内蒙古鄂尔多斯市杭锦旗城镇中学九年级数学下册《二次函数》测试题
- 格式:doc
- 大小:235.00 KB
- 文档页数:3
九年级下册数学第二章《二次函数》测试一、选择题:1. 抛物线3)2(2+-=x y 的对称轴是( )A 。
直线3-=x B. 直线3=x C. 直线2-=xD 。
直线2=x2. 二次函数c bx ax y ++=2的图象如右图,则点),(acb M 在( )A. 第一象限B. 第二象限 C 。
第三象限 D 。
第四象限3. 已知二次函数c bx ax y ++=2,且0<a ,0>+-c b a ,则一定有( ) A. 042>-ac bB 。
042=-ac bC. 042<-ac bD. ac b 42-≤04. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式是532+-=x x y ,则有( ) A. 3=b ,7=cB 。
9-=b ,15-=cC 。
3=b ,3=cD 。
9-=b ,21=c数222k x kx y +-=的图5. 已知反比例函数xky =的图象如右图所示,则二次函象大致为( )Bx6. 下面所示各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数c ax y +=的大致图象,有且只有一个是正确的,正确的是( )D7. 抛物线322+-=x x y 的对称轴是直线( )A 。
2-=x B. 2=x C. 1-=x D. 1=x8. 二次函数2)1(2+-=x y 的最小值是( )A. 2-B. 2C. 1-D. 19. 二次函数c bx ax y ++=2的图象如图所示,若c b a M ++=24c b a N +-=,b a P -=4,则( )A 。
0>M ,0>N ,0>P B. 0<M ,0>N ,0>P C 。
0>M ,0<N ,0>P D. 0<M ,0>N ,0<P 二、填空题:10. 将二次函数322+-=x x y 配方成k h x y +-=2)(的形式,则y =______________________。
九年级数学二次函数测试题含答案(精选5套)时间90分钟 满分:100分一、选择题(本大题共10小题,每小题3分,共30分) 1.下列函数不属于二次函数的是( )A.y=(x -1)(x+2)B.y=21(x+1)2C. y=1-3x 2D. y=2(x+3)2-2x 22. 函数y=-x 2-4x+3图象顶点坐标是( )A.(2,-1)B.(-2,1)C.(-2,-1)D.(2, 1)3. 抛物线()12212++=x y 的顶点坐标是( )A .(2,1)B .(-2,1)C .(2,-1)D .(-2,-1)4. y=(x -1)2+2的对称轴是直线( )A .x=-1B .x=1C .y=-1D .y=15.已知二次函数)2(2-++=m m x mx y 的图象经过原点,则m 的值为 ( ) A . 0或2 B . 0 C . 2 D .无法确定6. 二次函数y =x 2的图象向右平移3个单位,得到新的图象的函数表达式是( )A. y =x 2+3B. y =x 2-3C. y =(x +3)2D. y =(x -3)27.函数y=2x 2-3x+4经过的象限是( )A.一、二、三象限B.一、二象限C.三、四象限D.一、二、四象限 8.下列说法错误的是( )A .二次函数y=3x 2中,当x>0时,y 随x 的增大而增大B .二次函数y=-6x 2中,当x=0时,y 有最大值0 C .a 越大图象开口越小,a 越小图象开口越大D .不论a 是正数还是负数,抛物线y=ax 2(a ≠0)的顶点一定是坐标原点9.如图,小芳在某次投篮中,球的运动路线是抛物线y =-15x 2+3.5的一部分,若命中篮圈中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5mD .4.6m10.二次函数y=ax 2+bx +c 的图象如图所示,下列结论错误的是( ) A .a >0. B .b >0. C .c <0. D .abc >0.(第9题) (第10题) 二、填空题(本大题共4小题,每小题3分,共12分) 11.一个正方形的面积为16cm 2,当把边长增加x cm 时,正方形面积为y cm 2,则y 关于x 的函数为 。
一、选择题1.把二次函数243y x x =-+化成2()y a x h k =++的形式是( )A .2(2)1y x =++B .2(2)7y x =++C .2(2)1y x =--D .2(2)7y x =--2.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象可能是( )A .B .C .D .3.关于二次函数2241=-+y x x ,下列说法正确的是( ) A .图象的对称轴在y 轴左侧 B .图象的顶点在x 轴下方 C .当0x >时,y 随x 的增大而增大 D .y 有最小值是14.如图是二次函数y =mx 2+nx +k 图象的一部分且过点P (3,0),二次函数图象的对称轴是直线x =1,下列结论正确的是( )A .n 2﹣4mk <0B .mk >0C .n =2mD .m ﹣n +k =05.已知二次函数y=(m+2)23m x -,当x<0时,y 随x 的增大而增大,则m 的值为( )A .5-B .5C .5±D .26.如图,二次函数y =a 2x +bx+c (a >0)的图象与x 轴交于A ,B 两点,与y 轴的正半轴交于点C ,它的对称轴为直线x =﹣1.有下列结论:①abc >0;②4ac ﹣2b >0;③c ﹣a >0;④当x =﹣2n ﹣2(n 为实数)时,y≥c .其中,正确结论的个数是( )A .0B .1C .2D .37.已知二次函数2(2)1y mx m x =+--(m 为常数,且0m ≠),( )A .若0m >,则1x <,y 随x 的增大而增大B .若0m >,则1x >,y 随x 的增大而减小C .若0m <,则1x <,y 随x 的增大而增大D .若0m <,则1x >,y 随x 的增大而减小 8.如图,抛物线2y ax bx c =++的顶点坐标为(1,4)a -,点()14,A y 是该抛物线上一点,若点()22,B x y 是该抛物线上任意一点.有下列结论:①420a b c -+>;②抛物线2y ax bx c =++与x 轴交于点(1,0)-,(3,0); ③若21y y >,则24x >;④若204x ≤≤,则235a y a -≤≤. 其中,正确结论的个数是( ) A .0B .1C .2D .39.已知二次函数y =x 2﹣4x +m 2+1(m 是常数),若当x =a 时,对应的函数值y <0,则下列结论中正确的是( ) A .a ﹣4<0 B .a ﹣4=0 C .a ﹣4>0D .a 与4的大小关系不能确定10.已知二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,则下列结论:①abc >0;②a ﹣b +c >0;③4a ﹣2b +c <0,其中结论正确的个数为( )A .0个B .1个C .2个D .3个11.在同一直角坐标系中,一次函数y ax c =+和二次函数2y ax c =--的图象可能为( )A .B .C .D .12.对于抛物线22()1y x =-+,下列说法错误的是( ) A .抛物线的开口向上 B .抛物线与x 轴有两个交点 C .抛物线的对称轴是2x =D .抛物线的顶点坐标是(2,1)二、填空题13.将抛物线y =3x 2沿y 轴向上平移1个单位,所得的抛物线关系式为_____. 14.已知抛物线22y x x n =-+与x 轴只有一个公共点,则n =__________. 15.已知抛物线2(0)y ax bx c a =++>经过(2,0)A ,(4,0)B 两点.若()15,P y ,()2,Q m y 是抛物线上的两点,且12y y >,则m 的取值范围是______.16.已知二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠),函数值y 与自变量x 的部分对应值如下表: x… 1-0 1 2 3 4 … y …101y2125…当1时,自变量的取值范围是______.17.将抛物线()214y x =+-向上平移a 个单位后得到的抛物线恰好与x 轴只有一个交点,则a 的值为_________;18.已知二次函数2221y x mx m =-++(m 为常数),当自变量x 的值满足31x -≤≤-时,与其对应的函数值y 的最小值为5,则m 的值为__________.19.如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端A 点安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为2m 处达到最高,高度为5m ,水柱落地处离池中心距离为6m ,则水管的长度OA 是________m .20.如图,抛物线()()1244y x x =+-与x 轴交于A B 、两点,P 是以点()0,3C 为圆心,2为半径的圆上的动点,Q是线段PA上靠近点A的三等分点,连结OQ,则线段OQ的最大值是__________.三、解答题21.商场购进某种新商品的每件进价为120元,在试销期间发现,当每件商品的售价为130元时,每天可销售70件;当每件商品的售价高于130元时,每涨价1元,日销售量就减少1件,据此规律,请回答下列问题.(1)当每件商品的售价为140元时,每天可销售_________件商品,商场每天可盈利______元;(2)设销售价定为x元时,商品每天可销售________件,每件..盈利_______元;(3)在销售正常的情况下,每件商品的销售价定为多少时,商场每天盈利达到1500元;(4)这次活动中,1500元是最高日盈利吗?若是,请说明理由;若不是,请试求最高盈利.22.如图,利用一面长为34米的墙,用铁栅栏围成一个矩形自行车场地ABCD,在AB和BC边各有一个2米宽的小门(不用铁栅栏).若所用铁栅栏的长为40米,矩形ABCD的边AD长为x米,AB长为y米,矩形的面积为S平方米,且x<y.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)求S与x的函数关系式,并求出矩形场地的最大面积.23.已知抛物线y=x2﹣bx+c(b,c为常数)的顶点坐标为(2,﹣1).(1)求该抛物线的解析式;(2)点M(t﹣1,y1),N(t,y2)在该抛物线上,当t<1时,比较y1与y2的大小;(3)若点P(m,n)在该抛物线上,求m﹣n的最大值.24.如图(1),已知抛物线C1:y=﹣x2+2x+3与x轴交于点A、B(点A在点B左边),与y轴交于点C,抛物线C2经过点A,与x轴的另一个交点为E(4,0),与y轴交于点D (0,﹣2).(1)求抛物线C 2的解析式;(2)点P (m ,0)为线段AB 上一动点(不与A 、B 重合),过点P 作y 轴的平行线交抛物线C 1于点M ,交抛物线C 2于点N .①请用含m 的代数式分别表示点M 、N 的坐标;②设四边形OMEN 的面积为S ,求S 关于m 的函数关系式,并求出当S 的最大值以及此时m 的值;③在点P 移动的过程中,若CM =DN ≠0,则m 的值为 .(3)如图(2),点Q (0,n )为y 轴上一动点(0<n <4),过点Q 作x 轴的平行线依次交两条抛物线于点R 、S 、T 、U ,则TU ﹣RS = .25.某工艺品厂设计了一款每件成本为11元的工艺品投放市场进行试销,经过市场调查,得出每天销售量y (件)是每件售价x (元)(x 为正整数)的一次函数,其部分对应数据如下表所示:(1)求y 关于x 的函数解析式.(2)该工艺品每件售价为多少元时,工艺品厂试销该工艺品每天获得的利润是900元? 每件售价x /元 … 15 16 17 18 … 每天销售量y /件…150140130120…26.如图,已知一次函数2y kx =-的图象与x 轴交于点A ,与y 轴交于点B ,二次函数2y x bx c =++经过点B ,且与一次函数2y kx =-的图象交于点()6,4C .(1)求一次函数与二次函数的解析式.(2)在y 轴上是否存在点M ,使得以点B ,M ,C 为顶点的三角形与BAO 相似?若存在,请求出点M 的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用配方法先提出二次项系数,在加上一次项系数的一半的平方来凑完全平方式,即可把一般式转化为顶点式. 【详解】解:()()22243443421y x x x x x =-+=-++-=--.故选:C . 【点睛】此题考查了二次函数的顶点式,掌握利用配方法将二次函数一般式转化为顶点式是解题的关键.2.B解析:B 【分析】先由一次函数y ax b =+的图象得到a 、b 的正负,再与二次函数2y ax bx c =++的图象的开口方向、对称轴位置相比较即可做出判断. 【详解】解:A 、由抛物线可知,a <0,x =﹣2ba<0,得b <0,由直线可知,a >0,b >0,故本选项错误;B 、由抛物线可知,a <0,x =﹣2ba<0,得b <0,由直线可知,a <0,b <0,故本选项正确;C 、由抛物线可知,a >0,x =﹣2ba>0,得b <0,由直线可知,a >0,b >0,故本选项错误;D 、由抛物线可知,a <0,x =﹣2ba<0,得b <0,由直线可知,a <0,b >0,故本选项错误. 故选:B . 【点睛】本题主要考查一次函数的图象、二次函数2y ax bx c =++的图象与性质,熟练掌握两函数图象与解析式的系数的关系是解答的关键.3.B解析:B 【分析】首先把一般式写成顶点式y=2(x-1)2-1,从而可得对称轴x=1,顶点坐标为(1,-1),再利用二次函数的性质进行分析即可. 【详解】解:y=2x 2-4x+1=2(x 2-2x )+1=2(x 2-2x+1)-1=2(x-1)2-1, A 、图象的对称轴为x=1,在y 轴的右侧,故说法错误; B 、顶点点坐标为(1,-1),顶点在x 轴下方,故说法正确; C 、当x >1时,y 的值随x 值的增大而增大,故说法错误; D 、y 的最小值为-1,故说法错误; 故选:B . 【点睛】此题主要考查了二次函数的性质,关键是掌握配方法把二次函数解析式写成顶点式,掌握二次函数性质.4.D解析:D 【分析】根据抛物线与x 轴有两个交点可对A 进行判断;由抛物线开口向上得m >0,由抛物线与y 轴的交点在x 轴下方得k <0,则可对B 进行判断;根据抛物线的对称轴是x =1对C 选项进行判断;根据抛物线的对称性得到抛物线与x 轴的另一个交点为(−1,0),所以m−n +k =0,则可对D 选项进行判断. 【详解】解:A .∵抛物线与x 轴有两个交点, ∴n 2﹣4mk >0,所以A 选项错误; B .∵抛物线开口向上, ∴m >0,∵抛物线与y 轴的交点在x 轴下方, ∴k <0,∴mk <0,所以B 选项错误;C .∵二次函数图象的对称轴是直线x =1, ∴﹣2nm=1, ∴n =﹣2m ,所以C 选项错误;D .∵抛物线过点A (3,0),二次函数图象的对称轴是x =1, ∴抛物线与x 轴的另一个交点为(﹣1,0), ∴m ﹣n +k =0,所以D 选项正确; 故选:D . 【点睛】本题考查了二次函数的图象与系数的关系:二次函数y =ax 2+bx +c (a≠0)的图象为抛物线,当a >0,抛物线开口向上;对称轴为直线2bx a=-;抛物线与y 轴的交点坐标为(0,c );当b 2−4ac >0,抛物线与x 轴有两个交点;当b 2−4ac =0,抛物线与x 轴有一个交点;当b 2−4ac <0,抛物线与x 轴没有交点.5.A解析:A 【分析】根据次数为2可列方程,再根据函数增减性确定m 值. 【详解】解:根据题意可知,232m -=,解得,m = ∵二次函数y=(m+2)23m x -,当x<0时,y 随x 的增大而增大,∴m+2<0, 解得m <-2,综上,m= 故选:A . 【点睛】本题考查了二次函数的定义和增减性,解题关键是根据二次函数的定义列方程,依据增减性确定二次项系数的符号.6.C解析:C 【分析】根据二次函数的开口方向,对称轴的位置,二次函数的性质,二次函数的图像与x 轴的交点情况去分析判断即可. 【详解】解:由图象开口向上,可知a >0, 与y 轴的交点在x 轴的上方,可知c >0, 又对称轴为直线x =﹣1,∴﹣2ba <0, ∴b >0, ∴abc >0, 故①正确;∵二次函数y =a 2x +bx+c (a >0)的图象与x 轴交于A ,B 两点, ∴2b ﹣4ac >0, ∴4ac ﹣2b <0, 故②错误;∵﹣2ba =﹣1, ∴b =2a ,∵当x =﹣1时,y =a ﹣b+c <0, ∴a ﹣2a+c <0, ∴c ﹣a <0, 故③错误;当x =﹣2n ﹣2(n 为实数)时,y =a 2x +bx+c =a 22(2)n --+b (﹣2n ﹣2)+c =a 2n (2n +2)+c , ∵a >0,2n ≥0,2n +2>0, ∴y =a 2n (2n +2)+c≥c , 故④正确, 故选:C . 【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程的关系是解题的关键.7.D解析:D 【分析】先求出二次函数图象的对称轴,然后根据m 的符号分类讨论,结合图象的特征即可得出结论. 【详解】该二次函数图象的对称轴为直线21122m x m m-=-=-+, 若0m >,对于22m x m-=-无法判断其符号,故A 、B 选项不一定正确; 若0m <,则202m x m -=-<,即22m m--<1,且抛物线的开口向下, ∴当1x >时,y 随x 的增大而减小,故选:D . 【点睛】此题考查的是二次函数的图象及性质,解决此题的关键是分类讨论确定对称轴的位置,再结合开口方向进行综合分析.8.C解析:C 【分析】利用对称轴公式和顶点坐标得出4a a b c -=++,2b a =-,3c a =-,则可对①进行判断;抛物线解析式为223y ax ax a =--,配成交点式得()()31y a x x =-+,可对②进行判断;根据二次函数对称性和二次函数的性质可对③进行判断;计算4x =时5y a =,根据二次函数的性质可对④进行判断 【详解】①根据抛物线()20y ax bx c a =++≠的图像可知抛物线的对称轴12bx a=-= 2b a ∴=-顶点坐标为(1、4a -)4a a b c ∴-=++3c a ∴=-424435a b c a a a a ∴-+=+-= 抛物线开口向上,则0a >420a b c ∴-+>故结论①正确 ②2b a =-,3c a =-()()22331y ax ax a a x x ∴=--=-+∴抛物线()20y ax bx c a =++≠与x 轴交于(1-、0),(3、0)故结论②正确 ③A (4、1y )关于直线1x =的对称点为(2-、1y )∴当21y y >时,则24x >或22x <-故结论③错误④当4x =时,116416835y a b c a a a a =++=--=∴当204x ≤≤时,245a y a -≤≤故结论④错误故选:C .