裂纹尖端断裂力学参数计算
- 格式:ppt
- 大小:318.50 KB
- 文档页数:25
材料力学之材料疲劳分析算法:断裂力学模型:实验方法与材料疲劳性能测试1 材料疲劳分析基础1.1 疲劳分析的基本概念疲劳分析是材料力学的一个重要分支,主要研究材料在循环载荷作用下逐渐产生损伤并最终导致断裂的过程。
材料在承受重复或周期性的应力时,即使应力远低于材料的静态强度极限,也可能发生疲劳破坏。
这一现象在工程设计中极为关键,因为许多结构件如桥梁、飞机部件、机械零件等,都可能在使用过程中遭受循环载荷。
1.1.1 原理与内容疲劳分析的基本概念包括:-应力幅:循环应力中最大应力与最小应力之差的一半。
-平均应力:循环应力中最大应力与最小应力的平均值。
-应力比:最小应力与最大应力的比值。
-循环次数:材料承受循环载荷的次数,直到发生疲劳破坏。
-疲劳强度:材料在特定循环次数下不发生疲劳破坏的最大应力。
1.2 疲劳损伤累积理论疲劳损伤累积理论是评估材料在不同载荷循环下累积损伤程度的理论。
其中,最著名的理论是Miner线性损伤累积理论,该理论认为材料的疲劳损伤是线性累积的,即每一次载荷循环对材料的总损伤贡献是相同的。
1.2.1 原理与内容Miner线性损伤累积理论的公式为:D=∑N i N fni=1其中:-D是总损伤度。
-N i是在应力水平i下的循环次数。
-N f是在应力水平i下材料的疲劳寿命。
1.2.2 示例代码假设我们有以下数据:-材料在应力水平100MPa下的疲劳寿命为10000次。
-材料在应力水平200MPa下的疲劳寿命为5000次。
-材料在应力水平300MPa下的疲劳寿命为2000次。
在实际应用中,材料可能在这些应力水平下分别承受了5000次、2000次和1000次循环。
1.3 S-N曲线与疲劳极限S-N曲线是描述材料疲劳性能的重要工具,它表示材料的应力水平与所能承受的循环次数之间的关系。
疲劳极限是指在无限次循环下材料能够承受而不发生疲劳破坏的最大应力。
1.3.1 原理与内容S-N曲线通常通过实验数据绘制,实验中材料样品在不同应力水平下进行循环加载,直到发生疲劳破坏,记录下每个应力水平下的循环次数。
ANSYS求解断裂力学参量的理论方法工程上,线弹性断裂力学中常用应力强度因子K、J积分、G能量释放率这三个参量来描述裂纹场。
ANSYS软件能较好地计算裂纹周围区域的应力分布,并能计算裂纹的应力强度因子K、J积分以及能量释放率G等,其特点是简单、经济、精度高。
下面主要介绍在ANSYS中如何求解应力强度因子K和J积分。
(1)求解应力强度因子ANSYS软件中提供了所谓的“位移外推”法(displacement extrapolation) 来计算应力强度因子[5]。
在线弹性范围内,对于三维裂纹,裂纹尖端的局部位移场与应力强度因子的关系为[6]:)2)22IIIIIIKu kGKv kGKwG⎧=+⎪⎪⎪⎪=+⎨⎪⎪⎪=⎪⎩式中: u、v、w—如图2.5所示裂纹尖端局部直角坐标系下裂纹前端位移;r—如图2.5所示裂纹尖端局部柱坐标系下坐标;G—材料剪切模量;K I、K II、K III—应力强度因子;v—为泊松比;34()3()1vk vv-⎧⎪=⎨-⎪+⎩平面应变或轴对称平面应力当利用裂纹尖端节点的位移进行计算时,应力强度因子和裂纹面节点的位移差存在下列关系:IIIIIIKKK⎧=⎪⎪⎪⎪=⎨⎪⎪⎪=⎪⎩三维裂纹的局部坐标在使用有限元法进行应力强度因子计算时,由于常规单元在裂纹尖端存在奇异性,为使计算准确,必须在裂纹尖端使用细小的单元;如果使用奇异元,即使用二次三角(或五面体)单元,并将靠近裂纹尖端的中间节点置于1/4处,则位于沿裂纹尖端的单元边上的应力和应变与1/消除了奇异性,也就是说,可以用相对比较稀疏的单元得到精度较高的结果。
