质谱扫描模式
- 格式:docx
- 大小:13.41 KB
- 文档页数:2
离子阱质谱仪中的扫描
离子阱质谱仪通常由三个电极构成,驱动电极、辅助电极和探测电极。
其中,驱动电极和辅助电极可以通过改变电场的频率和幅度来实现离子的扫描。
在离子阱质谱仪中,有两种常见的扫描模式,质谱扫描和离子电荷扫描。
1. 质谱扫描(Mass Scan),在质谱扫描模式下,离子阱的电场频率会在一定范围内变化,使得不同质荷比的离子能够被激发和检测。
这样可以获取到离子的质量谱图,从而确定样品中的化合物的质量及其相对丰度。
2. 离子电荷扫描(Ion Charge Scan),在离子电荷扫描模式下,离子阱的电场幅度会在一定范围内变化,使得不同电荷状态的离子能够被激发和检测。
这样可以确定离子的电荷状态及其相对丰度,从而推断样品中的化合物的结构和组成。
此外,还有一些特殊的扫描模式,如离子陷阱质谱仪中的离子碰撞诱导解离(CID)扫描和多级质谱(MSn)扫描等。
这些扫描模
式可以进一步提高质谱仪的分析能力,实现更加精确的离子分析和结构鉴定。
总的来说,离子阱质谱仪中的扫描是通过改变电场的频率和幅度,使得离子在离子阱内进行选择性激发、分离和检测的过程。
不同的扫描模式可以获取到不同的质谱信息,从而实现对样品的分析和鉴定。
质谱都有几种工作模式:SIM,SRM,MRMSIM :单离子检测扫描(single ion monitoring)SRM :选择反应检测扫描(selective reaction monitoring)MRM :多反应检测扫描(multi reaction monitoring)质谱都有几种工作模式:(1)Full Scan:全扫描,指质谱采集时,扫描一段范围,选择这个工作模式后,你自己来设定一个范围,比如:150~500 amu。
对于未知物,一定会做这种模式,因为只有Full Scan了,才能知道这个化合物的分子量。
对于二级质谱MS/MS或多级质谱MSn时,要想获得所有的碎片离子,也得做全扫描。
(2)SIM:Single Ion Monitor,指单离子监测,针对一级质谱而言,即只扫一个离子。
对于已知的化合物,为了提高某个离子的灵敏度,并排除其它离子的干扰,就可以只扫描一个离子。
这时候,还可以调整一下分辨率来略微调节采样窗口的宽度。
比如,要对500 amu的离子做SIM,较高高分辨状态下,可以设定取样宽度为1.0,这时质谱只扫499.5~500.5 amu。
还有些高分辨率的仪器,可以设定取样宽度更小,比如0.2 amu,这时质谱只扫499.9~500.1 amu。
但对于较纯的、杂质干扰较少的体系,不妨设定较低的分辨率,比如取样宽度设为2 amu,这时质谱扫描499~501 amu,如果没有干扰的情况下,取样宽度宽一些,待测化合物的灵敏度就高一些,因为噪音很低;但是有很强干扰情况下,设定较高分辨,反而提高灵敏度信噪比,因为噪音降下去了。
(3)SRM:Selective Reaction Monitor,指选择反应监测,针对二级质谱或多级质谱的某两级之间,即母离子选一个离子,碰撞后,从形成的子离子中也只选一个离子。
因为两次都只选单离子,所以噪音和干扰被排除得更多,灵敏度信噪比会更高,尤其对于复杂的、基质背景高的样品。
质谱的几种工作模式:SIM-SRM-MRM质谱都有几种工作模式:SIM,SRM,MRMSIM :单离子检测扫描(single ion monitoring)SRM :选择反应检测扫描(selective reaction monitoring)MRM :多反应检测扫描(multi reaction monitoring)质谱都有几种工作模式:(1)Full Scan:全扫描,指质谱采集时,扫描一段范围,选择这个工作模式后,你自己来设定一个范围,比如:150~500 amu。
对于未知物,一定会做这种模式,因为只有Full Scan了,才能知道这个化合物的分子量。
对于二级质谱MS/MS或多级质谱MSn时,要想获得所有的碎片离子,也得做全扫描。
(2)SIM:Single Ion Monitor,指单离子监测,针对一级质谱而言,即只扫一个离子。
对于已知的化合物,为了提高某个离子的灵敏度,并排除其它离子的干扰,就可以只扫描一个离子。