【点睛】本题考查了抛物线与x 轴的交点,也考查了二次函数的性质,解题关键是把求二次函数与x 轴交点问题转化为解关于x 一元二次方程,并熟练掌握二次函数的性质.9.A解析:A【分析】画出函数图象,利用图象法解决问题即可;【详解】解:∵抛物线的对称轴为422x -=-=, 抛物线与x 轴交于点A 、B .如图,设点A 、B 的横坐标分别为12x x 、,124x x +=,2121x x m =+,∴()()()22212121241641x x x x x x m -=+-=-+, ∵210m +>,∴()212x x -的最小值为16, ∴AB <4,∵当自变量x 取a 时,其相应的函数值y <0,∴可知a 表示的点在A 、B 之间,∴40a -<,故选:A .【点睛】本题考查了二次函数的性质,根据题意画出图形,利用数形结合求解是解答此题的关键. 10.D解析:D【分析】由抛物线开口向下,得到a <0,再由对称轴在y 轴左侧,得到a 与b 同号,可得出b <0,又抛物线与y 轴交于正半轴,得到c >0,可得出abc >0,得到①正确;根据图象知,当x =﹣1时,y >0,即a ﹣b +c >0,得到②正确;根据图象知,当x =﹣2时,y <0,即4a ﹣2b +c <0,得到③正确,从而得出结论.【详解】解:∵抛物线的开口向下,∴a <0. ∵02b a-<, ∴b <0. ∵抛物线与y 轴交于正半轴,∴c >0,∴abc >0,故①正确;根据图象知,当x =﹣1时,y >0,即a ﹣b +c >0,故②正确;根据图象知,当x =﹣2时,y <0,即4a ﹣2b +c <0,故③正确.则其中正确的有3个,为①②③.故选:D .【点睛】本题考查了二次函数图象与系数的关系,对于二次函数y =ax 2+bx +c (a ≠0)来说,a 的符号由抛物线开口方向决定;b 的符号由对称轴的位置及a 的符号决定;c 的符号由抛物线与y 轴交点的位置决定;此外还要注意利用抛物线的对称性及x =﹣1,﹣2时对应函数值的正负.11.D解析:D【分析】根据二次函数的开口方向,与y 轴的交点;一次函数经过的象限,与y 轴的交点可得相关图象.【详解】解:∵一次函数经过y 轴上的(0,c ),二次函数经过y 轴上的(0,-c ),∴两个函数图象交于y 轴上的不同点,故A ,C 选项错误;当a <0,c <0时,二次函数开口向上,一次函数经过二、三、四象限,故B 选项错误; 当a <0,c >0时,二次函数开口向上,一次函数经过一、二、四象限,故D 选项正确; 故选:D .【点睛】本题考查二次函数及一次函数的图象的性质;用到的知识点为:二次函数和一次函数的常数项是图象与y 轴交点的纵坐标;一次函数的一次项系数大于0,图象经过一、三象限;小于0,经过二、四象限;二次函数的二次项系数大于0,图象开口向上;二次项系数小于0,图象开口向下.12.B解析:B【分析】根据抛物线的性质逐条判断即可.【详解】解:抛物线22()1y x =-+是二次函数的顶点式,由此可知,抛物线开口向上,对称轴是2x =,顶点坐标是(2,1),故A 、C 、D 正确,不符合题意;∵抛物线顶点在第一象限,开口向上,∴抛物线与x 轴没有交点,故B 错误,符合题意;故选:B .【点睛】本题考查了二次函数图象的性质,解题关键是熟知抛物线顶点式的意义,根据顶点位置和开口确定与x 轴是否有交点. 二、填空题13.y =3x2+1【分析】根据抛物线平移规律常数项加1即可【详解】解:抛物线y =3x2沿y 轴向上平移1个单位所得的抛物线关系式为y =3x2+1故答案为:y =3x2+1【点睛】本题考查了抛物线平移的变化规解析:y =3x 2+1.【分析】根据抛物线平移规律,常数项加1即可.【详解】解:抛物线y =3x 2沿y 轴向上平移1个单位,所得的抛物线关系式为y =3x 2+1, 故答案为:y =3x 2+1.【点睛】本题考查了抛物线平移的变化规律,解题关键是准确掌握函数平移的规律,左加右减自变量,上加下减常数项.14.【分析】由抛物线与x 轴只有一个公共点可知对应的一元二次方程根的判别式△=b2−4ac =0由此即可得到关于n 的方程解方程即可求得n 的值【详解】解:∵抛物线与x 轴只有一个公共点∴△=4−4×1×n =0解解析:1【分析】由抛物线22y x x n =-+与x 轴只有一个公共点可知,对应的一元二次方程220x x n -+=根的判别式△=b 2−4ac =0,由此即可得到关于n 的方程,解方程即可求得n 的值.【详解】解:∵抛物线22y x x n =-+与x 轴只有一个公共点,∴△=4−4×1×n =0,解得n =1.故答案为:1.【点睛】此题主要考查了抛物线与x 轴的交点问题,利用二次函数根的判别式的和抛物线与x 轴的交点个数建立方程是解题的关键.15.【分析】根据图像经过的两点确定抛物线的对称轴利用对称轴确定P 的对称点利用数形结合思想确定m 的范围即可【详解】∵抛物线经过两点∴解得b=-6a ∴抛物线的对称轴为直线x==3∴的对称点为∵∴故填【点睛】解析:15m <<.【分析】根据图像经过的两点,确定抛物线的对称轴,利用对称轴,确定P 的对称点,利用数形结合思想,确定m 的范围即可.【详解】∵抛物线2(0)y ax bx c a =++>经过(2,0)A ,(4,0)B 两点,∴4201640a b c a b c ++=⎧⎨++=⎩, 解得b=-6a , ∴抛物线的对称轴为直线x=2b a -=3, ∴()15,P y 的对称点为()11,P y ',∵12y y >,∴15m <<,故填15m <<.【点睛】本题考查了二次函数的对称性,熟记二次函数的性质是解题的关键.16.【分析】根据表格中的数据可知抛物线的开口方向对称轴及顶点坐标结合表格及抛物线特征可得当时自变量的取值范围【详解】解:由表格知:抛物线开口向上顶尖坐标为(21)故当x=0时与x=4时函数值相同∴=5当解析:04x <<.【分析】根据表格中的数据可知抛物线的开口方向,对称轴及顶点坐标,结合表格及抛物线特征可得当1y y <时,自变量x 的取值范围.【详解】解:由表格知:抛物线开口向上,顶尖坐标为(2,1),故当x=0时与x=4时函数值相同,∴1y =5,当1y y <时,即当y <5时,由表格得04x <<.故答案为:04x <<.【点睛】本题考查了二次函数数的特征,解题关键是根据表格得出抛物线的开口方向,对称轴及顶点坐标.17.4【分析】根据上加下减左加右减的规律写出平移后抛物线的解析式由新抛物线恰好与x 轴有一个交点得到△由此求得的值【详解】抛物线y =(x+1)2﹣4向上平移a 个单位后得到的抛物线的解析式为y =(x+1)2解析:4【分析】根据“上加下减,左加右减”的规律写出平移后抛物线的解析式,由新抛物线恰好与x 轴有一个交点得到△0=,由此求得a 的值.【详解】抛物线y =(x +1)2﹣4向上平移a 个单位后得到的抛物线的解析式为y =(x +1)2﹣4+a ,即223y x x a =+-+∵新抛物线恰好与x 轴有一个交点,∴△()244430b ac a =-=--+= 解得4a =故答案为:4.【点睛】此题考查了抛物线与x 轴的交点坐标,二次函数图象与几何变换.由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.18.-5或1【分析】利用配方法可得出:当x=m 时y 的最小值为1分m <-3-3≤m≤-1和m >-1三种情况考虑:当m <-3时由y 的最小值为5可得出关于m 的一元二次方程解之取其较小值;当-3≤m≤-1时y 的解析:-5或1【分析】利用配方法可得出:当x=m 时,y 的最小值为1.分m <-3,-3≤m≤-1和m >-1三种情况考虑:当m <-3时,由y 的最小值为5可得出关于m 的一元二次方程,解之取其较小值;当-3≤m≤-1时,y 的最小值为1,舍去;当m >-1时,由y 的最小值为5可得出关于m 的一元二次方程,解之取其较大值.综上,此题得解.【详解】解:∵y=x 2-2mx+m 2+1=(x-m )2+1,∴当x=m 时,y 的最小值为1.当m <-3时,在-3≤x≤-1中,y 随x 的增大而增大,∴9+6m+m 2+1=5,解得:m 1=-5,m 2=-1(舍去);当-3≤m≤-1时,y 的最小值为1,舍去;当m >-1时,在-3≤x≤-1中,y 随x 的增大而减小,∴1+2m+m 2+1=5,解得:m 1=-3(舍去),m 2=1.∴m 的值为-5或1.故答案为:-5或1.【点睛】本题考查了二次函数的最值以及二次函数图象上点的坐标特征,分m <-3,-3≤m≤-1和m >-1三种情况求出m 的值是解题的关键.19.【分析】设抛物线解析式为y=a (x-h )2+k 将(25)与(60)代入解析式求得a 的值再令x=0求得y 的值即可得出答案【详解】解:设抛物线解析式为y=a (x-h )2+k 由题意可知抛物线的顶点为(25 解析:154【分析】设抛物线解析式为y=a (x-h )2+k ,将(2,5)与(6,0)代入解析式,求得a 的值,再令x=0,求得y 的值,即可得出答案.【详解】解:设抛物线解析式为y=a (x-h )2+k ,由题意可知抛物线的顶点为(2,5),与x 轴的一个交点为(6,0),∴0=a (6-2)2+5,解得:516a, ∴抛物线解析式为:25(2)516y x =--+ 当x=0时,2515(02)5164y ==--+ ∴水管的长度OA 是154m . 故答案为:154. 【点睛】 本题考查了二次函数在实际问题中的应用,数形结合并熟练掌握待定系数法是解题的关键.20.【分析】当BCP 三点共线且C 在BP 之间时BP 最大连接PB 此时△OAQ ∽△BAP 且相似比为1:3由此即可求得求出BP 的最大值即可求解【详解】解:如下图所示连接BP 当BCP 三点共线且C 在BP 之间时BP 最 解析:73【分析】当B 、C 、P 三点共线,且C 在BP 之间时,BP 最大,连接PB ,此时△OAQ ∽△BAP ,且相似比为1:3,由此即可求得13=OQ BP ,求出BP 的最大值即可求解. 【详解】 解:如下图所示,连接BP ,当B 、C 、P 三点共线,且C 在BP 之间时,BP 最大,令()()12404=+-=y x x ,求得1224,==x x , ∴B(4,0),A(-2,0), ∵21===63AO AQ AB AP,且∠QAO=∠PAB , ∴△OAQ ∽△BAP , ∴13=OQ BP ,故只要BP 最大,则OQ 就最大, 此时BP 最大值为:224327++=BC CP , ∴OQ 的最大值为:73. 【点睛】本题考查了抛物线与x 轴的交点坐标,相似三角形的性质和判定,本题的关键是根据圆的基本性质,确定BP 的最大值,进而求解.三、解答题21.(1)60,1200;(2)200-x ,x -120;(3)150元或170元;(4)不是,最高盈利为1600元【分析】(1)根据当每件商品的售价高于130元时,每涨价1元,日销售量就减少1件,即可求得每天的销量,然后根据盈利=销量×(售价-进价)求出每天的盈利;(2)根据销量=70-(销售价-130)可求出每天的销量,根据盈利=售价-进价可求出每件盈利;(3)设每天盈利为y,销售价定为x元,根据盈利=销量×(售价-进价)列出函数关系式,求出当y=1500时x的值即可;(4)根据(3)求出的函数关系式,利用配方法求出最大值,并求出此时x的值.【详解】解:(1)由题意得,每天可销售:70-(140-130)=60(件),商场可盈利为:60×(140-120)=1200(元),(2)设销售价定为x元,则销售量为:70-(x-130)=200-x,每件盈利为:x-120,(3)设每天盈利为y,销售价定为x元,由题意得,y=(200-x)(x-120)=-x2+320x-24000,当y=1500时,解得:x1=150,x2=170,答:每件商品的销售价定为150元或170元时,商场每天盈利可达到1500元.(4)不是.y=-x2+320x-24000=-(x-160)2+1600,∵-1<0,∴函数图象开口向下,函数有最大值,即当售价160元时,每天盈利最大,每天最大盈利为1600元.故答案为:60,1200;:(200-x),(x-120).【点睛】本题考查了二次函数的应用,解答本题的关键是根据题意得到每天的销量及每件的利润,得出函数表达式,要求熟练掌握配方法求最值的运用.22.(1)y=﹣2x+44(5≤x<443);(2)S=﹣2x2+44x,矩形场地的最大面积为242m2【分析】(1)根据三边铁栅栏的长度之和为40可得x+(y﹣2)+(x﹣2)=40,整理即可得出答案;(2)根据长方形面积公式列出解析式,配方成顶点即可得出答案.【详解】解:(1)根据题意,知x+(y﹣2)+(x﹣2)=40,∴y=﹣2x+44,∵墙面长为34米∴y=﹣2x+44≤34解得x≥5∵x<y∴x<﹣2x+44解得x<44 3∴自变量x的取值范围是5≤x<443;(2)S=xy=x(﹣2x+44)=﹣2x2+44x=﹣2(x﹣11)2+242,∴当x=11时,S取得最大值,最大值为242,即矩形场地的最大面积为242m2.【点睛】本题主要考查二次函数的应用,找到关键描述语,找到等量关系准确的列出关系式是解决问题的关键.23.(1)y=x2﹣4x+3;(2)y1>y2;(3)m=52时,m﹣n有最大值,最大值为134【分析】(1)利用顶点式直接写出抛物线的解析式;(2)根据二次函数的性质判断y1与y2的大小;(3)先用m表示m﹣n得到m﹣n=﹣m2+5m﹣3,然后配成顶点式,从而得到m﹣n的最大值.【详解】解:(1)∵抛物线y=x2﹣bx+c(b,c为常数)的顶点坐标为(2,﹣1),∴抛物线的解析式为y=(x﹣2)2﹣1,即y=x2﹣4x+3;(2)∵抛物线的对称轴为直线x=2,而t<1,∴点M(t﹣1,y1),N(t,y2)对称轴的左侧的抛物线上,∵抛物线开口向上,在对称轴的左侧y随x增大而减小,∵t﹣1<t,∴y1>y2;(3)∵点P(m,n)在该抛物线上,∴n=m2﹣4m+3,∴m﹣n=m﹣(m2﹣4m+3)=﹣m2+5m﹣3=﹣(m﹣52)2+134,∴当m=52时,m﹣n有最大值,最大值为134.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.也考查了二次函数的性质.24.(1)y=12x2﹣32x﹣2;(2)①M(m,﹣m2+2m+3),N(m,12m2﹣32m﹣2);②S AMBN=﹣3m2+7m+10(﹣1<m<3),当m=76时,S AMBN有最大值,最大值=169 12;③1或73;(3)1.【分析】(1)令抛物线l1:y=0,可求得点A和点B的坐标,然后设设抛物线l2的解析式为y=a (x+1)(x-4),将点D的坐标代入可求得a的值,从而得到抛物线的解析式.(2)①利用待定系数法可得,M(m,-m2+2M+3),N(M,12m2-32m-2).②由点A和点B的坐标可求得AB的长,依据S AMBN=12AB•MN列出S与x的函数关系,从而可得到当S有最大值时,m的值,于是可得结论.③CM与DN不平行时,可证明四边形CDNM为等腰梯形,然后可证明GM=HN,列出关于m的方程,于是可求得点P的坐标;当CM∥DN时,四边形CDNM为平行四边形.故此DC=MN=5,从而得到关于m的方程,从而可得结论.(3)设S,T的横坐标分别为x1,x2,设R,U的横坐标分别为x3,x4.利用根与系数的关系解决问题即可.【详解】解:(1)∵令﹣x2+2x+3=0,解得:x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),设抛物线l2的解析式为y=a(x+1)(x﹣4),∵将D(0,﹣2)代入得:﹣4a=﹣2,∴a=12,∴抛物线的解析式为y=12x2﹣32x﹣2.(2)①由题意P(m,0),可得M(m,﹣m2+2m+3),N(m,12m2﹣32m﹣2).②如图1所示:∵A (﹣1,0),B (3,0),∴AB =4,∵P (m ,0),M (m ,﹣m 2+2m +3),N (m ,12m 2﹣32m ﹣2), ∵MN ⊥AB ,∴S AMBN =12AB •MN =﹣3m 2+7m +10(﹣1<m <3), ∴当m =76时,S AMBN 有最大值,最大值=16912. ③如图2所示:作CG ⊥MN 于G ,DH ⊥MN 于H ,如果CM 与DN 不平行.∵DC ∥MN ,CM =DN ,∴四边形CDNM 为等腰梯形.∴∠DNH =∠CMG .在△CGM 和△DNH 中,DNH CMG DHN CGM DN CM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CGM ≌△DNH (AAS ),∴MG =HN .∴PM ﹣PN =1.∵P (m ,0),则M (m ,﹣m 2+2m +3),N (m ,12m 2﹣32m ﹣2). ∴(﹣m 2+2m +3)+(12m 2﹣32m ﹣2)=1,解得:m 1=0(舍去),m 2=1. 当CM ∥DN 时,如图3所示:∵DC∥MN,CM∥DN,∴四边形CDNM为平行四边形.∴DC=MN=5∴﹣m2+2m+3﹣(12m2﹣32m﹣2)=5,∴m1=0(舍去),m2=73,综上所述,m的值为1或73.故答案为:1或73.(3)设S,T的横坐标分别为x1,x2,设R,U的横坐标分别为x3,x4.则TU=x4﹣x2,RS=x1﹣x3,∴TU﹣RS=(x4﹣x2)﹣(x1﹣x3)=(x3+x4)﹣(x1+x2),由﹣x2+2x+3=n,可得,x2﹣2x﹣3+n=0,∴x1+x2=2,由12x2﹣32x﹣2=n,可得x2﹣3x﹣4﹣2n=0,∴x3+x4=3,∴TU﹣RS=(x3+x4)﹣(x1+x2)=3﹣2=1,故答案为:1.【点睛】本题属于二次函数综合题,考查了二次函数的性质,待定系数法,全等三角形的判定和性质,一元二次方程的根与系数的关系等知识,解题的关键是学会构建二次函数解决最值问题,学会利用参数,构建一元二次方程解决问题,属于中考压轴题.25.(1)10300y x =-+;(2)20元或21元.【分析】(1)通过表格的数据,利用待定系数法求一次函数解析式即可;(2)通过题意得到利润和售价之间的关系式,然后当利润为900元时,解方程即可得到结果.【详解】解:(1)设该一次函数的解析式为y kx b =+,由表可知15x =时150y =,16x =时140y =,∴1501514016k b k b =+⎧⎨=+⎩∴10300k b =-⎧⎨=⎩∴一次函数的解析式为10300y x =-+;(2)设利润为W ,则()()()111110300W x y x x =-=--+,∴2104103300W x x =-+-当900W =时,2900104103300x x =-+-,即2414200x x -+=,解得120x =,221x = ∴每件售价为20元或21元时,工艺品厂试销该工艺品每天获得的利润是900元. 【点睛】本题考查了函数的应用问题,正确列出函数关系式是解题的关键.26.(1)一次函数解析式为2y x =-,二次函数解析式为:252y x x =--;(2)存在,点M 的坐标为(0,4)或(0,10).【分析】(1)由一次函数2y kx =-的图象与y 轴交于点B ,可求B (0,-2),由一次函数2y kx =-的图象过点()6,4C ,可求1k =,一次函数解析式为2y x =-,由2y x bx c =++经过点B ,点()6,4C ,代入得36642b c c ++=⎧⎨=-⎩,解方程组求出52b c =-⎧⎨=-⎩即可;(2)存在,先求出OA=2,OB=2,∠AOB=90°,由勾股定理=M 为直角顶点时,当点C 为直角顶点时,利用相似三角形及其性质,可求BM=6或12,即可求出点M 的坐标.【详解】解:(1)∵一次函数2y kx =-的图象与y 轴交于点B ,∴当x=0时,y=-2,B (0,-2),∵一次函数2y kx =-的图象过点()6,4C ,∴462k =-,∴1k =,∴一次函数解析式为2y x =-,∵2y x bx c =++经过点B ,点()6,4C ,代入得36642b c c ++=⎧⎨=-⎩, 解方程组得52b c =-⎧⎨=-⎩, ∴二次函数解析式为:252y x x =--;(2)存在,理由如下,∵已知一次函数2y x =-的图象与x 轴交于点A ,∴y=0,x=2,∴A(2,0),B(0,-2),∴OA=2,OB=2,∠AOB=90°,在Rt △AOB 中,由勾股定理由勾股定理= ①当点M 为直角顶点时,CM ⊥y 轴,CM ∥OA ,∴∠MCB=∠OAB ,∠MBC=∠OBA , ∴△CMB ∽△AOB ,∴BM BC =BO BA 即BM 2, ∴BM=6,∴OM=MB-OB=6-2=4,∴M (0,4),②当点C 为直角顶点时,∴CM ⊥BC ,∴∠MCB=∠AOB=90°,∠MBC=∠ABO , ∴△MCB ∽△AOB ,∴BC BM =BO BA 即2。
