: 底层正方体最多有 9 个正方体, 第二层最多有 4 个正方体, 所以组成这个几何体的小正方体的 个数最多有 13 个. 故选: D .【点睛】本题考查了由三视图判断几何体的知识,解决本题的关键是利用 “主视图疯狂盖,左视图拆违章”找到所需正方体的个数.7.如图, ⊙ O 的直径 CD = 20, AB 是 ⊙ O 的弦, AB ⊥CD , 垂足为 M ,OM : OD = 3: 5, 则 AB 的长为 ( )A.8【答案】C【解析】【分析】连接OA,先根据⊙ O 的直径CD =20,OM :OD=3:5求出OD 及OM 的长,再根据勾股定理可求出AM的长,进而得出结论.【详解】连接OA,∵ ⊙ O 的直径CD=20,OM:OD=3:5,∴ OD =10,OM =6,∵ AB ⊥ CD ,∴AM OA2OM 210262=8,∴ AB=2AM=16.故选:C.【点睛】本题考查了垂径定理和勾股定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式2r2d2 a 成立,知道这三个量中的任意两个,就可以求出另外一个.28.若菱形ABCD 的一条对角线长为8,边CD 的长是方程x2﹣10x+24=0的一个根,则该菱形ABCD的周长为()A. 16B. 24C. 16或24D. 48【答案】B【解析】【分析】解方程得出x=4或x=6,分两种情况:① 当AB=AD=4时,4+4=8,不能构成三角形;② 当AB=AD=6 时,6+6> 8,即可得出菱形ABCD 的周长.∵四边形 ABCD 是菱形, ∴ AB = BC = CD = AD , ∵ x 2﹣ 10x+24= 0, 因式分解得:( x ﹣ 4) ( x ﹣ 6)= 0,解得: x = 4 或 x = 6, 分两种情况:① 当 AB = A D = 4时, 4+4= 8,不能构成三角形; ② 当 AB = A D = 6时, 6+6> 8, ∴菱形 A BCD 的周长= 4AB = 24. 故选: B .【点睛】本题考查菱形的性质、解一元二次方程 -因式分解法、三角形的三边关系,熟练掌握并灵活运用是 解题的关键.69. 如图,点 A 是反比例函数 y ( x > 0)上的一点,过点 A 作 AC ⊥ y 轴,垂足为点 C , AC 交反比例函数x【答案】 A 【解析】 【分析】连接 OA 、 OB 、 PC . 由于AC ⊥ y 轴, 根据三角形的面积公式以及反比例函数比例系数 k 的几何意义得到 S △ APCS △AOC =3, S △BPC =S △BOC =1,然后利用 S △ PAB = S △ APC ﹣ S △APB进行计C. 6D. 8P 是 x 轴上的动点,则△ P AB的面积为(B.4算.连接O A、OB、PC.AC⊥ y轴,11S△ APC=S△AOC=× |6|=3,S△BPC=S△BOC=×|2|= 1 ,S△ PAB=S△ APC﹣S△ BPC=2.故选:A.k 的几何意义:在反比例函数图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.10.如图,正方形ABCD 的边长为2,O 为对角线的交点,点E、F 分别为B C、AD 的中点.以C 为圆心,2为半径作圆弧BD ,再分别以E、F 为圆心, 1 为半径作圆弧BO 、OD ,则图中阴影部分的面积为()A. π ﹣ 1B. π ﹣ 2C. π ﹣ 3D. 4﹣π【答案】B【解析】【分析】根据题意和图形,可知阴影部分的面积是以 2 为半径的四分之一个圆(扇形)的面积减去以1 为半径的半圆(扇形)的面积再减去 2 个以边长为1 的正方形的面积减去以1 半径的四分之一个圆(扇形)的面积,本题得以解决.【详解】解:由题意可得,11 1阴影部分的面积是:?π×22﹣12﹣2(1×1﹣?π×12)=π ﹣2,42 4故选:B.【点睛】本题主要考查运用正方形的性质,圆的面积公式(或扇形的面积公式),正方形的面积公式计算不规则几何图形的面积,解题的关键是理解题意,观察图形,合理分割,转化为规则图形的面积和差进行计算.