这时候,还可以调整一下分辨率来略微调节采样窗口的宽度。
比如,要对500 amu的离子做SIM,较高高分辨状态下,可以设定取样宽度为1.0,这时质谱只扫499.5~500.5 amu。
还有些高分辨率的仪器,可以设定取样宽度更小,比如0.2 amu,这时质谱只扫499.9~500.1 amu。
但对于较纯的、杂质干扰较少的体系,不妨设定较低的分辨率,比如取样宽度设为2 amu,这时质谱扫描499~501 amu,如果没有干扰的情况下,取样宽度宽一些,待测化合物的灵敏度就高一些,因为噪音很低;但是有很强干扰情况下,设定较高分辨,反而提高灵敏度信噪比,因为噪音降下去了。
(3)SRM:Selective Reaction Monitor,指选择反应监测,针对二级质谱或多级质谱的某两级之间,即母离子选一个离子,碰撞后,从形成的子离子中也只选一个离子。
因为两次都只选单离子,所以噪音和干扰被排除得更多,灵敏度信噪比会更高,尤其对于复杂的、基质背景高的样品。
质谱都有几种工作模式:SIM,SRM,MRMSIM :单离子检测扫描(single ion monitoring)SRM :选择反应检测扫描(selective reaction monitoring)MRM :多反应检测扫描(multi reaction monitoring)质谱都有几种工作模式:(1)Full Scan:全扫描,指质谱采集时,扫描一段范围,选择这个工作模式后,你自己来设定一个范围,比如:150~500 amu。
对于未知物,一定会做这种模式,因为只有Full Scan了,才能知道这个化合物的分子量。
对于二级质谱MS/MS或多级质谱MSn时,要想获得所有的碎片离子,也得做全扫描。
(2)SIM:Single Ion Monitor,指单离子监测,针对一级质谱而言,即只扫一个离子。
对于已知的化合物,为了提高某个离子的灵敏度,并排除其它离子的干扰,就可以只扫描一个离子。
这时候,还可以调整一下分辨率来略微调节采样窗口的宽度。
比如,要对500 amu的离子做SIM,较高高分辨状态下,可以设定取样宽度为1.0,这时质谱只扫499.5~500.5 amu。
还有些高分辨率的仪器,可以设定取样宽度更小,比如0.2 amu,这时质谱只扫499.9~500.1 amu。
但对于较纯的、杂质干扰较少的体系,不妨设定较低的分辨率,比如取样宽度设为2 amu,这时质谱扫描499~501 amu,如果没有干扰的情况下,取样宽度宽一些,待测化合物的灵敏度就高一些,因为噪音很低;但是有很强干扰情况下,设定较高分辨,反而提高灵敏度信噪比,因为噪音降下去了。
(3)SRM:Selective Reaction Monitor,指选择反应监测,针对二级质谱或多级质谱的某两级之间,即母离子选一个离子,碰撞后,从形成的子离子中也只选一个离子。
因为两次都只选单离子,所以噪音和干扰被排除得更多,灵敏度信噪比会更高,尤其对于复杂的、基质背景高的样品。
质谱都有几种工作模式:SIM,SRM,MRMSIM :单离子检测扫描(single ion monitoring)SRM :选择反应检测扫描(selective reaction monitoring)MRM :多反应检测扫描(multi reaction monitoring)质谱都有几种工作模式:(1)Full Scan:全扫描,指质谱采集时,扫描一段范围,选择这个工作模式后,您自己来设定一个范围,比如:150~500 amu。
对于未知物,一定会做这种模式,因为只有Full Scan了,才能知道这个化合物的分子量。
对于二级质谱MS/MS或多级质谱MSn时,要想获得所有的碎片离子,也得做全扫描。
(2)SIM:Single Ion Monitor,指单离子监测,针对一级质谱而言,即只扫一个离子。
对于已知的化合物,为了提高某个离子的灵敏度,并排除其它离子的干扰,就可以只扫描一个离子。
这时候,还可以调整一下分辨率来略微调节采样窗口的宽度。
比如,要对500 amu 的离子做SIM,较高高分辨状态下,可以设定取样宽度为1、0,这时质谱只扫499、5~500、5 amu。