一、选择题1.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象可能是( ) A . B .C .D .2.已知二次函数()222y mx m x =+-,它的图象可能是( ) A . B .C .D .3.关于二次函数22y x x =-+的最值,下列叙述正确的是( )A .当2x =时,y 有最小值0.B .当2x =时,y 有最大值0.C .当1x =时,y 有最小值1D .当1x =时,y 有最大值14.如图,二次函数()20y ax bx c a =++≠图象的顶点为D ,其图像与x 轴的交点A 、B 的横坐标分别为-1,3,与y 轴负半轴交于点C .在下面四个结论中:①0a b c ++<; ②13a c =-; ③只有当12a =时,ABD △是等腰直角三角形; ④使ACB △为等腰三角形的a 值可以有两个.其中正确的结论有 A .1个 B .2个 C .3个 D .4个5.抛物线221y x =--的顶点坐标是( )A .(2,1)--B .(2,1)C .(0,1)-D .(0,1) 6.如图是二次函数y =mx 2+nx +k 图象的一部分且过点P (3,0),二次函数图象的对称轴是直线x =1,下列结论正确的是( )A .n 2﹣4mk <0B .mk >0C .n =2mD .m ﹣n +k =0 7.已知二次函数2(2)1y mx m x =+--(m 为常数,且0m ≠),( )A .若0m >,则1x <,y 随x 的增大而增大B .若0m >,则1x >,y 随x 的增大而减小C .若0m <,则1x <,y 随x 的增大而增大D .若0m <,则1x >,y 随x 的增大而减小 8.已知二次函数y =x 2﹣4x +m 2+1(m 是常数),若当x =a 时,对应的函数值y <0,则下列结论中正确的是( )A .a ﹣4<0B .a ﹣4=0C .a ﹣4>0D .a 与4的大小关系不能确定9.如图,抛物线2y ax bx c =++的顶点位于第二象限,对称轴是直线1x =-,且抛物线经过点(1,0).下面给出了五个结论:①0abc >;②240a b c -+>;③40a c +<;④13a b c -=;⑤326320a b c --<.其中结论正确的有( )A .5个B .4个C .3个D .2个10.如图1,在等腰直角BAC 中,90BAC ∠=︒,AB AC =,点P 为AB 的中点,点M 为BC 边上一动点,作45PMN ∠=︒,射线MN 交AC 边于点N .设BM x =,CN y =,y 与x 的函数图象如图2,其顶点为(),m n ,则m n +的值为( )A .4B .33C .222+D .25+ 11.函数k y x=与()20y kx k k =-≠在同一直角坐标系中的图象大致是下图中的( ) A . B . C . D . 12.已知函数223y x x =+-及一次函数y x m =-+的图象如图所示,当直线y x m =-+与函数223y x x =+-的图象有2个交点时,m 的取值范围是( )A .3m <-B .31m -<<C .134m >或3m <-D .31m -<<或134m > 二、填空题13.如果抛物线y=x 2-6x+c-2的顶点到x 轴的距离是4,则c 的值等于_________. 14.将二次函数y =﹣(x ﹣k )2+k +1的图象向右平移1个单位,再向上平移2个单位后,顶点恰好在直线y =2x +1上,则k 的值为_____.15.已知二次函数2(0)y ax bx ca =++≠的自变量x 与函数值y 之间满足下列数量关系: x 01 2 3 y7 5 7 13 则代数式的值为.16.将抛物线21:23C y x x =-+向左平移一个单位长度,得到抛物线2C ,抛物线2C 与抛物线3C 关于y 轴对称,则抛物线3C 的表达式为____.17.抛物线212133y x x =-++与x 轴交于点A B 、,与y 轴交于点C ,则ABC 的面积为 _______.18.已知二次函数()20y ax bx c a =++≠的图象如图,有下列5个结论:①0abc <;②30a c +>;③420a b c ++>;④20a b +=;⑤24b ac >.其中正确的结论的有__________________(填正确的序号)19.如图,在正方形ABCD 中,点E 是BC 边上的动点,过点E 作AE 的垂线交CD 边于点F ,设BE x =,FD y =,y 关于x 的函数关系图像如图所示,则m =________.20.教练对小明推铅球的录像进行技术分析,如图,发现铅球行进高度()y m 与水平距离()x m 之间的关系为()21184105y x =--+ ,由此可知铅球推出的距离_____ m .三、解答题21.已知抛物线239y x kx k =-+-.求证:无论k 为何值,该二次函数的图象与x 轴都有交点.22.当自变量4x =时,二次函数的值最小,最小值为3-,且这个函数的图像与x 轴的一个交点的横坐标为1.(1)求这个二次函数的表达式;(2)求这个函数的图像与y 轴交点的坐标.23.某商店将标价为100元/台的品牌学习机在网上直播间销售,两次降价后,价格为81元/台,并且两次降价的百分率相同.(1)求该品牌学习机每次降价的百分率;(2)从第二次降价后的第1天算起,第x 天的销量及网上直播间销售支出劳务费用的相关信息如表所示: 时间(天)x 销量(台)150﹣x 网上直播间售支出劳务费用(元) 3x 2﹣50x +600x (天)的利润为y (元),求y 与x 之间的函数解析式,并求出第几天时销售利润最大,最大利润是多少? 24.如图1,抛物线26y ax bx =++与x 轴交于点A (2,0)B (6,0),与y 轴交于点C ,连接AC ,BC .(1)求抛物线的表达式;(2)求ACB ∠的正切值;(3)如图2,过点C 的直线交抛物线于点D ,若45ACD ∠=︒,求点D 的坐标.25.如图,有四张背面完全相同的卡片A ,B ,C ,D ,其中正面分别写着四个不同的函数表达式,将四张卡片洗匀正面朝下随机放在桌面上.(1)从四张卡片中随机摸出一张,摸出的卡片上的函数y 随x 的增大而减小的概率是______;(2)小亮和小强用这四张卡片做游戏,规则如下:两人同时从四张卡片中各随机抽出一张,若抽出的两张卡片上的函数增减性相同,则小亮胜;若抽出的两张卡片上的函数增减性不同,则小强胜.这个游戏公平吗?请说明理由.26.2020年是国家实施精准扶贫、实现贫困人口全面脱贫的决胜之年.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售,在销售的30天中,第一天卖出20千克,为了扩大销售,采取降价措施,以后每天比前一天多卖出4千克,第x 天的售价为y 元/千克,y 关于x 的函数解析式为()()76120,2030,mx m x x y n x x ⎧-≤<⎪=⎨≤≤⎪⎩为正整数为正整数且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成本是18元/千克,每天的利润是W 元(利润=销售收入-成本).(1)m =______,n =______;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先由一次函数y ax b =+的图象得到a 、b 的正负,再与二次函数2y ax bx c =++的图象的开口方向、对称轴位置相比较即可做出判断.【详解】解:A 、由抛物线可知,a <0,x =﹣2b a <0,得b <0,由直线可知,a >0,b >0,故本选项错误;B 、由抛物线可知,a <0,x =﹣2b a <0,得b <0,由直线可知,a <0,b <0,故本选项正确;C 、由抛物线可知,a >0,x =﹣2b a >0,得b <0,由直线可知,a >0,b >0,故本选项错误;D 、由抛物线可知,a <0,x =﹣2b a<0,得b <0,由直线可知,a <0,b >0,故本选项错误.故选:B .【点睛】本题主要考查一次函数的图象、二次函数2y ax bx c =++的图象与性质,熟练掌握两函数图象与解析式的系数的关系是解答的关键. 2.B解析:B【分析】分m >0,m <0两种情形,判断对称轴与x=14的位置关系即可. 【详解】∵()222y mx m x =+-, ∴抛物线一定经过原点,∴选项A 排除;∵()222y mx m x =+- , ∴对称轴为直线x=22224m m m m ---=⨯, ∵24m m --14=24m m m --=24m-, 当m >0时,抛物线开口向上,24m -<0, ∴对称轴在直线x=14的左边,B 选项的图像符合;C 选项的图像不符合;当m <0时,抛物线开口向下,24m->0, ∴对称轴在直线x=14的右边, D 选项的图像不符合;故选B.【点睛】 本题考查了二次函数的图像,熟练掌握抛物线经过原点的条件,抛物线对称轴的位置与定直线的关系的判定是解题的关键.3.D解析:D【分析】先将二次函数配方成()211y x =--+,即可求解.【详解】解:()()2221221y x x x x x =-+=----+=, 二次函数的图象开口向下,当1x =时,y 有最大值1,故选:D .【点睛】本题考查二次函数的图象与性质,将二次函数解析式化为顶点式是解题的关键. 4.D解析:D【分析】先根据图象与x 轴的交点A ,B 的横坐标分别为﹣1,3确定出AB 的长及对称轴,再由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:①由抛物线的开口方向向上可推出a >0,∵图像与x 轴的交点A 、B 的横坐标分别为-1,3,∴对称轴x =1,∴当x =1时,y <0,∴a +b +c <0;故①正确;②∵点A 的坐标为(﹣1,0),∴a ﹣b +c =0,又∵b =﹣2a ,∴a ﹣(﹣2a )+c =0,∴c =﹣3a ,∴13a c =-∴结论②正确.③如图1,连接AD ,BD ,作DE ⊥x 轴于点E , ,要使△ABD 是等腰直角三角形,则AD =BD ,∠ADB =90°,∵DE ⊥x 轴,∴点E 是AB 的中点,∴DE =BE ,即|244ac b a -|()312--==2,又∵b =﹣2a ,c =﹣3a ,∴|()()24324a a a a⨯---|=2,a >0, 解得a 12=, ∴只有当a 12=时,△ABD 是等腰直角三角形, 结论③正确 ④要使△ACB 为等腰三角形,则AB =BC =4,AB =AC =4,或AC =BC ,Ⅰ、当AB =BC =4时,在Rt △OBC 中,∵OB =3,BC =4,∴OC 2=BC 2﹣OB 2=42﹣32=16﹣9=7,即c 2=7,∵抛物线与y 轴负半轴交于点C ,∴c <0,c 7=-,∴a 73c =-=.Ⅱ、当AB =AC =4时,在Rt △OAC 中,∵OA =1,AC =4,∴OC 2=AC 2﹣OA 2=42﹣12=16﹣1=15,即c 2=15,∵抛物线与y 轴负半轴交于点C ,∴c <0,c=,∴a 3c =-= Ⅲ、当AC =BC 时,∵OC ⊥AB ,∴点O 是AB 的中点,∴AO =BO ,这与AO =1,BO =3矛盾,∴AC =BC 不成立.∴使△ACB 为等腰三角形的a . 结论④正确.故答案选:D【点睛】二次函数y =ax 2+bx +c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0;(2)b 由对称轴和a 的符号确定:由对称轴公式x 2b a=-判断符,(3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0;(4)b 2﹣4ac 由抛物线与x 轴交点的个数确定:①2个交点,b 2﹣4ac >0;②1个交点,b 2﹣4ac =0;③没有交点,b 2﹣4ac <0.5.C解析:C【分析】根据题目中的函数解析式可以直接写出该抛物线的顶点坐标.【详解】解:∵y=-2x 2-1,∴该抛物线的顶点坐标为(0,-1),故选:C .【点睛】本题考查了二次函数的性质,解答本题的关键是明确题意,利用二次和函数的性质解答. 6.D解析:D【分析】根据抛物线与x 轴有两个交点可对A 进行判断;由抛物线开口向上得m >0,由抛物线与y 轴的交点在x 轴下方得k <0,则可对B 进行判断;根据抛物线的对称轴是x =1对C 选项进行判断;根据抛物线的对称性得到抛物线与x 轴的另一个交点为(−1,0),所以m−n +k =0,则可对D 选项进行判断.【详解】解:A .∵抛物线与x 轴有两个交点,∴n 2﹣4mk >0,所以A 选项错误;B .∵抛物线开口向上,∴m >0,∵抛物线与y 轴的交点在x 轴下方,∴k <0,∴mk <0,所以B 选项错误;C .∵二次函数图象的对称轴是直线x =1,∴﹣2n m=1, ∴n =﹣2m ,所以C 选项错误;D .∵抛物线过点A (3,0),二次函数图象的对称轴是x =1,∴抛物线与x 轴的另一个交点为(﹣1,0),∴m ﹣n +k =0,所以D 选项正确;故选:D .【点睛】本题考查了二次函数的图象与系数的关系:二次函数y =ax 2+bx +c (a≠0)的图象为抛物线,当a >0,抛物线开口向上;对称轴为直线2b x a=-;抛物线与y 轴的交点坐标为(0,c );当b 2−4ac >0,抛物线与x 轴有两个交点;当b 2−4ac =0,抛物线与x 轴有一个交点;当b 2−4ac <0,抛物线与x 轴没有交点.7.D解析:D【分析】先求出二次函数图象的对称轴,然后根据m 的符号分类讨论,结合图象的特征即可得出结论.【详解】 该二次函数图象的对称轴为直线21122m x m m -=-=-+, 若0m >,对于22m x m -=-无法判断其符号,故A 、B 选项不一定正确; 若0m <,则202m x m -=-<,即22m m--<1,且抛物线的开口向下,∴当1x >时,y 随x 的增大而减小,故选:D .【点睛】此题考查的是二次函数的图象及性质,解决此题的关键是分类讨论确定对称轴的位置,再结合开口方向进行综合分析.8.A解析:A【分析】画出函数图象,利用图象法解决问题即可;【详解】解:∵抛物线的对称轴为422x -=-=, 抛物线与x 轴交于点A 、B .如图,设点A 、B 的横坐标分别为12x x 、,124x x +=,2121x x m =+,∴()()()22212121241641x x x x x x m -=+-=-+, ∵210m +>,∴()212x x -的最小值为16, ∴AB <4,∵当自变量x 取a 时,其相应的函数值y <0,∴可知a 表示的点在A 、B 之间,∴40a -<,故选:A .【点睛】本题考查了二次函数的性质,根据题意画出图形,利用数形结合求解是解答此题的关键. 9.A解析:A【分析】由二次函数的图象即可判断a 、b 、c 的符号,即可判断①;由对称轴和与x 轴交点坐标即可求出c=-3a 和b=2a ,即可判断②③④;把()()()2232332632632236126=61a b c a a a a a a a a --=-⨯-⨯-=-+-变形之后即可判断⑤;【详解】∵由图象可知开口向下,∴a <0,∵对称轴为x=-1,∴ b <0,抛物线与y 轴的交点在原点上方,∴ c >0,∴ abc >0,故①正确;∵ 抛物线经过点(1,0),对称轴为x=-1,∴ 抛物线与x 轴的另一交点时是(-3,0),∴ a+b+c=0,∵对称轴为x=-1,∴ b=2a ,∴ a+2a+c=0,即c=-3a , ()24443150a b c a a a a -+=-+⨯-=-> ,故②正确;4430a c a a a +=-=< ,故③正确;123a b a a a c -=-=-= ,故④正确; ()()()2232332632632236126=61a b c a a a a a a a a --=-⨯-⨯-=-+- ,∵ ()21a -≥0,由图象得:1a ≠ , ∴32632a b c --<0,故⑤正确;故选:A .【点睛】本题考查了二次函数图象的性质、对称轴以及函数值的求法,正确掌握二次函数的性质是解题的关键.10.C解析:C【分析】首先由函数图象可直接得出4BC =,然后当M 运动至BC 中点时,y 的值最大,此时即为AC 的长,从而在等腰直角三角形中分别计算即可.【详解】根据函数图象知,当4x =时,0y =,即:4BC =,当M 运动至BC 中点时,y 的值最大,此时y 的值即为AC 的长,∵△ABC 为等腰直角三角形,M 为BC 的中点,∴△AMC 为等腰直角三角形,且122AM MC BC ===, ∴AC ==,即:函数图象中,222,m n ==,∴222m n +=+,故选:C .【点睛】本题考查二次函数的实际应用之动态几何问题,理解二次函数的基本性质以及等腰直角三角形的性质是解题关键.11.B解析:B【分析】根据k>0,k<0,结合反比例函数及二次函数图象及其性质分类讨论.【详解】解:分两种情况讨论:①当k>0时,反比例函数k y x=在一、三象限,而二次函数()20y kx k k =-≠开口向上,与y 轴交点在原点下方,故C 选项错误,B 选项正确; ②当k<0时,反比例函数k y x=在二、四象限,而二次函数()20y kx k k =-≠开口向下,与y 轴交点在原点上方,故A 选项与D 选项错误.故选B .【点睛】 本题考查了反比例函数图象性质和二次函数图象性质.关键是根据k>0,k<0,结合反比例函数及二次函数图象及其性质分类讨论.12.D解析:D【分析】作出函数223y x x =+-及一次函数y x m =-+的图象,根据图象性质讨论即可求出. 【详解】解:如图:函数223y x x =+-,当0y =时,1x =或3-, ()()3010A B ∴-,,,,当31x -<<时,223y x x =--+,当直线过点A 时,1个交点,此时()03m =--+,即3m =-,当3m >-时,有2个交点,当直线过点B 时,有3个交点,此时01m =-+,即1m =, ∴1m <时有2个交点,31m ∴-<<,当直线与抛物线相切时,有3个交点,223y x x y x m⎧=--+∴⎨=-+⎩, 由()1430m =--+=, 解得:134m =, 134m ∴>时有2个交点, 综上所述,31m -<<或134m >. 