二.填空题(共10 小题)11.c os600= ___ .1【答案】12【解析】【分析】根据特殊角的三角函数值填空即可.【详解】由特殊角的三角函数值,能够确定cos60 = 1 .21故答案是12【点睛】本题考查了特殊角的三角函数值,解决本题的关键是熟练掌握特殊角的三角函数值.12.2020 年以来,新冠肺炎橫行,全球经济遭受巨大损失,人民生命安全受到巨大威胁.截止 6 月份,全球确诊人数约3200000 人,其中3200000 用科学记数法表示为____ .【答案】3.2× 106【解析】【分析】科学记数法表示形式为 a 10 n的形式,其中1 a 10,n 为整数.确定n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10 时,n 是正数;当原数的绝对值 1 时,n 是负数.【详解】由科学记数法的定义得:3200000 3.2 106故答案为: 3.2 106.【点睛】本题考查了科学记数法的定义,熟记定义是解题键.13.在实数范围内分解因式:【答案】x(y 2)(y【解析】【分析】先提公因式x,再运用平方差公式分解因式即可求解.【详解】解:xy2﹣4xx( y 2﹣ 4)x(y 2)(y 2).故答案为: x (y 2)( y 2) .【点睛】本题考查因式分解的方法,熟练掌握提公因式法和公式法对因式进行分解是解题的关键5x 1 3(x 1)【答案】 2< x≤6【解析】 【分析】先根据解不等式的基本步骤求出每个不等式的解集,再根据“大小小大中间找 ”可确定不等式组的解集.【详解】解:解不等式 5x ﹣ 1 > 3( x+1 ) ,得: x > 2,11解不等式 x ﹣ 1 ≤4 ﹣x ,得: x≤6 ,23则不等式组的解集为 2< x≤6 , 故答案为: 2< x≤6 .【点睛】本题主要考查解一元一次不等式组,熟知同大取大;同小取小,大小小大中间找,大大小小找不 到的原则是解答此题的关键.15. 把直线 y = 2x ﹣ 1 向左平移 1 个单位长度,再向上平移2 个单位长度, 则平移后所得直线的解析式为【答案】 y = 2x+3 【解析】 【分析】直接利用一次函数的平移规律进而得出答案. 【详解】解:把直线 y = 2x ﹣ 1 向左平移1 个单位长度,得到 y = 2( x+1 )﹣ 1 =2x+1 ,再向上平移 2 个单位长度,得到 y = 2x+3. 故答案为: y = 2x+3.【点睛】本题考查了一次函数的平移,熟练掌握是解题的关键.16. 抛物线 y = ax 2+bx+c ( a ≠ 0)的部分图象如图所示,其与 x 轴的一个交点坐标为(﹣3, 0) ,对称轴为 x14. 不等式组14 1 的解集为 x=﹣1,则当y< 0 时,x 的取值范围是 __ .【答案】﹣3< x< 1【解析】【分析】根据抛物线与x轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x轴的另一个交点,再根据抛物线的增减性可求当y< 0 时,x 的取值范围.【详解】解:∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点为(﹣3,0),对称轴为x=﹣1,∴抛物线与x轴的另一个交点为(1,0),由图象可知,当y< 0 时,x 的取值范围是﹣3< x< 1.故答案为:﹣3< x< 1.【点睛】本题考查了二次函数的性质和数形结合能力,熟练掌握并灵活运用是解题的关键.17.以? ABCD 对角线的交点O 为原点,平行于BC 边的直线为x轴,建立如图所示的平面直角坐标系.若 A点坐标为(﹣2,1 ),则C 点坐标为.【答案】(2,﹣ 1 )【解析】【分析】根据平行四边形是中心对称图形,再根据? ABCD 对角线的交点O 为原点和点A的坐标,即可得到点 C 的坐标.【详解】解:∵? ABCD 对角线的交点O 为原点,A点坐标为(﹣2,1),∴点C 的坐标为(2,﹣1),故答案为:(2,﹣1).18.