还有些高分辨率的仪器,可以设定取样宽度更小,比如0、2 amu,这时质谱只扫499、9~500、1 amu。
但对于较纯的、杂质干扰较少的体系,不妨设定较低的分辨率,比如取样宽度设为2 amu,这时质谱扫描499~501 amu,如果没有干扰的情况下,取样宽度宽一些,待测化合物的灵敏度就高一些,因为噪音很低;但就是有很强干扰情况下,设定较高分辨,反而提高灵敏度信噪比,因为噪音降下去了。
(3)SRM:Selective Reaction Monitor,指选择反应监测,针对二级质谱或多级质谱的某两级之间,即母离子选一个离子,碰撞后,从形成的子离子中也只选一个离子。
因为两次都只选单离子,所以噪音与干扰被排除得更多,灵敏度信噪比会更高,尤其对于复杂的、基质背景高的样品。
安捷伦质谱MRM模式的方法开发随着科学技术的不断进步,质谱技术在生命科学领域中扮演着越来越重要的角色。
其中,安捷伦质谱MRM(多反应监测)模式作为一种高效灵敏的质谱分析方法,广泛应用于蛋白质组学、代谢组学和药物代谢动力学等领域。
本文将针对安捷伦质谱MRM模式的方法开发进行探讨,讨论MRM模式的基本原理、方法开发的关键步骤及其在生命科学研究中的应用。
一、安捷伦质谱MRM模式的基本原理MRM是一种质谱扫描模式,其基本原理是通过选择两个或多个特定的离子反应对来进行分析。
在MRM模式中,首先选择一个前体离子进行碎裂,然后选择一个或多个产物离子进行检测。
这种方法能够提高分析的特异性和灵敏度,因此在生命科学研究中得到广泛应用。
二、安捷伦质谱MRM模式方法开发的关键步骤1. 目标分子筛选:首先需要确定待测分子的化学结构特征以及其在样品中的丰度范围。
通常可以通过文献调研和实验分析来获得相关信息。
2. MS参数优化:根据待测分子的特性,对质谱扫描参数进行优化,包括碰撞能量、离子传输电压和离子源温度等。
3. 质谱方法建立:根据所选择的前体离子和产物离子,建立MRM扫描方法,并进行方法的优化和验证。
4. 样品前处理:对待测样品进行适当的前处理,包括提取、富集和洗脱等步骤,以提高待测物质的检测灵敏度和准确性。
5. 数据分析:对得到的质谱数据进行处理和分析,包括信号去噪、质谱峰识别和定量计算等。
三、安捷伦质谱MRM模式方法在生命科学中的应用1. 蛋白质组学研究:MRM模式可以用于蛋白质的定量分析,包括蛋白质的表达水平和修饰情况等。
通过MRM方法,可以实现对复杂蛋白混合物的快速、准确的定量分析。
2. 代谢组学研究:MRM模式可以用于代谢产物的定量分析,包括小分子代谢产物和中间代谢产物等。
通过MRM方法,可以实现对代谢通路和代谢产物的全面分析。
3. 药物代谢动力学研究:MRM模式可以用于药物及其代谢产物的定量分析,包括药物的代谢途径和代谢产物的药效学评价等。
质谱都有几种工作模式:SIM,SRM,MRMSIM :单离子检测扫描(single ion monitoring)SRM :选择反应检测扫描(selective reaction monitoring)MRM :多反应检测扫描(multi reaction monitoring)质谱都有几种工作模式:(1)Full Scan:全扫描,指质谱采集时,扫描一段范围,选择这个工作模式后,你自己来设定一个范围,比如:150~500 amu。
对于未知物,一定会做这种模式,因为只有Full Scan了,才能知道这个化合物的分子量。
对于二级质谱MS/MS或多级质谱MSn时,要想获得所有的碎片离子,也得做全扫描。
(2)SIM:Single Ion Monitor,指单离子监测,针对一级质谱而言,即只扫一个离子。
对于已知的化合物,为了提高某个离子的灵敏度,并排除其它离子的干扰,就可以只扫描一个离子。
这时候,还可以调整一下分辨率来略微调节采样窗口的宽度。
比如,要对500 amu的离子做SIM,较高高分辨状态下,可以设定取样宽度为1.0,这时质谱只扫499.5~500.5 amu。
还有些高分辨率的仪器,可以设定取样宽度更小,比如0.2 amu,这时质谱只扫499.9~500.1 amu。
但对于较纯的、杂质干扰较少的体系,不妨设定较低的分辨率,比如取样宽度设为2 amu,这时质谱扫描499~501 amu,如果没有干扰的情况下,取样宽度宽一些,待测化合物的灵敏度就高一些,因为噪音很低;但是有很强干扰情况下,设定较高分辨,反而提高灵敏度信噪比,因为噪音降下去了。