【点睛】 本题考查了一次函数与二次函数的交点问题,熟练掌握二次函数的性质是解题的关键.二、填空题13.7或15【分析】根据题意可知抛物线顶点纵坐标是±4化成顶点式求解即可【详解】解:∵抛物线y=x2-6x+c-2的顶点到x 轴的距离是4∴抛物线顶点纵坐标是±4抛物线y=x2-6x+c-2化成顶点式为:解析:7或15.【分析】根据题意可知,抛物线顶点纵坐标是±4,化成顶点式求解即可.【详解】解:∵抛物线y=x2-6x+c-2的顶点到x轴的距离是4,∴抛物线顶点纵坐标是±4,抛物线y=x2-6x+c-2化成顶点式为:y=(x-3)2+c-11,c-11=4,c=15,c-11=-4,c=7,故答案为:7或15.【点睛】本题考查了抛物线的顶点坐标,解题关键是理解到x轴的距离是纵坐标的绝对值,注意:分类讨论.14.0【分析】先求出二次函数y=﹣(x﹣k)2+k+1的图象平移后的顶点坐标再将它代入y=2x+1即可求出k的值【详解】解:∵二次函数y=﹣(x﹣k)2+k+1的顶点坐标为(kk+1)∴将y=﹣(x﹣k解析:0【分析】先求出二次函数y=﹣(x﹣k)2+k+1的图象平移后的顶点坐标,再将它代入y=2x+1,即可求出k的值.【详解】解:∵二次函数y=﹣(x﹣k)2+k+1的顶点坐标为(k,k+1),∴将y=﹣(x﹣k)2+k+1的图象向右平移1个单位,向上平移2个单位后顶点坐标为(k+1,k+3).根据题意,得k+3=2(k+1)+1,解得k=0.故答案是:0.【点睛】本题考查了二次函数图象与几何变换,一次函数图象上点的坐标特征,难度适中.根据点的平移规律:右加左减,上加下减正确求出二次函数y=−(x−k)2+k+1的图象平移后的顶点坐标是解题的关键.15.91【分析】观察表格可知:x=0时y=7x=2时y=7即可求得抛物线的对称轴为直线x==1根据抛物线的对称性求得x=-1时y=13从而求得4a+2b+c=7a-b+c=13【详解】解:观察表格可知:解析:91【分析】观察表格可知:x=0时,y=7,x=2时,y=7,即可求得抛物线的对称轴为直线x=022=1,根据抛物线的对称性求得x=-1时,y=13,从而求得4a+2b+c=7,a-b+c=13.【详解】解:观察表格可知:x=0时,y=7,x=2时,y=7,∴抛物线的对称轴为直线x=022+=1, ∵x=3时,y=13,∴x=-1时,y=13,∴4a+2b+c=7,a-b+c=13,∴(4a+2b+c )(a-b+c )的值为91,故答案为91.【点睛】本题考查二次函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 16.【分析】根据抛物线的解析式得到顶点坐标根据顶点式及平移前后二次项的系数不变可得抛物线的顶点坐标而根据关于y 轴对称的两条抛物线的顶点的纵坐标相等横坐标互为相反数由此可得到抛物线所对应的函数表达式【详解 解析:22y x =+【分析】根据抛物线1C 的解析式得到顶点坐标,根据顶点式及平移前后二次项的系数不变可得抛物线 2C 的顶点坐标,而根据关于y 轴对称的两条抛物线的顶点的纵坐标相等,横坐标互为相反数,由此可得到抛物线3C 所对应的函数表达式.【详解】抛物线1C :2223=(1)2y x x x =-+-+, ∴抛物线1C 的顶点为(1,2),向左平移一个单位长度,得到抛物线2C ,∴抛物线2C 的顶点为(0,2),抛物线2C 与抛物线3C 关于y 轴对称,∴抛物线3C 的开口方向相同,顶点为(0,2),∴抛物线3C 的解析式为22y x =+.故答案为22y x =+.【点睛】本题主要考查了二次函数的图像的平移问题,只需看顶点坐标是如何平移得到的即可,关于y 轴对称的两条抛物线的顶点的纵坐标相等,横坐标互为相反数,难度适中. 17.2【分析】由与x 轴交于点AB 即y=0求出x 即得到图象与x 轴的交点坐标与y 轴交于点C 即x=0求出y 得到与y 轴的交点坐标得出ABAC 的长度从而得出△ABC 的面积;【详解】∵与x 轴交于点AB 则解得:即交点解析:2【分析】由212133y x x =-++与x 轴交于点A 、B ,即y=0,求出x ,即得到图象与x 轴的交点坐标,与y 轴交于点C ,即x=0,求出y ,得到与y 轴的交点坐标,得出AB 、AC 的长度,从而得出△ABC 的面积;【详解】 ∵212133y x x =-++与x 轴交于点A 、B , 则2121=033x x -++, 解得:11x =- ,23x = ,即交点坐标分别为(-1,0),(3,0); ∵212133y x x =-++与y 轴交于点C , 将x=0代入得y=1,∴ 点C(0,1),∴ △ABC 的面积为:1141222AB OC ⨯⨯=⨯⨯= , 故答案为:2.【点睛】本题主要考查了二次函数与坐标轴的交点坐标求法,进而得出有关三角形的面积,正确得出有关坐标是解题的关键. 18.①③④⑤【分析】根据函数图象开口向下可以得a <0顶点在y 轴右侧得到b >0与y 轴交于正半轴得c >0从而可以判断①是否正确再根据二次函数图象具有对称性和二次函数的性质可以判断其他各小题是否正确本题得以解 解析:①③④⑤【分析】根据函数图象开口向下可以得a <0,顶点在y 轴右侧得到b >0,与y 轴交于正半轴得c >0,从而可以判断①是否正确,再根据二次函数图象具有对称性和二次函数的性质可以判断其他各小题是否正确,本题得以解决.【详解】解:由图象可得,a <0,b >0,c >0,∴abc <0,故①正确;∵抛物线的对称轴为1x =,即12b a-=, ∴2b a =-,∴20a b +=,故④正确;当1x =-时,0y a b c =-+<,则30a c +<,故②错误;∵抛物线的对称轴为1x =,则2x =和0x =时的函数值相等,故2x =时,420y a b c =++>,故③正确;∵此抛物线与x 轴有两个交点,∴240b ac ->,∴24b ac >,故⑤正确,故答案为:①③④⑤.【点睛】本题考查了二次函数图象与系数的关系,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质和数形结合的思想解答.19.2【分析】设正方形的边长为a 则CFEC 均可用a 表示证明△ABE ∽△ECF 写出比例式找到y 与x 之间的函数式根据二次函数的最值求法结合所给函数图象求出a 值而后可求m 值【详解】设正方形的边长为a 则CF=a解析:2【分析】设正方形的边长为a ,则CF 、EC 均可用a 表示,证明△ABE ∽△ECF ,写出比例式找到y 与x 之间的函数式,根据二次函数的最值求法,结合所给函数图象,求出a 值,而后可求m 值.【详解】设正方形的边长为a ,则CF=a-y .∵∠BAE+∠AEB=90°,∠FEC+∠AEB=90°,∴∠BAE=∠CEF .又∠B=∠C ,∴△ABE ∽ECF , ∴BE FC AB EC =,x a y a a x-=-, 整理得:21y x x a a =-+, 当2a x =时,y 有最小值34a , 从所给函数图象上看,当x m =时,y 有最小值3, ∴334a =, 解得:4a =, ∴22a x m ===. 故答案为:2.【点睛】 本题主要考查了动点问题产生的函数图象、相似三角形的判定和性质,解题的关键是动中找静,会阅读图象信息.20.10【分析】根据铅球落地时高度y=0实际问题可理解为当y=0时求x 的值即可【详解】解:令函数式中y=00=解得x1=10x2=-2(舍去)即铅球推出的距离是10m 故答案为:10【点睛】本题考查了二次解析:10【分析】根据铅球落地时,高度y=0,实际问题可理解为当y=0时,求x 的值即可.【详解】 解:令函数式()21184105y y x ==--+中,y=0, 0=()21184105x --+, 解得x 1=10,x 2=-2(舍去),即铅球推出的距离是10m .故答案为:10.【点睛】本题考查了二次函数的应用,取函数或自变量的特殊值列方程求解是解题的关键.三、解答题21.证明见详解.【分析】令y=0,构造一元二次方程239=0x kx k -+-,由1,,39a b k c k ==-=-,判别式()22123660k k k ∆=-+=-≥即可.【详解】解:令y=0,239=0x kx k -+-,∵1,,39a b k c k ==-=-, ()()()222=4139123660k k k k k ∴∆--⨯⨯-=-+=-≥,∴二次函数的图象与x 轴都有交点.【点睛】本题考查二次函数与x 轴的交点问题,掌握二次函数与x 轴交点问题转化为y=0时,一元二次方程有实根问题,理解二次函数和一元二次方程之间的关系式解此题的关键,此题是一个比较典型的题目.22.(1)()21433y x =--;(2)70,3⎛⎫ ⎪⎝⎭ 【分析】(1)根据题意可设二次函数顶点式,再将()1,0代入求解即可;(2)令0x =即可得到结果;【详解】(1)∵当自变量4x =时,二次函数的值最小,最小值为3-, ∴顶点坐标为()4,3-, 可设顶点式为()243y a x =--, 将()1,0代入得:930a -=, 解得:13a =, ∴这个二次函数的表达式为()21433y x =--; (2)∵()21433y x =--, ∴令0x =时,1716333y =⨯-=, ∴与y 轴的交点坐标为70,3⎛⎫ ⎪⎝⎭; 【点睛】本题主要考查了待定系数法求解二次函数解析式,准确计算是解题的关键.23.(1)10%;(2)y=2330+2400x x -+,第5天销售利润最大,最大利润是2475元. 【分析】(1)根据题意,可以列出相应的方程,从而可以求得相应的百分率;(2)根据题意和表格中的数据,可以求得y 与x 之间的函数解析式,然后利用二次函数的性质可以求出第几天时销售利润最大,最大利润是多少. 【详解】解:(1)设该品牌学习机每次降价的百分率为x ,根据题意得2100(1)81x -=解得,10.110%x ==,2 1.9x =(舍去) 答:该品牌学习机每次降价的百分率为10%; (2)结合表格数据,根据题意得,()()28115061150350600y x x x x ⎡⎤=---+-+⎣⎦=()2201503+50600x x x ---=23000600330x x --+ =2330+2400x x -+ =23(5)2475x --+∴当x=5时,y 有最大值,最大值是2475 答:第5天销售利润最大,最大利润是2475元. 【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质和方程的知识解答. 24.(1)21462y x x =-+;(2)12;(3)D 57,2⎛⎫ ⎪⎝⎭【分析】(1)直接将点A 、B 的坐标代入26y ax bx =++ 中求得a 、b 的值即可;(2)过点A 作AE AC ⊥点A ,交BC 于点E ,过点E 做EF x ⊥轴于点F ,证出EF BF =.设EF BF x ==,则4AF x =-,证出AOC EFA ∽△△.求出1x =.即可求出12AE EF AC OA ==. (3)过点A 作AM AC ⊥于点A ,交CD 于点M ,过点M 做MN x ⊥轴于点N .证出AOC MNA ≌△△,求出点M (8,2)直线MC 的解析式162y x =-+,列方程组求出点D 坐标(7,52) 【详解】(1)∵点A(2,0)和点B(6,0)在26y ax bx =++,∴ 将点A(2,0)和点B(6,0)代入26y ax bx =++得:426036660a b a b ++=⎧⎨++=⎩ , 解得:124a b ⎧=⎪⎨⎪=-⎩ , ∴21462y x x =-+; (2)解:过点A 作AE AC ⊥点A ,交BC 于点E ,过点E 做EF x ⊥轴于点F , ∵AE ⊥AC ,EF ⊥AB , ∴∠EFB=90°, ∵B(6,0),C(0,6), ∴△OBC 为等腰直角三角形, ∴∠B=45°,∴△BEF 为等腰直角三角形, ∴EF=BF ,设EF BF x ==,则4AF x =-, ∵∠CAO+∠EAF=90°,∠AEF+∠EAF=90°, ∴∠CAO=∠AEF , ∴AOC EFA ∽△△, ∴AF EFOC AO= ,即462x x-=,解得:1x=.∴tan ACB∠=12AE EFAC OA==.(3)解:过点A作AM AC⊥于点A,交CD于点M,过点M做MN x⊥轴于点N.∵∠ACD=45°,∠CAM=90°,∴△CAM为等腰直角三角形,∴CA=AM,又∵∠CAO+∠MAB=90°,∠AMN+∠MAB=90°,∴∠CAO=∠AMN,在△AOC和△MNA中⎧⎪⎨⎪⎩∠COA=∠ANM∠CAO=∠AMNCA=AM,∴AOC MNA≌△△(AAS),∴ MN=OA=2,AN=OC=6,∴ M(8,2),∴设直线MC的解析式为:y kx b=+,将C(0,6),M(8,2),代入得:682bk b=⎧⎨+=⎩,解得:126kb⎧=-⎪⎨⎪=⎩,∴直线MC的解析式162y x=-+,∴2146 2162y x xy x⎧=-+⎪⎪⎨⎪=-+⎪⎩解得:6xy=⎧⎨=⎩(舍去)752xy=⎧⎪⎨=⎪⎩∴D(7,52);【点睛】本题考查了相似三角形与全等三角形的性质与判定,二次函数的解析式,二次函数与一次函数的交点问题,等腰直角三角形的性质;熟练掌握知识点是解题的关键;25.(1)12;(2)不公平,见解析【分析】(1)先判断出A、B、C、D四个卡片上的函数增减性,在结合概率的定义即可求解(2)根据题意用列表法分别求出小亮和小强同时抽到函数增减性相同的概率,和增减性不同的概率,二者进行比较即可【详解】(1)卡片A上的函数为12y x=-,为减函数,y随x的增大而减小;卡片B上的函数为()1y xx=-<,为增函数,y随x的增大而增大;卡片C上的函数为()230y x x=->,为增函数,y随x的增大而增大;卡片D上的函数为5y x=-,为减函数,y随x的增大而减小;所以从四张卡片中随机摸出一张,摸出的卡片上的函数y随x的增大而减小的概率为2142=(2)不公平.理由如下,根据题意列表得:卡片A卡片B卡片C卡片D 卡片A AB AC AD卡片B AB BC BD卡片由表可知总共有12中等可能的结果,抽出的两张卡片上的函数增减性相同的概率为41123= ;抽出的两张卡片上的函数增减性不同的概率是82123=, 2133>, ∴不公平. 【点睛】本题考查了函数的性质,概率和游戏的公平性,掌握列表或树状图法展示等可能的结果是解题关键. 26.(1)12m =-,25n =;(2)当18x =时,968W =最大. 【分析】(1)根据题意将第12天的售价、第26天的售价代入即可得; (2)在(1)的基础上分段表示利润,讨论最值. 【详解】解:(1)第12天的售价为32元/件,代入76y mx m =-得321276m m =-,解得12m =-,当地26天的售价为25元/千克时,代入y n =,则25n =, 故答案为:12m =-,25n =. (2)由(1)第x 天的销售量为()2041x +-即416x +. 当120x ≤<时,()()22141638182723202189682W x x x x x ⎛⎫=+-+-=-++=--+ ⎪⎝⎭,∴当18x =时,968W =最大.当2030x ≤≤时,()()416251828112W x x =+-=+, ∵280>,∴W 随x 的增大而增大, ∴当30x =时,952W =最大. ∵968952>,∴当18x =时,968W =最大. 【点睛】本题考查了一次函数的应用,二次函数的应用,弄清题意,找准题中的数量关系,运用分类讨论思想是解题的关键.。
轧东卡州北占业市传业学校函数经典练习一、选择题1.函数的图像如图〔1〕所示,那么函数的图像只可能是图〔2〕中的〔〕2.一个二次函数的图像经过A〔0,0〕,B〔-1,-11〕,C〔1,9〕三点,那么这个二次函数的解析式是〔〕A. B. C. D.3.如果抛物线经过点〔-1,12〕,〔0,5〕和〔2,-3〕,那么的值为〔〕A.-4 B.-2 C.0 D.14.函数,当函数值随的增大而减小时,那么的取值范围是〔〕A. B. C. D.5.函数的图像如下列图,那么此函数的解析式为〔〕A. B.C. D.6.如果函数是二次函数,那么的值一定是〔〕A.0 B.3 C.0, 3 D.1, 27.:函数与轴的交点是,那么的值是〔〕A.1997 B.1840 C.1984 D.1897二、填空题8.假设抛物线向左又向上各平移4个单位,再绕顶点旋转180°,得到新的图像的解析式是________.9.将二次函数的图像向下平移2个单位,再向右平移3个单位,得到抛物,那么10.二次函数的顶点在轴上,那么11.二次函数的图像经过原点,那么12.二次函数的图像经过,那么此函数的解析式是________;如果随的增大而减少,那么自变量的变化范围是________.13.函数的最小值是4,且,那么14.抛物线与轴交于两点,且,那么15.二次函数,如果,且当时,,那么当时,16.假设抛物线的最高点为〔-1,-3〕,那么17.二次函数图像与轴两交点间的距离是8,且顶点为,那么它的解析式是________.18.抛物线与轴交于点A,与轴的正半轴交于B、C两点,且,那么19.经过点〔0,3〕的一条抛物线的解析式是________.20.抛物线的顶点在直线上,那么的值为________.三、解答题21.二次函数,且二次方程的两个根为-3,-1.〔1〕求二次函数的解析式;〔2〕将函数的图像向右平移3个单位,再向下平移5个单位,求所得的函数的解析式;〔3〕设抛物线与轴交于A,B两点,抛物线的顶点为C,求的面积.22.过第四象限的直线与抛物线交于点A〔0,3〕和点C,C是抛物线的顶点,且抛物线的对称轴与轴平行,A,C两点间的距离是,的面积为3,求直线和抛物线的解析式.23.直线与抛物线交于两点和,抛物线还经过点.〔1〕求直线与抛物线的解析式;〔2〕点A是抛物线与轴的交点,过交点A作直线的垂线,垂足为H,求AH的长.24.抛物线与轴有两个不同的交点A,B,其坐标为,其中,且.〔1〕求这条抛物线;〔2〕设所求抛物线顶点为C,P是此抛物线上的一点,且,求P点的坐标.25.如下列图,二次函数的图像与轴交于B,C两点,与轴交于点A.〔1〕根据图象确定的符号,并说明理由;〔2〕如果点A的坐标为〔0,-3〕,,求这个二次函数的解析式.26.在平面直角坐标系的轴上有两点,在轴上有一点C,是方程的两根,且,的面积是9.〔1〕求三点的坐标;〔2〕求图像过三点的二次函数的解析式.27.二次函数.〔1〕证明:不管a取何值,抛物线的顶点总在轴的下方;〔2〕设抛物线与轴交于点C,如果过点C且平行于轴的直线与该抛物线有两个不同的交点,并设另一个交点为点D,问:能否是等边三角形?假设能,请求出相应的二次函数解析式;假设不能,请说明理由;〔3〕在第〔2〕题的条件下,又设抛物线与轴的交点之一为点A,那么能使的面积等于1/4的抛物线有几条?请证明你的结论.28.抛物线.〔1〕求抛物线的顶点坐标〔用含m的式子表示〕;〔2〕设抛物线与轴相交于A、B两点,且,求抛物线的函数解析式,并画出它的图象;〔3〕在〔2〕的抛物线上是否存在点P,使等于?如果不存在,请说明理由;如果存在,先找出点P的位置,然后再求出点P的坐标.。
九年级数学二次函数测试题含答案(精选5套)九年级数学二次函数测试题含答案(精选5套)第一套:1. 将函数 $y = 2x^2 - 3x - 2$ 化简为标准形式,并求出它的顶点坐标。