某校九( 1)班准备举行一次演讲比赛,甲、乙、丙三人通过抽签方式决定出场顺序,则出场顺序恰好____ .1166 种等可能的结果,其中出场顺序恰好是甲、乙、丙的只有 1 种结果,1,611.6.19.如图, AB 是半圆O 的直径, AC =AD , OC=2, ∠ CAB = 30 ° , 则点O 到CD 的距离OE=2∵∠CAB=3°0 ,AC=AD ,OA=OC ,∴∠ACD=7°5 ,∠ACO=3°0 ,∴∠OCE=4°5 ,∵OE⊥CD ,OC为等腰直角三角形,E ∵ OC=2,∴ OE= 2 .考点:(1)、圆的基本性质;(2)、勾股定理20.如图,矩形ABCD 中,AB=2,BC= 2 ,E 为CD 的中点,连接AE、BD 交于点P,过点P 作PQ⊥ BC于点Q,则__________ PQ=.4【答案】 43【解析】【分析】根据矩形的性质得到AB∥C D,AB=CD,AD=BC,∠BAD=90°,根据线段中点的定义得到DE=1CD2 1=2 AB,根据相似三角形的判定证明△ ABP∽△EDP,再利用相识三角形的性质和判定即可得到结论.∵ 四边形ABCD 是矩形,AB∥ CD,AB=CD,AD=BC,∠ BAD=90°,E 为CD 的中点,DE =CD=AB,22ABP∽△ EDP,AB PB =,DE PD2 PB =,1PDPB 2 =,BD 3PQ⊥ BC,PQ∥ CD,BPQ∽△DBC,PQ =BPCD BDCD =2,4∴ PQ=,34 故答案为:【点睛】本题主要考查了矩形的性质,相似三角形的判定和性质的应用,运用矩形的性质和相似三角形判2 PB定和性质证明△ ABP ∽△EDP 得到=PB是解题的关键.1 PD三.解答题(共 6 小题)21.(1)计算:(1 )﹣2﹣| 2 ﹣3|+2tan45 °﹣(2020﹣π )0;3 a24(2)先化简,再求值:(﹣a+1)÷2a 4 ,其中a 从﹣1 ,2,3 中取一个你认为合适的数代入求a 1 a22a 1值.【答案】(1)2+ 2 ;(2)﹣a﹣1,-4【解析】【分析】(1 )先算负整数指数幂、绝对值、特殊角的三角函数值、零指数幂、然后再算加减法即可;(2)先运用分式的相关运算法则化简,最后确保分式有意义的前提下,选择一个a的值代入计算即可.【详解】解:(1)( 1 )﹣2﹣| 2 ﹣3|+2tan45 °﹣(2020﹣π )0=4+ 2 ﹣3+2× 1 ﹣ 1=4+ 2 ﹣3+2 ﹣1=2+ 2 ;2( 2)( 3 ﹣a+1 )÷2a 4a 1 a 2a 123 (a 1)(a 1)(a 1)2=×a 1 (a 2)(a 2)a2a2a2a2=﹣a﹣1 ,要使原式有意义,只能a=3,则当a=3 时,原式=﹣3﹣1 =﹣4.【点睛】本题考查了实数的混合运算、特殊角的三角函数值以及分式的化简求值,掌握实数的相关知识以及分式四则运算的法则是解答本题的关键.x 分(x22. 某校对九年级学生进行一次综合文科中考模拟测试,成绩为整数)评定为优秀、良好、合格、A、B、C、D 表示),A等级:90≤ x≤100,B 等级:80≤ x< 90,C 等级:60≤ x< 80,D 等级:0≤ x< 60.该校随机抽取了一部分学生的成绩进行调查,并绘制成如图不完整的统计图表.等级频数(人数)频率A a 20%B 16 40%C b mD 4 10%请你根据统计图表提供的信息解答下列问题:(1 )上表中的 a ,b=,m=.(2)本次调查共抽取了多少名学生?请补全条形图.(3)若从 D 等级的4 名学生中抽取两名学生进行问卷调查,请用画树状图或列表的方法求抽取的两名学生恰好是一男一女的概率.2(1)8,12,30%;(2)40名,补图见解析;(3)31)根据题意列式计算即可得到结论;2)用D 等级人数除以它所占的百分比即可得到调查的总人数;3)列表将所有等可能的结果列举出来,利用概率公式求解即可.