双亲性高分子的合成及自组装
- 格式:ppt
- 大小:3.31 MB
- 文档页数:26
微纳尺度下的高分子自组装机制和性质研究近年来,高分子自组装技术在材料科学和生物医学领域得到了广泛应用。
高分子自组装是在微观尺度下,由高分子分子间的相互作用所驱动的过程。
这种过程是一种自然的过程,通常在无外力干预下发生。
高分子自组装可以通过简单的处理步骤控制形态和结构,从而可应用于许多领域,如药物传递、纳米材料制备、能源储存和传输等。
那么在微观尺度下,高分子自组装是如何实现的呢?高分子自组装机制高分子自组装是由分子间相互作用所驱动的。
其中,静电引力、疏水作用、氢键及范德华力是最主要的相互作用。
这些作用使高分子分子在一定条件下聚集形成所需的结构。
当这些高分子分子组装成有序结构时,它们可以自发的形成等离子体、纤维、球形或其他形状。
高分子的聚集过程可以分为两类:一类是聚集行为随着温度,浓度等因素的改变呈现出可逆性;另一类则是聚集行为不可逆。
由于这种不可逆的自组装机制,高分子自组装形成的结构具有很强的稳定性、高度的有序性和分级结构等特点,使其在生物医药、纳米技术等领域有着广泛的应用前景。
高分子自组装性质1. 稳定性:高分子自组装形成的结构具有较高的稳定性,这一特性使其在生物医药、纳米技术等领域有着广泛的应用前景。
例如,生物体内一些重要的蛋白质及大分子颗粒就是通过高分子自组装形成的。
2. 有序性:高分子自组装可以形成有序的结构,这种有序性使得它在制备高效分子筛、半导体电子器件以及新型纳米光波导等方面具有广泛的应用前景。
3. 分级结构:高分子自组装形成的结构具有分级结构,逐级组成了比高分子单分子结构更大的分子组装体。
这种分级结构可用于制备医用纳米传递载体和纳米传感器等领域。
总结高分子自组装是在微观尺度下由高分子分子间的相互作用所驱动的自然过程。
高分子自组装可以通过简单的处理步骤控制形态和结构,其形成的结构具有很高的稳定性、高度的有序性和分级结构等特点,具有广泛的应用前景。
在生物医学、纳米技术等领域有着许多重要的应用,对于发掘其潜在应用,加强基础理论研究有着重要的意义。
广东化工 2013年第1期· 54 · 第40卷总第243期两亲聚合物的合成方法及应用蔡晓新,郝阿辉,刘秋霞,陈振远,吴世易,吴旭*(广州大学化学化工学院,广东广州 510006)[摘要]文章对两亲聚合物的合成方法及应用进行了综述。
两亲聚合物可通过胶束共聚合、溶液聚合、分散聚合、主链接枝法等方法合成。
目前已广泛应用于成膜材料、药物运输、降低稠油粘度、稳定金属胶体、处理污染体系等领域,具有良好的市场前景。
[关键词]两亲聚合物;合成方法;应用[中图分类号]TQ [文献标识码]A [文章编号]1007-1865(2013)01-0054-01Synthesis and Application of the Amphiphilic PolymersCai Xiaoxin, Hao A’hui, Liu Qiuxia, Chen Zhenyuan, Wu Shiyi, Wu Xu*(Department of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China) Abstract: The synthesis and application of the amphiphilic polymers were reviewed. The amphiphilic polymers could be synthesized via micelle copolymerization, solution polymerization, dispersion polymerization and matrix polymerization. Amphiphilic polymers were applied to various fields like membrane material, transportation of medicine, viscosity reducer, disposing polluted solution and so on.Keywords: amphiphilic polymers;synthesis;application两亲聚合物是一类具有特殊分子骨架的双亲高分子结构,结构中可控结构参数众多,主链的长短及刚柔性质可以通过单体类型和聚合度的调节而改变;功能性侧链的种类、长度及密度也可以变化,可帮助人们实现从分子水平上调控两亲分子性能的愿望,具有强大的功能可塑性和可控性。