(2)求解J积分J积分定义为一个围绕裂尖的线积分(二维) 或一个围绕裂纹前沿的面积分。
它用计算裂纹尖端的奇异应力和应变,与积分路径无关。
为了避开裂纹尖点的奇异性,取得较好的精度,积分路径一般取得离裂纹尖点较远。
J积分形式如图2.6所示,其表达式如下:()yxx yuuJ Wdy t t dsx yΓΓ∂∂=-+∂∂⎰⎰式中:W—应变能密度(单位体积应变能);Г—围绕裂纹尖点任意路径;xt—X 方向的作用向量,x x xy yt nσσ=+;yt—Y方向的作用向量,y y xy xt nσσ=+;n—积分路径的外法向向量;s —积分路径距离;围绕裂纹尖端的任意一条J 积分路径在ANSYS 中,为了计算位移向量的偏导数x u x ∂∂与y u y ∂∂,将积分路径向x 正负方向分别移动Δx/2,并求出路径Γ+Δx/2上各点的位移u x1和u y 1以及路径Γ-Δx/2上各点的u x 1和u y 1,则:2121()()x x x y y y u x u u xu y u u y∂∂=-∆⎧⎪⎨∂∂=-∆⎪⎩ ANSYS 具有强大的后处理功能,利用此功能,在求解后可以通过ANSYS 通用后处理器中的单元列表功能,很方便地把各变量映射到自定义的路径中去。
应力强度因子的数值计算方法应力强度因子是用来描述裂纹尖端应力场的重要参数,它在研究裂纹扩展、断裂行为等问题中具有重要的应用价值。
本文将介绍应力强度因子的数值计算方法,包括解析方法和数值方法。
一、解析方法解析方法是指通过求解弹性力学方程,得到应力场的解析表达式,进而计算应力强度因子。
常见的解析方法有:1. 爱尔兰函数法:该方法适用于轴对称问题,通过引入爱尔兰函数,将弹性力学方程转化为常微分方程,进而得到应力强度因子的解析表达式。
2. 奇异积分法:该方法适用于不规则裂纹形状或复杂载荷情况。
通过奇异积分的性质,将应力场分解为奇异和非奇异两部分,进而得到应力强度因子的解析表达式。
3. 线性弹性断裂力学方法:该方法通过建立合适的应力强度因子与裂纹尺寸之间的关系,利用裂纹尖端应力场的奇异性,通过分析弹性力学方程的边界条件,得到应力强度因子的解析表达式。
二、数值方法数值方法是指通过数值计算的方式,求解弹性力学方程,得到应力场的数值解,从而计算应力强度因子。
常见的数值方法有:1. 有限元法:有限元法是一种广泛应用的数值方法,通过将结构离散为有限个单元,建立节点间的关系,利用数值方法求解离散方程组,得到应力场的数值解,进而计算应力强度因子。
2. 边界元法:边界元法是一种基于边界积分方程的数值方法,通过将边界上的应力场表示为边界积分方程的形式,利用数值方法对积分方程进行离散求解,得到应力场的数值解,进而计算应力强度因子。
3. 区域积分法:区域积分法是一种基于区域积分方程的数值方法,通过将应力场表示为积分方程的形式,利用数值方法对积分方程进行离散求解,得到应力场的数值解,进而计算应力强度因子。
以上介绍了应力强度因子的数值计算方法,包括解析方法和数值方法。
解析方法适用于问题简单、载荷条件规则的情况,可以得到解析表达式并具有较高的精度;数值方法适用于问题复杂、载荷条件不规则的情况,通过数值计算可以得到应力场的数值解,并利用数值解计算应力强度因子。
应力场强度因子k1名词解释应力场强度因子k1是线弹性断裂力学中的一个重要概念,它用于描述断裂行为和材料破坏的倾向。
在材料力学和断裂力学领域,研究材料在受到应力作用下的断裂行为,可以帮助我们更好地理解材料的强度和稳定性。
1. 定义和基本概念应力场强度因子k1是断裂力学中描述断裂尖端应力场大小的一个重要参数。
它的计算涉及到应力场的分析和材料的断裂性质。
在裂尖附近,应力场呈现出奇异性,可以用一个奇异项来刻画,该奇异项就是应力场强度因子k1。
2. 计算公式应力场强度因子k1的计算公式是通过对应力场的解析分析得到的。