( 1)a=16÷40%×20%=8,b=16÷40%×(1﹣20%﹣40%﹣10%)=12,m=1﹣20%﹣40% 不合格四个等级(优秀、良好、合格、不合格分别用﹣10%=30%;故答案:8,12,30%;∵共有 12 种等可能的结果,恰为一男一女的有 8 种,82∴抽得恰好为“一男一女”的概率为 8 = 2 . 12 3【点睛】此题考查了树状图法与列表法求概率以及条形统计图、扇形统计图的应用.用到的知识点为:概 率 = 所求情况数与总情况数之比.23. 如图, AB 是 ⊙ O 的直径, 点 C 是 ⊙ O 上一点 (与点 A , B 不重合) , 过点C 作直线 PQ , 使得∠ACQ =∠ ABC .( 1 )求证:直线 PQ 是 ⊙ O 的切线.1( 2)过点 A 作 AD ⊥ PQ 于点D ,交 ⊙ O 于点E ,若 ⊙ O的半径为 2, sin ∠ DAC = ,求图中阴影部分的面2积.ABabA( A , B )( A , a )( A , b )B ( B , A )( B , a ) ( B , b )a ( a , A )( a ,B )( a ,b )b ( b , A )( b ,B )( b , a )b,2)本次调查共抽取了 4÷ 10%= 402( 1)见解析;( 2) 2 ﹣ 3 .1 ) 连接OC , 由直径所对的圆周角为直角,可得∠ ACB = 90°;利用等腰三角形的性质及已知条件∠ACQABC ,可求得∠ OCQ = 90°,按照切线的判定定理可得结论.( 2)由sin ∠ DAC = 1 ,可得∠ DAC = 30°,从而可得∠ ACD 的 度数,进而判定△AEO 为等边三角形,2则∠ AOE 的度数可得;利用 S 阴影 = S 扇形 ﹣ S △ AEO ,可求得答案.OC ,ACB = 90°, OA = OC , CAB =∠ ACO . ACQ =∠ ABC ,CAB+∠ ABC =∠ ACO+∠ ACQ =∠ O CQ = 90°,即 OC ⊥ PQ , PQ 是 ⊙ O 的切线.2)连接 O E ,sin ∠ DAC = 1 , AD ⊥ PQ ,2∠ DAC = 30°, ∠ ACD =∠ ABC=6°0 .( 1)证AB 是 ⊙ OBAC=30 °,BAD= ∠ DAC+ ∠ BAC=60又∵ O A = OE ,∴△ A EO 为等边三角形, ∴∠ A OE = 60°.S 阴影 = S 扇形 ﹣ S △ AEO1S 扇形 ﹣ OA?OE?sin60°22 3.32 2 ﹣3.3判定和性质,以及三角函数,解题的关键是熟练掌握所学的知识进行解题.24. 黔东南州某超市购进甲、乙两种商品,已知购进 3 件甲商品和 2 件乙商品,需 60 元;购进 2 件甲商品和3 件乙商品,需 65 元.( 1 )甲、乙两种商品的进货单价分别是多少?( 2)设甲商品的销售单价为 x (单位:元 /件) ,在销售过程中发现:当 11≤ x ≤ 19时,甲商品的日销售量y(单位:件)与销售单价 x 之间存在一次函数关系, x 、 y 之间的部分数值对应关系如表:请写出当 11≤ x ≤ 19 时, y 与 x 之间的函数关系式. ( 3)在( 2)的条件下,设甲商品的日销售利润为 w 元,当甲商品的销售单价 x (元/件)定为多少时,日销售利润最大?最大利润是多少?【答案】 ( 1)甲、乙两种商品的进货单价分别是 10、 15元 /件; ( 2) y =﹣2x+40( 11≤ x ≤ 19) . ( 3)当甲商品的销售单价定为 15元 /件时,日销售利润最大,最大利润是 50 元. 【解析】60 360 22 12 2 2【分析】(1 )设甲、乙两种商品的进货单价分别是a、b 元/件,然后列出二元一次方程组并求解即可;(2)设y与x之间的函数关系式为y=k1x+b1,用待定系数法求解即可;3)先列出利润和销售量的函数关系式,然后运用二次函数的性质求最值即可.