2009年春博政考核姓名:李昌华学号:SA07020003系别:高分子材料与工程(20)Email:chli@日期:二零零九年六月两亲性及全亲水性嵌段聚合物在水溶液中的超分子自组装行为摘要:在过去的几十年里,水溶液中嵌段聚合物的超分子自组装行为受到了越来越广泛的关注。
研究报道,它们在药物释放,影像,遥感,和催化等领域的应用都取得了重大突破。
除了嵌段单元的序列长度,分子量,溶剂和链结构都能极大地影响它们在一些选择性的溶剂中的自组装性能。
这篇文章主要介绍了两亲性和全亲水性嵌段聚合物(DHBCs)的非线性链拓扑结构,包括杂臂星形嵌段聚合物,树状嵌段共聚物,环状嵌段共聚物,梳状共聚物刷。
发展脉络众所周知,两亲性嵌段聚合物可以在水溶液中自组装成的多种形态,包括:球状,棒状,片状,囊泡,大型复合胶束或囊泡【1-5】。
在过去的几十年中,由于嵌段共聚物组装体在药物释放【6-8】,成像【9-14】,遥感【15, 16】和催化【17-21】领域有着重要的应用,因而这一领域得到了越来越广泛的关注。
全亲水性嵌段聚合物(DHBCs)是一类特殊的两亲性嵌段聚合物,由化学性质不同的两嵌段或多嵌段组成,每个嵌段都有水溶性。
大多数情况下,全亲水性嵌段聚合物其中的一个嵌段的水溶性足以促进聚合物的溶解和分散,另一个嵌段为环境敏感水溶性聚合物。
当外部环境如pH值,温度,离子强度和光照发生变化时,其由水溶性的嵌段转变为不溶性的嵌段并出现胶束化行为【22-26】。
某些环境响应性的DHBCs甚至可以表现多重胶束化行为,通过调节外部环境条件其可以形成两种或多种具有反转结构的纳米尺度聚集体【22, 23, 26-32】。
DHBCs在稀水溶液中独特的环境敏感自组装行为成为近年来高分子自组装领域研究的一个新的热点,关于其的研究将进一步扩大嵌段聚合物组装体的应用范围。
该部分主要介绍领域发展的基本脉络,主要集中描述近几年来两亲性和全亲水性嵌段聚合物超分子自组装体具有的非线性链拓扑结构,包括杂臂星型聚合物,树枝状嵌段聚合物,环状嵌段聚合物和梳型嵌段聚合物。
pH敏感双亲性聚合物的研究进展摘要:pH敏感双亲性聚合物由于具有多种潜在的用途而引起广泛关注。
本文综述了pH敏感双亲性聚合物的概念,组成,分类,合成方法以及在药物输送中的应用,并对其发展趋势进行了展望。
关键词:pH敏感;双亲性;聚合物;共聚物;胶束;脂质体;纳米粒两亲性聚合物是指同一高分子中同时具有对两种性质不同的相(如水相与油相,两种油相,两种不相容的固相等)皆有亲和性的聚合物。
pH敏感性聚合物是其溶液相态能随环境pH、离子强度变化的聚合物。
已有理论研究结果表明,聚合物分子内及分子间交联作用力可以分为以下几种:氢键、范德华力、静电作用和疏水作用力[1]。
在pH响应体系中四种作用力共同起作用引发pH敏感性,其中离子间作用力起主要作用,其它三种作用力起到相互影响、相互制约的作用。
一般来说,具有pH响应性的高分子中含有弱酸性(弱碱性)基团,随着介质pH值、离子强度改变,这些基团发生电离,造成聚合物内外离子浓度改变,并导致大分子链段间氢键的解离,引起体相分子构型或溶解度的改变。
1.pH敏感双亲性聚合物的分类pH敏感双亲性聚合物有两大类:一是聚合物中包含弱酸、弱碱基团和聚电解质的化合物;二是聚合物中有能在酸性条件下水解的连接段[2]。
1.1包含有可离子化的弱酸、弱碱基团的聚合物和聚电解质化合物羧基是典型的弱有机酸聚合物取代基。
这一类可在较低pH下接受质子并在中性和较高pH 下放出质子,如聚丙烯酸(PAA)或聚甲基丙烯酸(PMAA)。
弱有机碱聚合物如聚(4-乙烯基吡啶)在较高pH下接受质子,在较低pH下放质子,如聚[甲基丙烯酸-2-(N,N-二甲氨基)乙酯](PDMAEMA),侧基带有取代氨基,因而在中性或酸性条件下可获得质子[3,4]。
药物载体在酸性或碱性条件下,聚合物中pH敏感基团会水解断裂或极性发生变化,使得聚合物纳米粒子破裂,同时负载其中的药物会被释放出来[5-7],释放过程中没有药物和载体之间没有化学键的变化。