在不同的情况下,计算公式有所不同。
下面列举一些常见情况下的计算公式:- 平面应力条件下,裂纹尖端应力场强度因子k1的计算公式为:其中,σ为应力,a为裂纹半长,r为距离裂纹尖端的径向距离,θ为极角。
- 平面应变条件下,裂纹尖端应力场强度因子k1的计算公式为:其中,ε为应变。
- 厚壁圆筒中,对于轴向载荷和环向载荷作用下的裂纹尖端应力场强度因子k1的计算公式为:其中,C为几何系数,σ为应力,a为裂纹半长,r为距离裂纹尖端的径向距离,θ为极角。
3. 应用领域应力场强度因子k1在工程领域中有广泛的应用。
其中一些重要的应用领域包括:- 研究材料断裂行为:通过计算应力场强度因子k1,可以研究材料的断裂韧性和稳定性,评估材料的性能和可靠性。
- 设计材料结构:应力场强度因子k1可用于指导材料结构的设计和改进。
通过调整结构参数和材料性能,可以改变应力场强度因子k1的大小,提高材料的抗断裂性能。
- 断裂力学研究:应力场强度因子k1是断裂力学研究中的一个重要参数,对于断裂行为和裂纹扩展的研究具有重要意义。
4. 实际案例应力场强度因子k1的研究和应用在工程实践中具有重要意义,并且得到了广泛的应用。
4,持久状况正常使用极限状态下裂缝宽度验算按《公预规》的规定,最大裂缝宽度按下式计算:12330()0.2810ss fK S d W C C C E σρ+=+ 0()s f fA bh b b h ρ=- 式中:1C :钢筋表面形状系数,取1C =1.0;2C :作用长期效应影响系数,长期荷载作用时,2C =1+0.5l sN N ,l N 和s N 分别按作用长期效应组合和短期组合效应计算的内力值; 3C —与构件受力有关的系数,取3C =1.0;d —受拉钢筋的直径,若直径不同可用换算直径代替;ρ—纵向受拉钢筋的配筋率;S E —钢筋的弹性模量;f b —构件的翼缘宽度f h —构件的受拉翼缘厚度ss σ—受拉钢筋在使用荷载下的应力,按《公预规》公式计算:0.87S s S M A h σ= 式中:S M —按构件长期效应组合计算的弯矩值;S A —受拉钢筋纵向受拉钢筋截面面积; 由0()s f fA bh b b h ρ=-得到: 56800.1641801057(1600180)110ρ==⨯+-⨯ 根据前文计算,取1号梁的跨中弯矩效应进行组合212110.7 1.0(587.10.7579.8/1.31)896.9m n s GiK j QjK G Q K Q K i j M S S M M M kN mφ===+=++=+⨯=⋅∑∑长期效应组合:212110.40.4587.1(0.4579.8/1.31)765.5m n s GiK j QjK G Q K Q K i j M S S M M M kN mψ===+=++=+⨯=⋅∑∑受拉钢筋在短期效应组合作用下的应力为:60896.910171.70.87568010570.87S s S MPa M A h σ⨯==⨯⨯= 20.50.5765.511 1.43896.3s t N C N ⨯=+=+= 钢筋为HRB335,52.010s MPa E =⨯,代入12330()0.2810ss fK S d W C C C E σρ+=+后得: 5171.730311.0 1.43 1.0()0.20.28100.1642.010LK mm W +=⨯⨯⨯⨯<+⨯⨯ 满足《公预规》“在一般正常大气作用下,钢筋混凝土受弯构件不超过最大裂缝宽度”要求,还满足《公预规》规定“在梁腹高的两侧设置直径为φ6-φ8的纵向防裂钢筋,以防止裂缝的产生”本例中采用6φ8,则:'''301.8301.8,0.00141801200s S s A mm bh A μ====⨯,介于0.0012-0.002之间,可行。