( 1)设甲、乙两种商品的进货单价分别是 a 、 b 元 /件,由题意得:3a 2b 60 2a 3b 65a 10b 1510、 15 元 /件.y = k 1x+b 1,将( 11, 18) , ( 19, 2)代入得:∴ y 与 x 之间的函数关系式为 y =﹣ 2x+40( 11≤ x ≤ 19) .( 3)由题意得:w =(﹣ 2x+40) ( x ﹣ 10)=﹣ 2x 2+60x ﹣ 400=﹣ 2( x ﹣ 15) 2+50( 11≤ x ≤ 19) . ∴当x = 15 时, w 取得最大值 50.∴当甲商品的销售单价定为 15 元 /件时,日销售利润最大,最大利润是 50 元.等知识点,弄懂题意、列出方程组或函数解析式是解答本题的关键.25. 如图 1,△ ABC 和△ DCE 都是等边三角形.探究发现( 1 )△ BCD 与△ ACE 是否全等?若全等,加以证明;若不全等,请说明理由. 拓展运用( 2)若 B 、C 、 E 三点不在一条直线上,∠ ADC = 30°, AD = 3, CD = 2,求 BD 的长.( 3)若B 、C 、 E 三点在一条直线上(如图 2) ,且△ ABC 和△ DCE 的边长分别为 1 和 2,求△ACD 的面积及 AD 的长.解得:2)设 y 与 x 之间的函数关系式为11k 1 b 1 18 19k 1 b 1 2k 1 2 b 1 40【答案】(1)全等,理由见解析;(2)BD=13 ;(3)△ACD 的面积为 3 ,AD= 3 .【解析】【分析】(1 )依据等式的性质可证明∠BCD =∠ACE,然后依据SAS可证明△ACE≌△B CD;(2)由(1)知:BD=AE,利用勾股定理计算AE 的长,可得BD 的长;(3)过点A作AF⊥ CD 于F,先根据平角的定义得∠ACD=60°,利用特殊角的三角函数可得AF 的长,由三角形面积公式可得△ACD 的面积,最后根据勾股定理可得AD 的长.【详解】解:(1)全等,理由是:∵△ ABC 和△ DCE 都是等边三角形,∴ AC =BC,DC=EC,∠ACB=∠DCE=60°,∴∠ACB+∠ ACD=∠DCE +∠ ACD,即∠BCD =∠ACE,在△BCD 和△ACE 中,CD CEBCD ACE ,BC AC∴△ ACE≌△BCD(SAS);(2)如图3,由(1)得:△BCD ≌△ACE,∴ BD=AE,∵△ DCE 都是等边三角形,∴∠ CDE=60°,CD=DE=2,∵∠ ADC=30°,∴∠ ADE =∠ADC+∠ CDE =30° +60 °=90°,在Rt△ ADE 中,AD=3,DE=2,∴AE AD2DE29 4 13,∴ BD=13;题巧作辅助线构造直角三角形是解题的关键.26. 已知抛物线 y =ax 2+bx+c ( a ≠ 0) 与 x 轴交于 A 、 B 两点 (点 A 在点 B 的左边) , 与 y 轴交于点 C ( 0, ﹣3) ,顶点 D 的坐标为(1,﹣ 4) .1)求抛物线的解析式.3)如图 2,过点 A 作 AF ⊥ CD 于 F ,BCA+∠ ACD+∠ DCE = 180°,ABC 和△ DCE 都是等边三角形,ACD = 60°,在 Rt △ ACF 中, sin ∠ ACF =AFAC11S △ ACD = CD AF 2223 3,22 1113∴ CF = AC × cos ∠ ACF = 1× , FD = CD ﹣ CF = 2 ,3232Rt AFD AD23)小AF = AC × sin ∠ ACF= 13 2 AD =32)在 y 轴上找一点 E ,使得△ EAC 为等腰三角形,请直接写出点 E 的坐标.P 、 Q 坐标;若不存在,请说明理由.AE , CE , AC ,再分三种情况建立方程求解即可;∴设抛物线的解析式为 y = a ( x ﹣ 1 ) 2﹣ 4, 将点 C ( 0,﹣ 3)代入抛物线 y = a ( x ﹣ 1)2﹣ 4中,得 a ﹣ 4=﹣ 3,∴ a = 1 ,∴抛物线 解析式为 y = a (x ﹣ 1 )2﹣ 4= x 2﹣ 2x ﹣ 3;( 2)由( 1)知,抛物线的解析式为 y = x 2﹣ 2x ﹣ 3,3)点 P 是 x 轴上 动点,点 Q 是抛物线上的动点,是否存在点 P 、 Q ,使得以点 P 、 Q 、 B 、 D 为顶点,C 坐标代入求解,即可得出结论;BD 为一边的四边形是平行四边形?