答案:将函数化简为标准形式得到 $y = 2(x-\frac{3}{4})^2 -\frac{33}{8}$,顶点坐标为 $(\frac{3}{4}, -\frac{33}{8})$。
2. 求函数 $y = -x^2 + 4x + 1$ 的零点。
答案:将函数化简为标准形式得到 $y = -(x-2)^2 + 5$,令 $y = 0$,解得 $x = 2 \pm \sqrt{5}$,即零点为 $x_1 = 2 + \sqrt{5}$ 和 $x_2 = 2 -\sqrt{5}$。
3. 给定函数 $y = x^2 - 6x + 5$,求其对称轴的方程式。
答案:对称轴的方程式为 $x = \frac{-b}{2a}$,代入 $a = 1$ 和 $b = -6$ 得到 $x = \frac{6}{2} = 3$。
4. 若函数 $y = ax^2 + bx - 9$ 与 $y = -x^2 + 7x$ 有相同的图像,求$a$ 和 $b$ 的值。
答案:由于两个函数有相同的图像,所以它们的系数相等。
比较两个函数的对应系数得到 $a = -1$ 和 $b = 7$。
5. 已知函数 $y = x^2 - 4x + 5$ 的图像上存在一点 $(h, k)$,使得 $x= h - 3$ 时,$y = 2k + 12$,求点 $(h, k)$ 的坐标。
答案:将 $x = h - 3$ 代入函数得到 $y = (h-3)^2 - 4(h-3) + 5$。
代入$y = 2k + 12$ 得到 $(h-3)^2 - 4(h-3) + 5 = 2k + 12$。
整理得到 $(h-3)^2 -4(h-3) - 2k - 7 = 0$。
由于该方程为二次方程,必然存在实数解。
一、选择题1.对于二次函数2y x bx c =++(b ,c 是常数)中自变量x 与函数y 的部分对应值如下表:x1- 0 1 2 34 y10 52 125下列结论错误的是( ) A .函数图像开口向上B .当5x =时,10y =C .当2x >时,y 随x 的增大而增大.D .方程20x bx c ++=有两个不相等的实数根2.在同一坐标系中,函数y ax b =+与2(0)y ax bx a =+≠的图象可能是( )A .B .C .D .3.在二次函数2y ax bx c =++中,函数值y 与自变量x 的部分对应值如下表 则m 的值为( ). x -2 -1 0 1 2 3 4 y72-1-2m27A .1B .-1C .2D .-24.下列函数中,当0x >时,y 随x 增大而增大的是( ) A .2y x=B .22y x =+C . 1y x =-+D .22 y x =--5.二次函数y =ax 2+bx +c 的图象如图所示,下列结论中正确的有①abc >0;②b 2﹣4ac <0;③2a >b ;④(a +c )2<b 2;⑤a ﹣2b +4c >0.( )A .1个B .2个C .3个D .4个6.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =-+-与反比例函数a b cy x-+=在同一平面直角坐标系内的图象大致为( )A .B .C .D .7.已知二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,则下列结论:①abc >0;②a ﹣b +c >0;③4a ﹣2b +c <0,其中结论正确的个数为( )A .0个B .1个C .2个D .3个8.二次函数()210y ax bx c a =++>的图象与x 轴的一个交点为()3,0-,对称轴为直线1x =-,一次函数()20y kx n k =+<的图象过点()3,0-和二次函数()210y ax bx c a =++>图象的顶点.下列结论:( )①0abc <;②若31x -<<-,则12y y <; ③若二次函数1y 的值大于0,则1x >;④过动点(),0P m 且垂直于x 轴的直线与函数12,y y 的图象的交点分别为,C D ,当点C 位于点D 上方时,m 的取值范围是3m <-或1m >-.错误的是( ) A .①B .②C .③D .④9.已知二次函数24y x x m =-+的图象与x 轴有两个交点,若其中一个交点的横坐标为1,则另一个交点的横坐标为( ) A .1- B .2-C .2D .310.已知抛物线()()()12121y x x x x x x =--+<,抛物线与x 轴交于(,0)m ,(,0)n 两点()m n <,则m ,n ,1x ,2x 的大小关系是( )A .12x m n x <<<B .12m x x n <<<C .12m x n x <<<D .12x m x n <<<11.如图,抛物线2y ax bx c =++的顶点位于第二象限,对称轴是直线1x =-,且抛物线经过点(1,0).下面给出了五个结论:①0abc >;②240a b c -+>;③40a c +<;④13a b c -=;⑤326320a b c --<.其中结论正确的有( )A .5个B .4个C .3个D .2个12.已知函数223y x x =+-及一次函数y x m =-+的图象如图所示,当直线y x m =-+与函数223y x x =+-的图象有2个交点时,m 的取值范围是( )A .3m <-B .31m -<<C .134m >或3m <- D .31m -<<或134m >二、填空题13.如图,二次函数2y x mx =-+的图象与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在14x <<的范围内有解,则t 的取值范围是_______.14.如图,在平面直角坐标系中,抛物线()2230y ax ax a =-+>与y 轴交于点A ,过点A 作x 轴的平行线交抛物线于点M ,P 为抛物线的顶点,若直线OP 交直线AM 于点B ,且M 为线段AB 的中点,则a 的值为____________.15.如图,二次函数2y ax bx c =++与反比例函数ky x=的图象相交于点()()()1231,1,3,A y B y C y -、、三个点,则不等式2k ax bx c x++>的解是____.16.二次函数()22336y x x x =--≤≤的最小值是_________.17.已知二次函数()20y ax bx c a =++≠的图象如图,有下列5个结论:①0abc <;②30a c +>;③420a b c ++>;④20a b +=;⑤24b ac >.其中正确的结论的有__________________(填正确的序号)18.二次函数224y x x =-++的最大值是______.19.在平面直角坐标系中,已知()1,A m -和()5,B m 是抛物线21y x bx =++上的两点,则抛物线21y x bx =++的顶点坐标为_________.20.已知点()4,A m -,()2,B m ,()6,C n 均在抛物线2y x bx c =++上,则m ,n 的大小关系是m __________n .三、解答题21.已知地物线2y x bx c =-++()0a ≠与y 轴交于点A ,点()3,2B在该抛物线上(1)若抛物线的对称轴是直线x m =,请用含b 的式子表示m ;(2)如图1,过点B 作x 轴的垂线段,垂足为点C .连结AB 和AC ,当ABC 为等边三角形时,求抛物线解析式;(3)如图2,在(2)条件下,已知P 为x 轴上的一动点,连结AP 和BP ,当30APB ∠=︒时,求满足条件的点P 的坐标.22.如图, 已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线2y ax bx c =++与直线交于A ,E 两点,与x 轴交于B (1,0),C (2,0)两点.(1)求该抛物线的解析式;(2)动点P 在x 轴上移动, 当△PAE 是直角三角形时, 请通过计算写出一个满足条件点P 的坐标.23.如图,抛物线2y x bx c =+-与x 轴交于A (-1,0),B (3,0)两点,直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2. (1)求抛物线及直线AC 的函数表达式;(2)点M 是线段AC 上的点(不与A ,C 重合)过M 作MF //y 轴交抛物线于F ,若点M 的横坐标为m ,请用含m 的代数式表示MF 的长.24.已知抛物线23(0)y ax bx a =+-≠经过(1,0)(3,0)A B -,两点,C 点是抛物线与y 轴交点,直线l 是抛物线的对称轴. (1)求抛物线的函数解析式;(2)在抛物线的对称轴上是否存在一点M ,使得ACM △的周长最短?若存在,求点M 的坐标;若不存在,请说明理由.25.如图,在平面直角坐标系中,二次函数25y ax bx =++的图象交x 轴于点A ,B (点A 在点B 的左侧),交y 轴于点C ,//CD x 轴交抛物线于点D .已知点A 的横坐标为1-,4CD =.(1)求该二次函数的表达式.(2)已知点E 在抛物线上且位于直线CD 的上方,//EF CD 交抛物线于点F (点F 在点E 的右侧),FG x ⊥轴于点G ,交CD 于点H ,4EF HD =,求点E 的坐标.26.阅读材料:二次函数的应用小明在学习过程中遇到一个问题:下列两个两位数相乘的运算中(两个乘数的十位上的数都是8,个位上的数的和等于10),猜想其中哪个积最大,并说明理由.8189⨯,8288⨯,8387⨯,……,8783⨯,8882⨯,8981⨯ 小明结合已学知识做了如下尝试:设两个乘数的积为y ,其中一个乘数的个位上的数为x ,则另一个乘数个位上的数为(10)x -,根据题意得:(80)[80(10)]y x x =++-=(80)(90)(80)(90)x x x x +-=-+-……(1)问题解决:请帮助小明判断以上问题中哪个积最大并求出这个最大的积;(2)问题拓展:下列两个三位数相乘的运算中(两个乘数的百位上的数都是7,十位上的数与个位上的数组成的数的和等于100),用以上方法猜想其中哪个积最大,并说明理由.701799⨯,702798⨯,703797⨯,……,797703⨯,798702⨯,799701⨯【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据表格中的数据和二次函数图象具有对称性即可判断各个选项中的说法是否正确,从而可以解答本题. 【详解】解:由表格可得,当x <2时,y 随x 的值增大而减小;当x >2时,y 随x 的值增大而增大,该函数开口向上,故选项A 、C 不符合题意; ∴点(−1,10)的对称点是(5,10),∴点(5,10)在该函数的图象上,故选项B 不符合题意;由表格可得,该抛物线开口向上,且最小值是1,则该抛物线与x 轴没有交点, ∴方程20x bx c ++=无实数根,故选项D 符合题意. 故选:D . 【点睛】本题考查二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.2.A解析:A 【分析】根据二次函数的c 值为0,确定二次函数图象经过坐标原点,再根据a 值确定出二次函数的开口方向与一次函数所经过的象限即可得解. 【详解】 解:2(0)y ax bx a =+≠,0c,∴二次函数经过坐标原点,故B 、C 选项错误;A 、根据二次函数开口向上0a >,对称轴bx 02a=->, 所以,0b <,一次函数经过第一三象限,0a >,与y 轴负半轴相交, 所以,0b <,符合,故本选项正确;D 、二次函数图象开口向下,0a <,一次函数经过第一三象限,0a >,矛盾,故本选项错误.故选:A . 【点睛】本题考查了二次函数的图象,一次函数的图象,熟练掌握函数解析式的系数与图象的关系是解题的关键.3.B解析:B 【分析】根据二次函数的性质,结合题意,将0x =、1y =-代入到2y ax bx c =++,得c 的值;将1x =-、2y =和1x =、2y =-代入到21y ax bx =+-,通过求解二元一次方程,即可得到a 、b 的值,从而得到二次函数解析式,经计算即可得到答案.根据题意,将0x =、1y =-代入到2y ax bx c =++,得1c =- ∴21y ax bx =+-将1x =-、2y =和1x =、2y =-代入到21y ax bx =+-,得1212a b a b --=⎧⎨+-=-⎩∴1a =,2b =- ∴221y x x =--当2x =时,222211m =-⨯-=- 故选:B . 【点睛】本题考查了二次函数、二元一次方程组的知识;解题的关键是熟练掌握二次函数、二元一次方程组的性质,从而完成求解.4.B解析:B 【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断. 【详解】解:A 、2y x=,反比例函数,k=2>0,分别在一、三象限,在每一象限内,y 随x 的增大而减小,不符合题意;B 、22y x =+,a=1>0,开口向上,对称轴为y 轴,故当图象在对称轴右侧,y 随着x 的增大而增大,符合题意;C 、1y x =-+,一次函数,k=-1<0,故y 随着x 增大而减小,不符合题意;D 、22y x =--,a=-1<0,开口向下,对称轴为y 轴,故当图象在对称轴右侧,y 随着x 的增大而减小,不符合题意. 故选:B . 【点睛】本题考查一次函数,二次函数及反比例函数的增减性,掌握函数图像性质利用数形结合思想解题是本题的解题关键.5.C解析:C 【分析】由函数图象可知a <0,对称轴﹣1<x <0,图象与y 轴的交点c >0,函数与x 轴有两个不同的交点;即可得出b ﹣2a >0,b <0;△=b 2﹣4ac >0;再由图象可知当x =1时,y <0,即a +b +c <0;当x =﹣1时,y >0,即a ﹣b +c >0;当x =﹣12时,y >0,即14a ﹣12b +c >0,即可求解.解:由函数图象抛物线开口向下,对称轴﹣1<x <0,图象与y 轴的交点c >0, ∴a <0,2ba-<0,c >0, ∴b <0,∴abc >0,故①正确;∵函数与x 轴有两个不同的交点, ∴△=b 2﹣4ac >0,故②错误; ∵2ba->﹣1, ∴2a <b ,故③错误;当x =1时,y <0,即a +b +c <0; 当x =﹣1时,y >0,即a ﹣b +c >0;∴(a +b +c )(a ﹣b +c )<0,即(a +c )2<b 2;故④正确; ∵x =﹣12时,y >0, ∴14a ﹣12b +c >0,即a ﹣2b +4c >0,故⑤正确;故选:C . 【点睛】此题考查二次函数的图象,根据图象确定式子的正负,正确理解函数图象,由图象得到相关信息,掌握二次函数的性质,根的判别式与图象的关系是解题的关键.6.B解析:B 【分析】先根据二次函数2y ax bx c =++的图象判断出a 、b 、c 、a b c -+的符号,再用排除法对四个答案进行逐一检验. 【详解】解:由二次函数2y ax bx c =++的图象开口向上可知,0a >,因为图象与y 轴的交点在y 轴的负半轴,所以0c <,对称轴位于y 轴右侧,可知02ba->,所以0b <, ∵0a >,0b <,0c <,0ac <, ∴b 2−4ac >0,-b >0,∴二次函数24y bx b ac =-+-的图象过一、二、四象限,故可排除A 、C ; 由函数图象可知,当1x =-时,0y >,即0y a b c =-+>, ∴反比例函数a b cy x-+=的图象在一、三象限,可排除D 选项, 故选:B .【点睛】此题比较复杂,综合考查了二次函数、一次函数及反比例函数图象的特点,锻炼了学生数形结合解题的思想方法.7.D解析:D【分析】由抛物线开口向下,得到a <0,再由对称轴在y 轴左侧,得到a 与b 同号,可得出b <0,又抛物线与y 轴交于正半轴,得到c >0,可得出abc >0,得到①正确;根据图象知,当x =﹣1时,y >0,即a ﹣b +c >0,得到②正确;根据图象知,当x =﹣2时,y <0,即4a ﹣2b +c <0,得到③正确,从而得出结论.【详解】解:∵抛物线的开口向下,∴a <0. ∵02b a-<, ∴b <0. ∵抛物线与y 轴交于正半轴,∴c >0,∴abc >0,故①正确;根据图象知,当x =﹣1时,y >0,即a ﹣b +c >0,故②正确;根据图象知,当x =﹣2时,y <0,即4a ﹣2b +c <0,故③正确.则其中正确的有3个,为①②③.故选:D .【点睛】本题考查了二次函数图象与系数的关系,对于二次函数y =ax 2+bx +c (a ≠0)来说,a 的符号由抛物线开口方向决定;b 的符号由对称轴的位置及a 的符号决定;c 的符号由抛物线与y 轴交点的位置决定;此外还要注意利用抛物线的对称性及x =﹣1,﹣2时对应函数值的正负.8.C解析:C【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性,以及一次函数的性质逐个进行判断,即可得出答案.【详解】解:根据题意,∵对称轴12b x a=-=-,0a >, ∴20b a =>, ∵抛物线与x 轴的一个交点为()3,0-,∴另一个交点为()1,0,∴抛物线与y 的负半轴有交点,则0c <,∴0abc <;故①正确;∵一次函数()20y kx n k =+<的图象过点()3,0-和顶点()1,a b c --+,∴若31x -<<-,则12y y <;故②正确;∵抛物线与x 轴的一个交点为()3,0-和()1,0,若二次函数1y 的值大于0,则1x >或3x <-;故③错误;由题意,当12y y >时,有3m <-或1m >-;故④正确;故选:C .【点睛】考查二次函数的图象和性质,二次函数与一元二次方程的关系,熟练掌握a 、b 、c 的值决定抛物线的位置,抛物线的对称性是解决问题的关键.9.D解析:D【分析】函数的对称轴为:x=-22b a =,一个交点的坐标为(1,0),则另一个交点的坐标为(3,0),即可求解.【详解】解:∵二次函数y=x 2-4x+m 中a=1,b=-4,∴函数的对称轴为:x=-22b a=, ∵一个交点的坐标为(1,0)与另一个交点的坐标关于对称轴对称,∴另一个交点的坐标为(3,0),即另一个交点的横坐标为3.故选:D .【点睛】本题考查的是抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征. 10.A解析:A【分析】根据题意画出草图,结合图象解答即可.【详解】解:当x=x 1时,y=1;当x=x 2时,y=1;又∵m<n ,()()()12121y x x x x x x =--+<的二次项系数大于0,∴函数图象大致如图所示,∴12x m n x <<<,故选A .【点睛】本题考查了二次函数的图象与性质,根据题意画出函数的大致图象是解答本题的关键. 11.A解析:A【分析】由二次函数的图象即可判断a 、b 、c 的符号,即可判断①;由对称轴和与x 轴交点坐标即可求出c=-3a 和b=2a ,即可判断②③④;把()()()2232332632632236126=61a b c a a a a a a a a --=-⨯-⨯-=-+-变形之后即可判断⑤;【详解】∵由图象可知开口向下,∴a <0,∵对称轴为x=-1,∴ b <0,抛物线与y 轴的交点在原点上方,∴ c >0,∴ abc >0,故①正确;∵ 抛物线经过点(1,0),对称轴为x=-1,∴ 抛物线与x 轴的另一交点时是(-3,0),∴ a+b+c=0,∵对称轴为x=-1,∴ b=2a ,∴ a+2a+c=0,即c=-3a , ()24443150a b c a a a a -+=-+⨯-=-> ,故②正确;4430a c a a a +=-=< ,故③正确;123a b a a a c -=-=-= ,故④正确; ()()()2232332632632236126=61a b c a a a a a a a a --=-⨯-⨯-=-+- ,∵ ()21a -≥0,由图象得:1a ≠ , ∴32632a b c --<0,故⑤正确;故选:A .