两亲性有机小分子的自组装行为及其在纳米材料领域的应用自组装行为是指化学物质在一定条件下通过相互作用自发形成特定结构的过程。
在纳米材料领域,两亲性有机小分子的自组装行为受到广泛关注,因为其能够产生各种有序结构,并具有潜在的应用前景。
本文将介绍两亲性有机小分子的自组装行为及其在纳米材料领域的应用。
1. 两亲性有机小分子的自组装行为两亲性有机小分子既具有亲水性,又具有亲油性,是一类非常特殊的化合物。
这种化合物通常由一个亲水基团和一个亲油基团组成,亲水基团通常是羟基或胺基,亲油基团通常是烷基或芳香基团。
在合适的条件下,两亲性有机小分子可以通过水平面上的亲水-亲水相互作用和亲油-亲油相互作用,形成各种不同结构的自组装体。
常见的自组装结构包括胶束、微胶束、脂质体、双层膜等。
2. 两亲性有机小分子的应用由于两亲性有机小分子的自组装行为具有高度可控性和可调性,因此在纳米材料领域有广泛的应用潜力。
2.1 纳米粒子合成通过两亲性有机小分子的自组装,可以有效地控制纳米材料的尺寸和形态。
例如,在水溶液中加入两亲性有机小分子后,可以促使金属离子的聚集形成纳米粒子,并通过调整两亲性有机小分子的结构和浓度,实现对纳米粒子尺寸的可控性。
这种方法对于合成具有特定形态和尺寸的纳米材料具有重要意义。
2.2 纳米药物传递两亲性有机小分子能够在体内形成纳米级的自组装体,可以作为载体用于药物传递。
通过改变两亲性有机小分子的结构和组成,可以调节自组装体的溶解度和稳定性,从而实现药物的高效传递和控制释放。
2.3 纳米电子器件由于两亲性有机小分子具有亲水、亲油等性质,可以调节自组装体的导电性和光电性。
因此,两亲性有机小分子自组装体可以作为纳米电子器件的功能材料,例如用于构建柔性显示屏、光电传感器等。
2.4 纳米传感器通过两亲性有机小分子的自组装,可以有效地控制纳米材料的相互作用和信号传递。
因此,两亲性有机小分子自组装体可以作为纳米传感器的敏感层,实现对环境中特定物质的高灵敏检测。
技术与信息102 |2019年7月2 结果与讨论2.1 ST-co-BA聚合反应研究TFA 和CSA 可提高NMP 聚合反应速度[9],因此,首先研究了两种加速剂对St-co-BA 聚合的影响,图1、图2、图3分别为当苯乙烯、丙烯酸丁酯、TEMPO 和BPO 的比为700:300:1.8:1,反应温度为130℃,反应时间为24h 的条件下,聚合产物ST-co-BA0 引言双亲性嵌段共聚物由于其本体的微观相分离及溶液中的自组装特性,广泛的用于药物载体[1]、高性能分离材料[2]。
双亲性嵌段共聚物通常采用可控聚合方法合成,聚合方法一般分为离子型聚合及自由基聚合。
相比与离子型聚合苛刻的反应条件,可控自由基聚合的反应条件要求较低[3]。
常见的可控自由基聚合包括原子转移自由基聚合(ATRP)[4,5]、可逆加成-断裂链转移自由基聚合(RAFT)[6]、氮氧稳定自由基聚合法(NMP)[7],主要通过控制活性自由基可逆的激活-休眠来抑制链终止反应。
几种聚合方法各有优势,ATRP 的聚合温度一般较低,但酸性的聚合单体可能会导致ATRP 聚合中的配体质子化[8],相比之下,RAFT 和NMP 单体适应性较广。
本研究采用NMP 法合成合成苯乙烯-co-丙烯酸丁酯-b-2-丙烯酰胺基-2-甲基-丙磺酸钠嵌段共聚物(ST-co-BA-b-PAMPS),其中,ST-co-BA 段为疏水段,PAMPS 为亲水段。
采用2,2,6,6-四甲基哌啶-1-氧基自由基(TEMPO)为自由基调控剂。
1 实验部分1.1 实验试剂TEMPO 、过氧化苯甲酰(BPO)、N,N-二甲基乙酰胺(DMAC)、AMPS 、三氟乙酸酐(TFA)、樟脑磺酸(CSA),丙烯酸丁酯(BA)为北京百灵威科技有限公司产品;苯乙烯(ST)为日本化成工业株式会社产品,使用前进行减压蒸馏纯化;其他试剂为天津市光复精细化工研究所产品。
1.2 制备方法聚合物制备方法:称取一定量的ST 、BA 、TEMPO 、BPO 置于烧瓶中,冷却条件下,进行抽真空-充氮气操作反复三次,升温至95℃后加入一定量的TFA 或CSA ,恒温反应2h 后升温至130℃,继续反应若干小时;随后温度降至80℃时,并加入AMPS 的DMAC 溶液(20%,w/w),升温至130℃继续反应24h 。