若存在,请求出点 10 ) 、 ( 0 ,﹣ 3﹣10 01 ) yx 2﹣ 2x ﹣0,3)存在, P0) 、 QP (﹣ 112)先求出点 A , C ( 1)∵抛物线的顶点为( 1,﹣40) 、 Q ( 1﹣ 2 2 , 4) .3)利用平移先确定出点 Q4);3令y=0,则x2﹣2x﹣3=0,∴ ① 当AC=AE时,10 =m21 ,∴ m=3或m=﹣3(点 C 的纵坐标,舍去),∴ E(3,0),②当AC=CE 时,10 =|m+3|,∴ m =﹣3±10 ,∴ E(0,﹣3+ 10 )或(0,﹣3﹣10 ),③当AE=CE 时,m21 =|m+3|,4∴ m =﹣,34∴ E (0 ,﹣),34即满足条件的点 E 的坐标为(0,3)、(0,﹣3+ 10 )、(0,﹣3﹣10 )、(0,﹣);3(3)如图,存在,∵D(1,﹣4),∴将线段BD 向上平移4 个单位,再向右(或向左)平移适当的距离,使点 B 的对应点落在抛物线上,这样便存在点Q,此时点D 的对应点就是点P,∴点Q 的纵坐标为4,设Q(t,4),将点Q 的坐标代入抛物线y=x2﹣2x﹣3 中得,t2﹣2t﹣3=4,∴ t=1+2 2 或t=1﹣2 2,∴ Q(1+2 2 ,4)或(1﹣2 2 ,4),分别过点D ,Q 作x轴的垂线,垂足分别为F,G,∵抛物线y=x2﹣2x﹣3与x轴的右边的交点 B 的坐标为(3,0),且D(1,﹣4),∴ FB=PG=3﹣1=2,∴点P的横坐标为(1+2 2 )﹣2=﹣1+2 2 或(1﹣2 2 )﹣2=﹣1﹣2 2 ,即P(﹣1+2 2 ,0)、Q(1+2 2 ,4)或P(﹣1﹣2 2 ,0)、Q(1﹣2 2 ,4).【点睛】此题主要考查待定系数法求二次函数解析式、二次函数与几何综合,熟练掌握二次函数的图象和性质是解题关键.。
2020年贵州省黔东南州中考数学试卷个小题,(每小题4分,10个小题,共40分)选择题(一、选择题1.﹣2020的倒数是( )A.﹣2020 B.﹣C.2020 D.2.下列运算正确的是( )A.(x+y)2=x2+y2B.x3+x4=x7C.x3•x2=x6D.(﹣3x)2=9x23.实数2介于( )A.4和5之间B.5和6之间C.6和7之间D.7和8之间4.已知关于x的一元二次方程x2+5x﹣m=0的一个根是2,则另一个根是( )A.﹣7 B.7 C.3 D.﹣35.如图,将矩形ABCD沿AC折叠,使点B落在点B′处,B′C交AD于点E,若∠l=25°,则∠2等于( )A.25°B.30°C.50°D.60°6.桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图所示,则组成这个几何体的小正方体的个数最多有( )A.12个B.8个C.14个D.13个7.如图,⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为( )A.8 B.12 C.16 D.28.若菱形ABCD的一条对角线长为8,边CD的长是方程x2﹣10x+24=0的一个根,则该菱形ABCD的周长为( )A.16 B.24 C.16或24 D.489.如图,点A是反比例函数y═(x>0)上的一点,过点A作AC⊥y轴,垂足为点C,AC交反比例函数y=的图象于点B,点P是x轴上的动点,则△P AB的面积为( )A.2 B.4 C.6 D.810.如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧,再分别以E、F为圆心,1为半径作圆弧、,则图中阴影部分的面积为( )A.π﹣1 B.π﹣2 C.π﹣3 D.4﹣π个小题,,共30分)二.填空题每小题3分,10个小题:(每小题填空题:(11.cos60°= .。