【点睛】本题考查了二次函数图象的性质、对称轴以及函数值的求法,正确掌握二次函数的性质是解题的关键.12.D解析:D【分析】 作出函数223y x x =+-及一次函数y x m =-+的图象,根据图象性质讨论即可求出. 【详解】解:如图:函数223y x x =+-,当0y =时,1x =或3-, ()()3010A B ∴-,,,,当31x -<<时,223y x x =--+,当直线过点A 时,1个交点,此时()03m =--+,即3m =-,当3m >-时,有2个交点,当直线过点B 时,有3个交点,此时01m =-+,即1m =, ∴1m <时有2个交点,31m ∴-<<,当直线与抛物线相切时,有3个交点,223y x x y x m ⎧=--+∴⎨=-+⎩, 由()1430m =--+=,解得:134m =,134m ∴>时有2个交点, 综上所述,31m -<<或134m >. 【点睛】 本题考查了一次函数与二次函数的交点问题,熟练掌握二次函数的性质是解题的关键.二、填空题13.【分析】求出函数解析式求出函数值取值范围把t 的取值范围转化为函数值的取值范围【详解】先由已知可得二次函数y=−x2+mx 的图象与x 轴交于坐标原点和(40)所以对称轴x==所以m=4代入方程y=−x2解析:04t <≤【分析】求出函数解析式,求出函数值取值范围,把t 的取值范围转化为函数值的取值范围.【详解】先由已知可得,二次函数 y=−x 2+mx 的图象与 x 轴交于坐标原点和 (4,0)所以对称轴 x=2b a-=()221m -=⨯-, 所以m=4,代入 方程y=−x 2+mx 得,y=-x 2+4x ,当x=2时,y=4即顶点坐标是(2,4)当x=1时,y=3,当x=4时,y=0由x 2−mx+t=0得 t=-x 2+4x=y因为当 1<x<4 时, 0<y≤4,所以在 1<x<4 范围内有实数解,则 t 的取值范围是0<t≤4,故答案为:0<t≤4 .【点睛】本题考查了二次函数和一元二次方程数形结合分析问题,注意函数的最低点和最高点. 14.【分析】求出A 点坐标和对称轴根据对称性求出M 点坐标利用中点求出B 点坐标进而求出P 点坐标代入求a 即可【详解】解:由题意得:对称轴为直线P 点横坐标为1当x=0时y=3∴A 点坐标为:根据对称性可知M 点坐标 解析:94【分析】求出A 点坐标和对称轴,根据对称性求出M 点坐标,利用中点,求出B 点坐标,进而求出P 点坐标,代入求 a 即可.【详解】 解:由题意得:对称轴为直线212a x a -=-=,P 点横坐标为1, 当x=0时,y=3,∴A 点坐标为:()0,3,根据对称性可知,M 点坐标为()2,3 ,∵M 为AB 中点,∴B 点坐标为:()4,3设OB 解析式为y=kx ,把B ()4,3代入得,3=4k解得,k=34, ∴直线OB 解析式为34y x =, 把1x =代入34y x =得,34y =, ∴P 点坐标为31,4⎛⎫ ⎪⎝⎭, 代入抛物线得:3234a a -+=, 解得,94a =, 故答案为:94. 【点睛】本题考查了一次函数和二次函数的综合,解题关键是根据二次函数的性质求出B 点坐标,求出一次函数解析式.15.或【分析】不等式的解集对应图象上面为二次函数图象比反比例函数图象高的部分找出x 的范围即可【详解】解:不等式的解对应图象上面为二次函数图象比反比例函数图象高的部分∴不等式的解为或故答案为:或【点睛】本 解析:10x -<<或13x <<【分析】不等式的解集对应图象上面为二次函数图象比反比例函数图象高的部分,找出x 的范围即可.【详解】解:不等式2k ax bx c x++>的解对应图象上面为二次函数图象比反比例函数图象高的部分,∴不等式2k ax bx c x++>的解为10x -<<或13x <<, 故答案为:10x -<<或13x <<.【点睛】本题考查利用函数图象解不等式,即比较图象的高低.16.【分析】先求出二次函数的对称轴为直线x=1a >0然后知x <1时y 随x 的增大而减小x >1时y 随x 的增大而增大再依据二次函数的增减性解答即可【详解】解:∵抛物线的对称轴为a=1>0∴x <1时y 随x 的增大解析:0【分析】先求出二次函数的对称轴为直线x=1,a >0,然后知x <1时,y 随x 的增大而减小,x >1时,y 随x 的增大而增大,再依据二次函数的增减性解答即可.【详解】解:∵抛物线的对称轴为=12b x a=-,a=1>0, ∴x <1时,y 随x 的增大而减小,x >1时,y 随x 的增大而增大.∴在36x ≤≤内,x=3时,y 有最小值,此时23233=0y =-⨯-.故答案为:0.【点睛】本题考查了二次函数的最值问题,二次函数的增减性,根据函数解析式求出对称轴是解题的关键.17.①③④⑤【分析】根据函数图象开口向下可以得a <0顶点在y 轴右侧得到b >0与y 轴交于正半轴得c >0从而可以判断①是否正确再根据二次函数图象具有对称性和二次函数的性质可以判断其他各小题是否正确本题得以解 解析:①③④⑤【分析】根据函数图象开口向下可以得a <0,顶点在y 轴右侧得到b >0,与y 轴交于正半轴得c >0,从而可以判断①是否正确,再根据二次函数图象具有对称性和二次函数的性质可以判断其他各小题是否正确,本题得以解决.【详解】解:由图象可得,a <0,b >0,c >0,∴abc <0,故①正确;∵抛物线的对称轴为1x =,即12b a-=,∴2b a =-,∴20a b +=,故④正确;当1x =-时,0y a b c =-+<,则30a c +<,故②错误;∵抛物线的对称轴为1x =,则2x =和0x =时的函数值相等,故2x =时,420y a b c =++>,故③正确;∵此抛物线与x 轴有两个交点,∴240b ac ->,∴24b ac >,故⑤正确,故答案为:①③④⑤.【点睛】本题考查了二次函数图象与系数的关系,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质和数形结合的思想解答.18.【分析】利用二次函数的配方法确定最值即可【详解】∵∵a=-1<0∴二次函数有最大值且最大值为5;故答案为:5【点睛】本题考查了二次函数的最值问题熟练运用配方法确定二次函数的最值是解题的关键解析:【分析】利用二次函数的配方法确定最值即可.【详解】∵224y x x =-++2(24)x x =---2[(1)14]x =----2(1)5x =--+,∵a= -1<0,∴二次函数224y x x =-++有最大值,且最大值为5;故答案为:5.【点睛】本题考查了二次函数的最值问题,熟练运用配方法确定二次函数的最值是解题的关键. 19.(2-3)【分析】根据坐标特点判定AB 两点是一对对称点从而得到抛物线的对称轴根据对称轴x=确定b 的值从而确定顶点坐标【详解】∵和是抛物线上的两点∴抛物线对称轴为x==2∴顶点坐标的横坐标为2;∵∴b解析:(2,-3).【分析】根据坐标特点,判定A ,B 两点是一对对称点,从而得到抛物线的对称轴,根据对称轴x=2b a-,确定b 的值,从而确定顶点坐标.【详解】∵()1,A m -和()5,B m 是抛物线21y x bx =++上的两点,∴抛物线对称轴为x=152-+=2, ∴顶点坐标的横坐标为2; ∵22b -=, ∴b= -4, ∴241y x x =-+,当x=2时,22421y =-⨯+= -3,∴抛物线的顶点坐标为(2,-3),故应填(2,-3).【点睛】本题考查了利用抛物线的对称点确定顶点坐标,熟练掌握抛物线对称轴与对称点的关系,抛物线顶点坐标的计算公式是解题的关键.20.【分析】由点AB 的坐标利用二次函数的对称性可求出b 的值利用二次函数图象上点的坐标特征可找出m 和n 的大小关系【详解】解:∵二次函数y=x2+bx+c 的图象经过点A (-4m )B (2m )∴∴b=2∵点A(解析:m n <【分析】由点A 、B 的坐标利用二次函数的对称性可求出b 的值,利用二次函数图象上点的坐标特征可找出m 和n 的大小关系.【详解】解:∵二次函数y=x 2+bx+c 的图象经过点A (-4,m )、B (2,m ), ∴42122b -+-==-, ∴b=2, ∵点A(-4,m),C (6,n )在二次函数y=x 2+bx+c 的图象上,∴m=16-8+c=8+c ;n=36+12+c=48+c ,∴m <n ,故答案为:<.【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的性质,利用二次函数图象上点的坐标特征得到m ,n 的大小是解题的关键.三、解答题21.(1)2b m =;(2)21y x =-+;(3))12,0P ,)22,0P 【分析】 (1)直接根据对称轴为2b x a=-代入a ,b 计算即可得出答案; (2)首先根据点B 的坐标及等边三角形求出AC ,OC 的长度,然后利用勾股定理求出AO 的长度,从而得出c 的值,最后将点B 代入解析式中即可求解;(3)根据等边三角形的性质及圆周角定理确定出点P 的位置从而可确定出点P 的坐标.【详解】(1)∵22b b x a =-=, ∴2b m =.(2)∵ABC 为等边三角形,BC x ⊥轴,)B ,∴2AC BC ==,OC =在Rt AOC 中,1AO ==∴1c =把)B 代入21y x bx =-++,得3b =,∴21y x =-+. (3)如图,由(2)知ABC 为等边三角形,∴60ACB ∠=︒,∵30APB ∠=︒,∴2ACB APB =∠∠,由同弦所对圆周角等于圆心角的一半可知,以点C 为圆心,BC 为半径作圆,经过点P . ∵P 在x 轴上,∴点P 即为圆C 与x 轴的交点,∵2BC =,∴2r,2CP =∵)C,∴)12,0P ,由轴对称性可知,)22,0P .【点睛】本题主要考查二次函数与几何综合,掌握待定系数法,等边三角形的性质及圆的有关性质是解题的关键.22.(1)213122=-+y x x ;(2)点P 的坐标为1(,0)2或(1,0)或(3,0)或11(,0)2. 【分析】(1)根据直线的解析式求得点A (0,1),然后利用待定系数法求得函数解析式;(2)让直线解析式与抛物线的解析式结合即可求得点E 的坐标.△PAE 是直角三角形,应分点P 为直角顶点,点A 是直角顶点,点E 是直角顶点三种情况探讨.【详解】解:(1)解:(1)∵直线y=12x+1与y 轴交于点A , ∴A (0,1),将A (0,1),B (1,0),C (2,0)代入2y ax bx c =++中 10420c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得:12321a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩∴抛物线的解析式为:213122=-+y x x (2) 设点E 的横坐标为m ,则它的纵坐标为213122m m -+即E 点的坐标213(,1)22m m m -+, 又∵点E 在直线112y x =+上, ∴213111222m m m -+=+解得10m =(舍 去) ,24m =, E ∴的坐标为(4,3).(Ⅰ)当A 为直角顶点时,过A 作1AP DE ⊥交x 轴于1P 点,设1(,0)P a 易知D 点坐标为(2,0)-,由Rt AOD Rt ∆∽△1POA 得:DO OA OA OP =,即211a =, 12a ∴=,11(2P ∴,0). (Ⅱ) 同理,当E 为直角顶点时, 过E 作2EP DE ⊥交x 轴于2P 点,由Rt AOD Rt ∆∽△2P ED 得,2DO DE OA EP =,即22351EP =, 235EP ∴=, 23551522DP ⨯∴==, 1511222a ∴=-=, 2P 点坐标为11(,0)2.(Ⅲ) 当P 为直角顶点时, 过E 作EF x ⊥轴于F ,设3(P b ,0),由90OPA FPE ∠+∠=︒,得OPA FEP ∠=∠,Rt AOP Rt PFE ∆∆∽,由AO OP PF EF =得143b b =-, 解得13b =,21b =,∴此时的点3P 的坐标为(1,0)或(3,0),综上所述, 满足条件的点P 的坐标为1(,0)2或(1,0)或(3,0)或11(,0)2.【点睛】本题考查了待定系数法求二次函数的解析式,二次函数的性质,直线和抛物线的交点等;分类讨论的思想是解题的关键.23.(1)223y x x =--,1y x =--;(2)22MF m m =-++【分析】(1)把点A 和点B 的坐标代入抛物线解析式求出b 和c 的值即可求出抛物线解析式;再把点C 的横坐标代入已求出的抛物线解析式可求出其纵坐标,进而可求出直线AC 的表达式;(2)已知点M 的横坐标为m ,点M 又在直线AB 上,所以可求出其纵坐标,而点F 在抛物线上,所以可求出其纵坐标,进而可用m 的代数式表示MF 的长.【详解】解:(1)把A (-1,0)、B (3,0)代入y=x 2+bx-c 得:01093b c b c --⎧⎨+-⎩==, 解得:23b c =-⎧⎨=⎩, ∴解析式为:y=x 2-2x-3,把x=2代入y=x 2-2x-3得y=-3,∴C (2,-3),设直线AC 的解析式为y=kx+n ,把A (-1,0)、C (2,-3)代入得023k n k n -+=⎧⎨+=-⎩, 解得:11k n =-⎧⎨=-⎩, ∴直线AC 的解析式为1y x =--;(2)∵点M 在直线AC 上,∴M 的坐标为(m ,-m-1);∵点F 在抛物线y=x 2-2x-3上,∴F 点的坐标为(m ,m 2-2m-3),∴MF=(-m-1)-( m 2-2m-3)=-m 2+m+2.【点睛】本题考查了待定系数法求二次函数的解析式、待定系数法求一次函数的解析式、二次函数图象上点的坐标特征.在(1)中注意待定系数法的应用步骤,在(2)中用m 表示出点M 、F 的坐标是解题的关键.24.(1)223y x x =--;(2)在抛物线的对称轴上存在一点M ,使得ACM ∆的周长最短,此时(1,2)M -.【分析】(1)利用待定系数法即可得出结论;(2)点确定出点M 时直线BC 与直线l 的交点,利用待定系数法求出直线BC 解析式即可得出结论;【详解】解:(1)把(1,0)A -,(3,0)B 代入23y ax bx =+-得,309330a b a b --=⎧⎨+-=⎩, 解得,12a b =⎧⎨=-⎩, ∴抛物线的解析式为223y x x =--;(2)抛物线223y x x =--的对称轴为212x -=-=, 点M 在对称轴1x =上,且ACM ∆的周长最短,MC MA ∴+最小,点A 、点B 关于直线1x =对称,∴连接BC 交直线1x =于点M ,此时MC MA +最小,设直线BC 的关系式为y kx b =+,(3,0)B ,(0,3)C -,∴303k b b +=⎧⎨=-⎩, 解得,13k b =⎧⎨=-⎩, ∴直线BC 的关系式为3y x =-,当1x =时,132y =-=-,∴点(1,2)M -,∴在抛物线的对称轴上存在一点M ,使得ACM ∆的周长最短,此时(1,2)M -.【点睛】此题时二次函数综合题,主要考查了待定系数法,对称性,解题关键时掌握待定系数法,和判断出点M 的位置,25.(1)245y x x =-++;(2)265,39E ⎛⎫ ⎪⎝⎭【分析】(1)根据抛物线的对称性,可得22b a -=,把()1,0A -代入函数解析式,进而即可得到答案;(2)设点()2,45F m m m -++,则4HD m =-,24EF m =-,结合4EF HD =,列出方程,即可得到答案.【详解】(1)∵4CD =,由对称性得:抛物线对称轴为:直线22b x a=-=, 把()1,0A -代入得,50a b -+=, 解得:14a b =-⎧⎨=⎩, ∴二次函数的表达式为:245y x x =-++;(2)设点()2,45F m m m -++,则4HD m =-, 由二次函数图象的对称性可得:()2224EF m m =-=-,∵4EF HD =,∴()2444m m -=-,解得103m =, ∴8243EF m =-=, ∴42233E x =-=.把23E x =代入,得2226545339E y ⎛⎫=-+⨯+= ⎪⎝⎭. ∴265,39E ⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查二次函数的图像和性质,掌握待定系数法,二次函数图像的对称性以及函数图像上点的坐标特征,是解题的关键.26.(1)8585⨯最大,为7225;(2)750750⨯的积最大,理由见解析【分析】(1)由(80)(90)y x x =-+-,求解抛物线的对称轴,从而得到抛物线的顶点的横坐标,于是可得函数的最大值;(2)设两个乘数的积为w ,其中一个乘数十位上的数与个位上的数组成的数为a ,则另一个乘数十位上的数与个位上的数组成的数为(100)a -,从而可得函数关系式为::w =(700)(800)a a -+-,再求解抛物线的对称轴为:7008001005022a -+===,再利用二次函数的性质可得答案.【详解】(1)解: (80)(90)y x x =-+-,∴ 抛物线的对称轴为:809010522x -+=== 而对称轴5x =在自变量取值范围内(19x ≤≤且x 为整数)∴当5x =时,2max (580)(590)857225y =-+-==,所以:8585⨯最大,最大积为7225.(2)设两个乘数的积为w ,其中一个乘数十位上的数与个位上的数组成的数为a ,则另一个乘数十位上的数与个位上的数组成的数为(100)a -,依题意,得:(700)[700(100)]w a a =++-=(700)(800)(700)(800)a a a a +-=-+- ∴抛物线的对称轴为:7008001005022a -+=== 而对称轴50a =在自变量取值范围内(199a ≤≤且x 为整数)∴当50a =时,750750⨯的积最大.【点睛】本题考查的是列二次函数关系式,二次函数的性质与二次函数的最值,二次函数的应用,掌握以上知识是解题的关键.。
一、选择题1.已知二次函数()222y mx m x =+-,它的图象可能是( )A .B .C .D .2.关于二次函数22y x x =-+的最值,下列叙述正确的是( ) A .当2x =时,y 有最小值0. B .当2x =时,y 有最大值0. C .当1x =时,y 有最小值1D .当1x =时,y 有最大值13.如图,现要在抛物线y =x (﹣x +2)上找点P (m ,n ),针对n 的不同取值,所找点P 的个数,四人的说法如下,甲:若n =﹣1,则点P 的个数为2;乙:若n =0,则点P 的个数为1;丙:若n =1,则点P 的个数为1;丁:若n =2,则点P 的个数为0.其中说法正确的有( )A .0个B .1个C .2个D .3个4.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)中的x 与y 的部分对应值如表: x ﹣1 0 1 3 y ﹣1353则代数式﹣2a(4a +2b +c )的值为( ) A .92 B .152C .9D .155.二次函数223y x =-+在14x -≤≤内的最小值是( ) A .3B .2C .-29D .-306.如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①a >0;②b >0; ③方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3;④当y >0时,x 的取值范围是﹣1<x <3;其中结论正确的个数是( )A .4个B .3个C .2个D .1个7.二次函数()210y ax bx c a =++>的图象与x 轴的一个交点为()3,0-,对称轴为直线1x =-,一次函数()20y kx n k =+<的图象过点()3,0-和二次函数()210y ax bx c a =++>图象的顶点.下列结论:( )①0abc <;②若31x -<<-,则12y y <; ③若二次函数1y 的值大于0,则1x >;④过动点(),0P m 且垂直于x 轴的直线与函数12,y y 的图象的交点分别为,C D ,当点C 位于点D 上方时,m 的取值范围是3m <-或1m >-. 错误的是( ) A .①B .②C .③D .④8.已知抛物线()()()12121y x x x x x x =--+<,抛物线与x 轴交于(,0)m ,(,0)n 两点()m n <,则m ,n ,1x ,2x 的大小关系是( )A .12x m n x <<<B .12m x x n <<<C .12m x n x <<<D .12x m x n <<<9.如图,抛物线2y ax bx c =++的顶点位于第二象限,对称轴是直线1x =-,且抛物线经过点(1,0).下面给出了五个结论:①0abc >;②240a b c -+>;③40a c +<;④13a b c -=;⑤326320a b c --<.其中结论正确的有( )A .5个B .4个C .3个D .2个10.如图,二次函数2y ax bx =+的图象开口向下,且经过第三象限的点P .若点P 的横坐标为1-,则一次函数()y a b x b =--的图象大致是( )A .B .C .D .11.如图,二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的一个交点为()3,0A ,对称轴为直线1x =,下列结论:①0abc <;②0a b c -+<;③2ba =-;④80a c +>.其中正确结论的个数为( )A .1个B .2个C .3个D .4个12.二次函数2y ax bx c =++的图像如图,现有以下结论:①0abc >;②42a c b +<;③320b c +<;④()(1)m am b b a m ++<≠-,其中正确结论序号为( )A .①③④B .②③④C .①②③D .①②③④二、填空题13.如图,在平面直角坐标中,对抛物线222y x x =-+在x 轴上方的部分进行循环反复的轴对称或中心对称变换,若点A 是该抛物线的顶点,则经过第2020次变换后所得的A 点的坐标是_________.14.如图,在△ABC 中,∠C =90°,AB =10cm ,BC =8cm ,点P 从点A 沿AC 向点C 以1cm/s 的速度运动,同时点Q 从点C 沿CB 向点B 以2cm/s 的速度运动(点Q 运动到点B 停止),在运动过程中,四边形PABQ 的面积最小值为_____cm 215.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,若关于x 的一元二次方程ax 2+bx +c =m 有实数根,则m 的取值范围是_____.16.如图,正方形ABCD 中,AD =4,AE =3DE ,点P 在AB 上运动(不与A 、B 重合),过点P 作PQ ⊥EP ,交CB 于点Q ,则BQ 的最大值是______.17.抛物线23(2)4=---y x 的顶点坐标是______.18.抛物线()20y ax bx c a =++≠的部分图象如图所示,其与x 轴的一个交点坐标为()4,0-,对称轴为1x =-,则0y >时,x 的取值范围________.19.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如表所示,下列说法:x··· 3-2-1- 0 1 ··· y···6-466···①抛物线与y 轴的交点为()0,6;②抛物线的对称轴是在y 轴右侧;③在对称轴左侧,y 随x 增大而减小;④抛物线一定过点()3,0.上述说法正确的是____(填序号).20.将抛物线243y x x =-+沿x 轴向左平移2个单位,则平移后抛物线的解析式是__.三、解答题21.喜迎元旦,某商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价每上涨1元,则每星期就会少卖出10件.(1)假设设每件商品的售价上涨x 元(x 为正整数),每星期销售该商品的利润为y 元,求y 与x 之间的函数关系式.(2)每件商品的售价上涨多少元时,该商店每星期销售这种商品可获得最大利润?此时,该商品的定价为多少元?获得的最大利润为多少?22.已知二次函数2=++y x bx c -的图象如图所示,它与x 轴的一个交点坐标为(1,0)-,与y 轴的交点坐标为(0,3).(1)求此二次函数的表达式,并用配方法求顶点的坐标; (2)直接写出当函数值0y >时,自变量x 的取值范围.23.东坡区农产品资源极为丰富,其中晚熟柑橘远销北上广等大城市.某水果店购进一批优质晚熟柑橘,进价为5元/千克,售价不低于8元/千克,且不超过20元/每千克,根据销售情况,发现该柑橘在一天内的销售量y (千克)与该天的售价x (元/千克)之间的数量满足如下表所示的一次函数关系. 销售量y (千克) … 42 45 48 51 … 售价x (元/千克)…1815129…(2)设某天销售这种柑橘获利m 元,写出m 与售价x 之间的函数关系式.如果水果店该天获利450元,那么这天柑橘的售价为多少元?24.如图是长方形鸡场平面示意图,一边靠墙(足够长),另外三面用竹篱笆围成,若竹篱笆总长为36m ,设垂直于墙的一边长为xm .(1)若所围的面积为160m 2,求x 的值?(2)求当x 的值是多少时,所围成的鸡场面积最大,最大值是多少?25.某商店将标价为100元/台的品牌学习机在网上直播间销售,两次降价后,价格为81元/台,并且两次降价的百分率相同. (1)求该品牌学习机每次降价的百分率;(2)从第二次降价后的第1天算起,第x 天的销量及网上直播间销售支出劳务费用的相关信息如表所示: 时间(天) x 销量(台)150﹣x 网上直播间售支出劳务费用(元)3x 2﹣50x +600x (天)的利润为y (元),求y 与x 之间的函数解析式,并求出第几天时销售利润最大,最大利润是多少? 26.如图,有四张背面完全相同的卡片A ,B ,C ,D ,其中正面分别写着四个不同的函数表达式,将四张卡片洗匀正面朝下随机放在桌面上.(1)从四张卡片中随机摸出一张,摸出的卡片上的函数y 随x 的增大而减小的概率是______;(2)小亮和小强用这四张卡片做游戏,规则如下:两人同时从四张卡片中各随机抽出一张,若抽出的两张卡片上的函数增减性相同,则小亮胜;若抽出的两张卡片上的函数增减性不同,则小强胜.这个游戏公平吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分m >0,m <0两种情形,判断对称轴与x=14的位置关系即可. 【详解】∵()222y mx m x =+-,∴抛物线一定经过原点, ∴选项A 排除;∵()222y mx m x =+- ,∴对称轴为直线x=22224m m m m---=⨯, ∵24m m --14=24m m m --=24m-, 当m >0时,抛物线开口向上,24m-<0, ∴对称轴在直线x=14的左边, B 选项的图像符合;C 选项的图像不符合; 当m <0时,抛物线开口向下,24m->0, ∴对称轴在直线x=14的右边, D 选项的图像不符合; 故选B. 【点睛】本题考查了二次函数的图像,熟练掌握抛物线经过原点的条件,抛物线对称轴的位置与定直线的关系的判定是解题的关键.2.D解析:D 【分析】先将二次函数配方成()211y x =--+,即可求解. 【详解】解:()()2221221y x x x x x =-+=----+=,二次函数的图象开口向下,当1x =时,y 有最大值1, 故选:D . 【点睛】本题考查二次函数的图象与性质,将二次函数解析式化为顶点式是解题的关键.3.D解析:D 【分析】把P 点的坐标代入函数的解析式,再根据根的判别式或解方程逐个判断即可. 【详解】解:甲:当n =﹣1时,m (﹣m +2)=﹣1, 整理得:m 2﹣2m ﹣1=0,△=(﹣2)2﹣4×1×(﹣1)=8>0, 方程有两个不相等的实数根,即此时点P 的个数为2,故甲的说法正确;乙:当n =0时,m (﹣m +2)=0, 解得:m =0或2,即此时点P 的个数为2,故乙的说法错误; 丙:当n =1时,m (﹣m +2)=1, 整理得:m 2﹣2m +1=0, △=(﹣2)2﹣4×1×1=0, 方程有两个相等的实数根,即此时点P 的个数为1,故丙的说法正确; 丁:当n =2时,m (﹣m +2)=2, 整理得:m 2﹣2m +2=0, △=(﹣2)2﹣4×1×2=﹣4<0, 方程没有实数根,即此时点P 的个数为0,故丁的说法正确; 所以正确的个数是3个, 故选:D . 【点睛】本题考查了二次函数的图象上点的坐标特征和一元二次方程的根的判别式、解一元二次方程,能熟记根的判别式的内容是解此题的关键.4.B解析:B 【分析】由当x=0和x=3时y 值相等,可得出二次函数图象的对称轴为直线x=32,进而可得出2b a -的值,由x=1时y=5,可得出当x=2时y=5,即4a+2b+c=5,再将2b a -=32及4a+2b+c=5代入2ba-(4a+2b+c )中即可求出结论. 【详解】解:∵当x =0和x =3时,y 值相等, ∴二次函数图象的对称轴为直线x =32, ∴3=22b a -. ∵当x =1时,y =5,∴当x =2×32﹣1=2时,y =5, ∴4a +2b +c =5.∴2b a -(4a +2b +c )=32×5=152.故选:B . 【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的性质,利用二次函数的性质及二次函数图象上点的坐标特征,找出2ba和(4a+2b+c )的值是解题的关键. 5.C解析:C 【分析】根据图象,直接代入计算即可解答 【详解】解:由图可知,当x=4时,函数取得最小值y 最小值=-2×16+3=-29.故选:C . 【点睛】本题考查二次函数最小(大)值的求法.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.6.B解析:B 【分析】根据抛物线与系数的关系判断即可. 【详解】解:抛物线开口向下,a<0,故①错误; 对称轴在y 轴右侧,a 、b 异号,b >0,故②正确;抛物线与x 轴交点为(﹣1,0),对称轴为直线x =1,根据对称性,另一个交点为(3,0),故③正确;根据图象可知,x 的取值范围是﹣1<x <3时;抛物线在x 轴上方,故④正确; 故选:B . 【点睛】本题考查二次函数图象与系数的关系,解题的关键是熟练正确理解二次函数图象与系数的关系,本题属于中等题型.7.C解析:C【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性,以及一次函数的性质逐个进行判断,即可得出答案.【详解】解:根据题意,∵对称轴12b x a=-=-,0a >, ∴20b a =>, ∵抛物线与x 轴的一个交点为()3,0-,∴另一个交点为()1,0,∴抛物线与y 的负半轴有交点,则0c <,∴0abc <;故①正确;∵一次函数()20y kx n k =+<的图象过点()3,0-和顶点()1,a b c --+,∴若31x -<<-,则12y y <;故②正确;∵抛物线与x 轴的一个交点为()3,0-和()1,0,若二次函数1y 的值大于0,则1x >或3x <-;故③错误;由题意,当12y y >时,有3m <-或1m >-;故④正确;故选:C .【点睛】考查二次函数的图象和性质,二次函数与一元二次方程的关系,熟练掌握a 、b 、c 的值决定抛物线的位置,抛物线的对称性是解决问题的关键.8.A解析:A【分析】根据题意画出草图,结合图象解答即可.【详解】解:当x=x 1时,y=1;当x=x 2时,y=1;又∵m<n ,()()()12121y x x x x x x =--+<的二次项系数大于0,∴函数图象大致如图所示,∴12x m n x <<<,故选A .【点睛】本题考查了二次函数的图象与性质,根据题意画出函数的大致图象是解答本题的关键. 9.A解析:A【分析】由二次函数的图象即可判断a 、b 、c 的符号,即可判断①;由对称轴和与x 轴交点坐标即可求出c=-3a 和b=2a ,即可判断②③④;把()()()2232332632632236126=61a b c a a a a a a a a --=-⨯-⨯-=-+-变形之后即可判断⑤;【详解】∵由图象可知开口向下,∴a <0,∵对称轴为x=-1,∴ b <0,抛物线与y 轴的交点在原点上方,∴ c >0,∴ abc >0,故①正确;∵ 抛物线经过点(1,0),对称轴为x=-1,∴ 抛物线与x 轴的另一交点时是(-3,0),∴ a+b+c=0,∵对称轴为x=-1,∴ b=2a ,∴ a+2a+c=0,即c=-3a , ()24443150a b c a a a a -+=-+⨯-=-> ,故②正确;4430a c a a a +=-=< ,故③正确;123a b a a a c -=-=-= ,故④正确; ()()()2232332632632236126=61a b c a a a a a a a a --=-⨯-⨯-=-+- , ∵ ()21a -≥0,由图象得:1a ≠ ,∴32632a b c --<0,故⑤正确;故选:A .【点睛】本题考查了二次函数图象的性质、对称轴以及函数值的求法,正确掌握二次函数的性质是解题的关键.10.C解析:C【分析】根据二次函数的图象可以判断a 、b 、-a b 的正负情况,从而得以解决.【详解】解:由二次函数的图象开口向下,且经过第三象限的点P ,点P 的横坐标为1-, 则有0a <,对称轴在y 轴的左边, ∴02b a -<,且122b a ∴0b <,且a b <∴0a b -<,∴一次函数()y a b x b =--的图像向下,并且与y 轴交于正半轴,故选:C .【点睛】本题考查二次函数的性质、一次函数的性质,熟悉相关性质是解答本题的关键. 11.B解析:B【分析】利用数形结合思想,从抛物线的开口,与坐标轴的交点,对称轴等方面着手分析判断即可.【详解】∵抛物线的开口向上,对称轴在原点的右边,与y 轴交于负半轴,∴a >0, b <0,c <0,∴abc >0,∴结论①错误; ∵抛物线的对称轴为x=1,∴12b a-=, ∴2b a =-; ∴结论③正确;∵二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的一个交点为()3,0A ,对称轴为直线1x =,∴1312x +=, ∴11x =-,∴二次函数2y ax bx c =++(a 、b 、c 是常数,且0a ≠)的图象与x 轴的另一个交点为(-1,0),∴0a b c -+=;∴结论②错误;∵当x=-2时,y=4a-2b+c >0, ∵12b a-=,则b=-2a ∴80a c +>,∴结论④正确;故选B .【点睛】 本题考查了二次函数的图像与系数之间的关系,对称轴的使用,代数式符号的判定,熟练运用数形结合的思想,二次函数的性质是解题的关键.12.A解析:A【分析】由函数图像与对称轴的方程结合可判断①,由抛物线的对称性结合点()2,42a b c --+的位置可判断②,由抛物线的图像结合点()1,a b c ++的位置,对称轴方程,可判断③,由函数的最大值可判断④,从而可得答案.【详解】 解: 图像开口向下,a ∴<0,12b x a=-=-<0, b ∴<0, 函数图像与y 轴交于正半轴,c ∴>0,abc ∴>0,故①符合题意; 抛物线与x 轴的一个交点在0~1之间,由抛物线的对称性可得:抛物线与x 轴的另一个交点在3~2--之间,∴ 当2x =-时,42y a b c =-+>0,4a c ∴+>2,b 故②不符合题意;12b x a=-=-,2,b a ∴= 即1,2a b = 当1x =时,y a b c =++<0,12b bc ∴++<0, 32b c ∴+<0,故③符合题意; 当1x =-时,函数有最大值,y a b c =-+当1x m =≠-,2,y am bm c =++2am bm c ∴++<,a b c -+()m am b b ∴++<,a 故④符合题意.故选:.A【点睛】本题考查的是抛物线的图像与系数之间的关系,二次函数的性质,掌握以上知识是解题的关键.二、填空题13.【分析】观察图形可知每三次对称为一个循环组依次循环用2020除以3然后根据商和余数的情况确定出变换后的点A 所在的象限然后解答即可【详解】解:∵∴抛物线的顶点坐标为点A 第一次关于x 轴对称后在第四象限第 解析:11,22⎛⎫- ⎪⎝⎭【分析】观察图形可知每三次对称为一个循环组依次循环,用2020除以3,然后根据商和余数的情况确定出变换后的点A 所在的象限,然后解答即可.【详解】解:∵2221122=2()2()22y x x x x x =-+--=--+∴抛物线222y x x =-+的顶点坐标为11,22⎛⎫ ⎪⎝⎭点A 第一次关于x 轴对称后在第四象限,第二次关于原点对称后在第二象限,第三次关于y 轴对称后在第一象限,回到原始位置,所以每3次对称为一个循环组,∵20203=6731÷∴经过第2020次变换后所得的A 点位置第一次变换后的位置相同,在第四象限,坐标为11,22⎛⎫- ⎪⎝⎭故答案为:11,22⎛⎫- ⎪⎝⎭【点睛】本题考查了轴对称的性质,点的坐标变换规律,读懂题目信息,观察出每三次对称为一个循环组依次循环是解题的关键,也是本题的难点.14.15【分析】在Rt△ABC中利用勾股定理可得出AC=6cm设运动时间为t (0≤t≤4)则PC=(6-t)cmCQ=2tcm利用分割图形求面积法可得出S四边形PABQ=S△ABC-S△CPQS四边形P解析:15【分析】在Rt△ABC中,利用勾股定理可得出AC=6cm,设运动时间为t(0≤t≤4),则PC=(6-t)cm,CQ=2tcm,利用分割图形求面积法可得出S四边形PABQ=S△ABC-S△CPQ,S四边形PABQ=(t-3)2+15,则可求出四边形PABQ的面积最小值,此题得解.【详解】解:在Rt△ABC中,∠C=90°,AB=10cm,BC=8cm,∴=6cm.设运动时间为t(0≤t≤4),则PC=(6-t)cm,CQ=2tcm,∴S四边形PABQ=S△ABC-S△CPQ,代入得:S四边形PABQ =12×6×8-12(6-t)×2t变形得:S四边形PABQ =(t-3)2+15,∴当t=3时,四边形PABQ的面积取最小值,最小值为15.故答案为:15.【点睛】本题考查了二次函数的最值以及勾股定理,利用分割图形求面积法,列出二次函数并进行变形求极值是解题的关键.15.m≥﹣3【分析】由于x的一元二次方程ax2+bx+c=m有实数根可得y=ax2+bx+c(a≠0)和y=m有交点由此即可解答【详解】解:∵二次函数y=ax2+bx+c(a≠0)的顶点的纵坐标为-3∴解析:m≥﹣3【分析】由于x的一元二次方程ax2+bx+c=m有实数根,可得y=ax2+bx+c(a≠0)和y=m有交点,由此即可解答.【详解】解:∵二次函数y=ax2+bx+c(a≠0)的顶点的纵坐标为-3,∴当关于x的方程ax2+bx+c=m有实数根时,即抛物线y=ax2+bx+c(a≠0)和直线y=m有交点,∴m≥﹣3故答案为:m≥﹣3【点睛】本题考查了一元二次方程与二次函数,根据一元二次方程有实数根可得y =ax 2+bx +c (a ≠0)和y=m 有交点是解决问题的关键.16.【分析】先由正方形的性质及PQ ⊥EP 得出∠AEP=∠BPQ ∠A=∠B=90°从而可判定△APE ∽△BQP 根据相似三角形的性质得出比例等式;再根据AD=4AE=3DE 得出AE 和DE 的长然后设BQ=yA 解析:43【分析】先由正方形的性质及PQ ⊥EP ,得出∠AEP=∠BPQ ,∠A=∠B=90°,从而可判定△APE ∽△BQP ,根据相似三角形的性质得出比例等式;再根据AD=4,AE=3DE ,得出AE 和DE 的长,然后设BQ=y ,AP=x ,则BP=4-x ,将相关数据代入比例等式,变形得出y 关于x 的二次函数,配方,即可得出答案.【详解】解:在正方形ABCD 中,∠A=∠B=90°,且PQ ⊥EP∴∠AEP+∠APE=90°, ∠QPB+∠APE=90°∴∠AEP=∠BPQ又∠A=∠B=90°∴△APE ∽△BQP ∴AE AP BP BQ=, 又AD=4,AE=3DE ,∴AE=334AD =,DE=4-3=1, 设BQ=y ,AP=x ,则BP=4-x , ∴34x x y=- 化简得:21433y x x =-+, 整理得:()214233y x =--+, ∴当x=2时,y 有最大值为43,即BQ 的最大值是43, 故答案为:43. 【点睛】 本题考查了正方形的性质、相似三角形的判定与性质及二次函数的性质,熟练掌握相关性质及定理是解题的关键.17.【分析】根据题目中的抛物线可以写出该抛物线的顶点坐标本题得以解决【详解】解:∵物线∴该抛物线的顶点坐标为(2-4)故答案为:(2-4)【点睛】本题考查了二次函数的性质解题的关键是明确题意利用二次函数 解析:(2,4)-【分析】根据题目中的抛物线,可以写出该抛物线的顶点坐标,本题得以解决.【详解】解:∵物线23(2)4=---y x ,∴该抛物线的顶点坐标为(2,-4),故答案为:(2,-4).【点睛】本题考查了二次函数的性质,解题的关键是明确题意,利用二次函数的性质解答. 18.或【分析】根据抛物线与x 轴的一个交点坐标和对称轴由抛物线的对称性可求抛物线与x 轴的另一个交点再根据抛物线的增减性可求当y <0时x 的取值范围【详解】解:∵抛物线y=ax2+bx+c (a≠0)与x 轴的一解析:4x <-或2x >【分析】根据抛物线与x 轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x 轴的另一个交点,再根据抛物线的增减性可求当y <0时,x 的取值范围.【详解】解:∵抛物线y=ax 2+bx+c (a≠0)与x 轴的一个交点坐标为(-4,0),对称轴为x=-1, ∴抛物线与x 轴的另一个交点为(2,0),由图象可知,当y >0时,x 的取值范围是x <-4或x >2.故答案为:x <-4或x >2.【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质,关键是得到抛物线与x 轴的另一个交点.19.①②④【分析】由表格中数据x=0时y=6x=1时y=6;可判断抛物线的对称轴是x=05根据函数值的变化判断抛物线开口向下再由抛物线的性质逐一判断【详解】解:由表格中数据可知x=0时y=6x=1时y=解析:①②④.【分析】由表格中数据x=0时,y=6,x=1时,y=6;可判断抛物线的对称轴是x=0.5,根据函数值的变化,判断抛物线开口向下,再由抛物线的性质,逐一判断.【详解】解:由表格中数据可知,x=0时,y=6,x=1时,y=6,①抛物线与y 轴的交点为(0,6),正确;②抛物线的对称轴是x=0.5,对称轴在y 轴的右侧,正确;③由表中数据可知在对称轴左侧,y 随x 增大而增大,错误.④根据对称性可知,抛物线的对称轴是x=0.5,点(-2,0)的对称点为(3,0),即抛物线一定经过点(3,0),正确;正确的有①②④.故答案为①②④.【点睛】主要考查了二次函数的性质.要熟练掌握函数的特殊值对应的特殊点.解题关键是根据表格中数据找到对称性以及数据的特点求出对称轴,图象与x ,y 轴的交点坐标等. 20.y=x2-1【分析】先把抛物线写成顶点式再写出平移后的顶点根据顶点式可求平移后抛物线的解析式【详解】解:∴原抛物线顶点坐标为(2-1)向左平移2个单位平移后抛物线顶点坐标为(0-1)∴平移后抛物线解解析:y=x 2-1【分析】先把抛物线写成顶点式,再写出平移后的顶点,根据顶点式可求平移后抛物线的解析式.【详解】解:()22-4+3-2-1y x x x ==,∴原抛物线顶点坐标为(2,-1),向左平移2个单位,平移后抛物线顶点坐标为(0,-1), ∴平移后抛物线解析式为:21y x =-,故答案为:21y x =-.【点睛】本题考查了抛物线的平移与抛物线解析式的关系,关键是把抛物线的平移转化为顶点的平移,运用顶点式求抛物线的解析式. 三、解答题21.(1)2101002000(020)y x x x =-++≤<;(2)每件商品的售价上涨5元时,该商店每星期销售这种商品可获得最大利润,此时,该商品的定价为65元,获得的最大利润为2250元【分析】(1)根据题意,得出每件商品的利润以及商品总的销量,即可得出y 与x 的函数关系式; (2)根据二次函数的性质即可得到结论.【详解】(1)(6050)(20010)y x x =-+-2(10)(20010)101002000(020)x x x x x =+-=-++≤<.(2)2210100200010(52250y x x x =-++=--+)所以,当5x =时,y 取得最大值为2250.答:每件商品的售价上涨5元时,该商店每星期销售这种商品可获得最大利润,此时,该商品的定价为65元,获得的最大利润为2250元.【点睛】此题主要考查了根据实际问题列二次函数解析式,根据每天的利润=一件的利润⨯销售量,建立函数关系式,借助二次函数解决实际问题是解题关键.22.2y x 2x 3=-++;()1,4;(2)13x【分析】(1)将(-1,0)和(0,3)两点代入二次函数y=-x 2+bx+c ,求得b 和c ,从而得出抛物线的解析式;(2)令y=0,解得x 1,x 2,得出此二次函数的图象与x 轴的另一个交点的坐标,进而求出当函数值y>0时,自变量x 的取值范围.【详解】解:(1)由二次函数2y x bx c =-++的图象经过(-1,0)和(0,3)两点, 得103b c c --+=⎧⎨=⎩, 解得23b c =⎧⎨=⎩, ∴抛物线的解析式为2y x 2x 3=-++,∵()222314y x x x =-++=--+, ∴抛物线的顶点坐标为(1,4);(2)令0y =,得2230x x -++=,解得13x =,21x =-,∴此二次函数的图象与x 轴的另一个交点的坐标为(3,0),∵抛物线开口向下,∴当13x时,0y >. 【点睛】本题考查待定系数法求二次函数解析式及抛物线与坐标轴的交点,解题的关键是熟练掌握待定系数法求二次函数解析式及抛物线与坐标轴的交点.23.(1)柑橘售价为10元/千克时,当天该柑橘的销售量为50千克;(2)m =-x 2+65x -300;这天柑橘的售价为15元.【分析】(1)用待定系数求出一次函数解析式,再代入自变量的值求得函数值;(2)根据利润=销量×(售价−成本),列出m 与x 的函数关系式,再由函数值求出自变量的值.【详解】解:(1)设该一次函数解析式为y =kx +b ,则1545 951k bk b+=⎧⎨+=⎩,解得:160 kb=-⎧⎨=⎩∴y=-x+60(8≤x≤20).∴当x=10时,y=50.∴柑橘售价为10元/千克时,当天该柑橘的销售量为50千克;(2)由题易知m=y(x-5)=(-x+60)( x-5)=-x2+65x-300当m=450时,则-x2+65x-300=450.整理,得x2-65x+750=0.解得x1=50,x2=15.∵8≤x≤20,∴x=15.所以这天柑橘的售价为15元.【点睛】本题是一次函数与二次函数的应用的综合题,主要考查了用待定系数法求函数的解析式,由函数值求自变量,由自变量的值求函数值,正确求出函数解析式是解题的关键.24.(1)x的值为8或10;(2)当x的值是9时,所围成的鸡场面积最大,最大值是162m2.【分析】由垂直于墙的一边长为xm,平行墙的边长=(36-2x),根据面积列方程,利用面积列函数关系,根据二次项系数为负,配方即可求出最值即可.【详解】解:(1)由题意得:x(36﹣2x)=160,整理得:x2-18x+80=0,解得:x1=8,x2=10,∵0<36﹣2x<36,∴0<x<18,∴x的值为8或10.(2)设长方形鸡场的面积为S,由题意得:S=x(36﹣2x)=﹣2x2+36x=﹣2(x﹣9)2+162,∵﹣2<0,二次函数开口向下,函数有最大值,∴当x=9时,S取得最大值,最大值为162.∴当x的值是9时,所围成的鸡场面积最大,最大值是162m2.【点睛】本题考查了一元二次方程的应用,二次函数,解题关键是找准题目中的等量关系列方程及二次函数解析.25.(1)10%;(2)y=2330+2400x x -+,第5天销售利润最大,最大利润是2475元.【分析】(1)根据题意,可以列出相应的方程,从而可以求得相应的百分率;(2)根据题意和表格中的数据,可以求得y 与x 之间的函数解析式,然后利用二次函数的性质可以求出第几天时销售利润最大,最大利润是多少.【详解】解:(1)设该品牌学习机每次降价的百分率为x ,根据题意得2100(1)81x -=解得,10.110%x ==,2 1.9x =(舍去)答:该品牌学习机每次降价的百分率为10%;(2)结合表格数据,根据题意得,()()28115061150350600y x x x x ⎡⎤=---+-+⎣⎦=()2201503+50600x x x --- =23000600330x x --+=2330+2400x x -+=23(5)2475x --+∴当x=5时,y 有最大值,最大值是2475答:第5天销售利润最大,最大利润是2475元.【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质和方程的知识解答.26.(1)12;(2)不公平,见解析 【分析】(1)先判断出A 、B 、C 、D 四个卡片上的函数增减性,在结合概率的定义即可求解(2)根据题意用列表法分别求出小亮和小强同时抽到函数增减性相同的概率,和增减性不同的概率,二者进行比较即可【详解】(1)卡片A 上的函数为12y x =-,为减函数,y 随x 的增大而减小; 卡片B 上的函数为()10y x x=-<,为增函数,y 随x 的增大而增大; 卡片C 上的函数为()230y x x =->,为增函数,y 随x 的增大而增大; 卡片D 上的函数为5y x =-,为减函数,y 随x 的增大而减小;所以从四张卡片中随机摸出一张,摸出的卡片上的函数y 随x 的增大而减小的概率为2142=(2)不公平.理由如下,根据题意列表得:卡片由表可知总共有12中等可能的结果,抽出的两张卡片上的函数增减性相同的概率为41123=;抽出的两张卡片上的函数增减性不同的概率是82 123=,2133>,∴不公平.【点睛】本题考查了函数的性质,概率和游戏的公平性,掌握列表或树状图法展示等可能的结果是解题关键.。
完整版)九年级二次函数综合测试题及答案二次函数单元测评一、选择题(每题3分,共30分)1.下列关系式中,属于二次函数的是(x为自变量)()A。
y=2x+1 B。
y=x+2 C。
y=x^2 D。
y=1/x2.函数y=x^2-2x+3的图象的顶点坐标是()A。
(1,-4) B。
(-1,2) C。
(1,2) D。
(0,3)3.抛物线y=2(x-3)^2的顶点在()A。
第一象限 B。
第二象限 C。
x轴上 D。
y轴上4.抛物线的对称轴是()A。
x=-2 B。
x=2 C。
x=-4 D。
x=45.已知二次函数y=ax^2+bx+c的图象如图所示,则下列结论中,正确的是()A。
ab>0,c>0 B。
ab>0,c0 D。
ab<0,c<06.在第6象限,二次函数y=ax^2+bx+c的图象如图所示,则点P的坐标为()A。
(1,-2) B。
(-1,-2) C。
(-1,2) D。
(1,2)7.如图所示,已知二次函数y=ax^2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象交x轴于点A(m,0)和点B,且m>4,那么AB的长是()A。
4+m B。
m C。
2m-8 D。
8-2m8.若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax^2+bx的图象只可能是()9.已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P1(x1,y1),P2(x2,y2)是抛物线上的点,P3(x3,y3)是直线上的点,且-1<x1<x2,x3<-1,则y1,y2,y3的大小关系是()A。
y1<y2<y3 B。
y2<y3<y1 C。
y3<y1<y2 D。
y2<y1<y310.把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A。
y=(x-2)^2+3 B。
y=(x+2)^2+3 C。
《二次函数》测试题
一、选择题
1.下列各曲线中不能表示y 是x 的函数的是( )
2.如图为抛物线2y ax bx c =++的图像,A 、B 、C 为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是( )
A .a +b=-1
B .a -b=-1
C .b<2a
D .ac<0 3.已知函数
的图象与x 轴有交点
,则k 的取值范围是( )
A. B. C.且 D.且
4.把抛物线y=-x 2
向左平移2个单位,然后向上平移5个单位,则平移后抛物线的解析式为( )
A .y=-(x -2)2-5
B .y=-(x +2)2
-5
C .y=-(x -2)2+5
D .y=-(x +2)2
+5 5.已知二次函数c bx ax y ++=2的y 与x 的部分对应值如下表:
x
… 1- 0 1 3 … y
…
3-
1
3
1
…
则下列判断中正确的是
A .抛物线开口向上
B .抛物线与y 轴交于负半轴
C .当X 大于1.5时,Y 随着X 的增大而减小
D .当x =4时,y >0
6.已知抛物线
,当自变量取两个不同的数值
时,函数值相等,
则当自变量取时的函数值与( )时,函数值相等
B. 时,函数值相等
C. 时,函数值相等
D.
时,函数值相等
7.二次函数
与坐标轴的交点个数是( )
A .0个
B .1个
C .2个
D .3个
8.若二次函数配方后为
则、的值分别为( )
A . 3,-8
B .-6,-8
C . 6,1
D .-3,1
k b 2(3)y x k =++2
1y x bx =-+222
+-=x x y 7
4x =-
1x =0x =1
4x =-
12
x x +x 12
x x 、2
y 273x x =+-3≠k 4≤k 3≠k 4<k 4≤k 4<k 1
2)3(2++-=x x k y
9
.将抛物线的图象向上平移1个单位,则平移后的抛物线的解析式为( ) A . B .
C .
D .
10.如图,矩形在平面直角坐标系中的位置如图所示,,
.抛物
线
()经过点和点,与轴分别交于点、(点在点左
侧),且,则下列结论:①;②;③;④;⑤连接、,则
,其中正确结论的个数为
A .个
B .个
C .个
D .个 二、填空题()
11.抛物线
的顶点坐标是
12.已知点(2,5),(4,5)是抛物线y=ax 2
+bx+c 上的两点, 则这条抛物线的对称轴是 .
13.将抛物线
向下平移2个单位再向右平移3个单位,
所得抛物线的表达式是 .
14.抛物线y =ax 2
+bx +c 上部分点的横坐标x ,纵坐标y 的对应值如下表:
从上表可知,下列说法中正确的有______ .(填写序号)
①抛物线与x 轴的一个交点为(3,0);②函数y =ax 2
+bx +c 的最大值为6;
③抛物线的对称轴是x =;④在对称轴左侧,y 随x 的增大而增大.
15.抛物线
的顶点坐标是______________.
16.已知 恒成立,那么实数x 的取值范围是
17.(1)将抛物线y 1=2x 2
向右平移2个单位,得到抛物线y 2的图象,则y 2= ; (2)如图,P 是抛物线y 2对称轴上的一个动点,直线 x =t 平行于y 轴,分别与直线y =x 、抛物线y 2交于点 A 、B .若△ABP 是以点A 或点B 为直角顶点的等腰直角 三角形,则所有满足条件的t 的值为 . 18.已知二次函数
的顶点为A ,与
y 轴交于点B ,作它关于以P (1,0)为中心的中心对称的图像顶点为C ,交y 轴于点D ,则四边形ABCD 面积为________. 19.若抛物线的顶点在坐标轴上,则k= . 20.已知抛物线
与抛物线
的形状相同,顶点在
2
1y x =-1
22=+y x x 322
--=x x y 4321=9
ABDE S 梯形BD AE 423a b c -+=20a b -=3c >0>a 1OE =E D E D x B A 0a ≠2
y ax bx c =++2
AB =3OA =OABC 2
21y x =-221y x =+2
2(1)y x =-22(1)y x =+2
2y x =
,则此抛物线的解析式为 。
三、计算题()
21. 已知抛物线
经过点(1,-4)和(-1,2).求抛物线解析式.
22、如图所示,已知平面直角坐标系xOy ,抛物线过点A(4,0)、B(1,3)
(1).求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;
23、某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.
(1).求平均每天销售量
(箱)与销售价
(元/箱)之间的函数关系式.
(2).求该批发商平均每天的销售利润(元)与销售价(元/箱)之间的函数关系式. (3).当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?
24.抛物线
经过A (,0)、C (0,)两点,与轴交于另一点B 。
(1)求此抛物线的解析式;
(2)已知点D (,)在第四象限的抛物线上,求点D 关于直线BC 对称的点,
的坐标。
(3)在(2)的条件下,连结BD ,问在轴上是否存在点P ,使,若存
在,请求出P 点的坐标;若不存在,请说明理由
CBD PCB ∠=∠x 'D 1--m m x 3-1-a bx ax y 32
-+=c bx x y ++=2
O x y
1 2 3 4 1 2
3 4。