(3)SRM:Selective Reaction Monitor,指选择反应监测,针对二级质谱或多级质谱的某两级之间,即母离子选一个离子,碰撞后,从形成的子离子中也只选一个离子。
因为两次都只选单离子,所以噪音和干扰被排除得更多,灵敏度信噪比会更高,尤其对于复杂的、基质背景高的样品。
液相⾊谱质谱联⽤技术LC-MSMS的五种扫描模式具有液相⾊谱LC前端的串联质谱MS,特别是三重四极质谱(也称为“串联”)质谱(LC-MS/MS),这种仪器在过去的⼗⼏年⾥逐渐取代了GC-MS和单四极质谱检测器(LC-MS),成为⽬前质谱实验中⽤到的主要仪器之⼀。
液相⾊谱质谱联⽤技术LC-MS/MS仪器包括(i)⼤⽓压电离源,通常为ESI源(图1B)或⼤⽓压化学电离源(图1C),由(ii)离⼦⼊⼝和聚焦组件(Q0)耦合,提供从⼤⽓压到真空的转换和离⼦聚焦,进⼊(iii)第⼀质量过滤装置(Q1),接着进⼊(iv)碰撞室(Q2),该碰撞室充满⽤于碰撞诱导离解(CID)的低压⽓体,接着进⼊(v)第⼆质量过滤装置(Q3),最后进⼊(vi)离⼦检测器(电⼦倍增器)(图1A)。
液相⾊谱质谱联⽤技术仪可以在仪器灵敏度和质量分辨率范围内进⾏五种不同的扫描模式:图2:液相⾊谱质谱联⽤技术LC-MS/MS的五种扫描模式1. 全扫描:扫描两个质量过滤器(Q1和Q3)的整个(或部分)质量范围,⽽Q2不包含任何碰撞⽓体。
此实验可以查看样品中包含的所有离⼦(图2)。
2. ⼦离⼦扫描:在Q1中选择⼀个特定的m/Q,⽤碰撞⽓体填充Q2使所选m/Q碎裂,然后扫描Q3的整个(或部分)质量范围。
该实验可以查看所选前体离⼦的所有碎⽚/产物离⼦(图2)。
3. 前体离⼦扫描:扫描Q1的整个(或部分)质量范围,在Q2中填充碰撞⽓体,将扫描范围内的所有离⼦碎⽚化,然后Q3选择⼀个特定的m/Q分析。
此实验可以通过检测产物离⼦和检测之前的m/Q的时间相关性,确定哪个m/Q前体离⼦可能产⽣所选产物离⼦(图2)。
4. 中性丢失扫描:在Q1的整个(或部分)质量范围内扫描,⽤碰撞⽓体填充Q2使扫描范围内的所有离⼦碎裂,然后在预定范围内扫描Q3,该预定范围对应前体扫描范围内每个潜在离⼦发⽣的特定质量的碎裂引起的损失。
该实验可以识别失去选定的通⽤化学基团的所有前体,例如失去与甲基相对应的质量的所有前体(图2)。
质谱扫描模式
SIM :单离子检测扫描(single ion monitoring)
SRM :选择反应检测扫描(selective reaction monitoring)
MRM :多反应检测扫描(multi reaction monitoring)
质谱都有几种工作模式:
(1)Full Scan:全扫描,指质谱采集时,扫描一段范围,选择这个工作模式后,你自己来设定一个范围,比如:150~500 amu。
对于未知物,一定会做这种模式,因为只有Full Scan了,才能知道这个化合物的分子量。
对于二级质谱MS/MS或多级质谱MSn时,要想获得所有的碎片离子,也得做全扫描。
(2)SIM:Single Ion Monitor,指单离子监测,针对一级质谱而言,即只扫一个离子。
对于已知的化合物,为了提高某个离子的灵敏度,并排除其它离子的干扰,就可以只扫描一个离子。
这时候,还可以调整一下分辨率来略微调节采样窗口的宽度。
比如,要对500 amu的离子做SIM,较高高分辨状态下,可以设定取样宽度为1.0,这时质谱只扫499.5~500.5 amu。
还有些高分辨率的仪器,可以设定取样宽度更小,比如0.2 amu,这时质谱只扫499.9~500.1 amu。
但对于较纯的、杂质干扰较少的体系,不妨设定较低的分辨率,比如取样宽度设为2 amu,这时质谱扫描499~501 amu,如果没有干扰的情况下,取样宽度宽一些,待测化合物的灵敏度就高一些,因为噪音很低;但是有很强干扰情况下,设定较高分辨,反而提高灵敏度信噪比,因为噪音降下去了。
(3)SRM:Selective Reaction Monitor,指选择反应监测,针对二级质谱或多级质谱的某两级之间,即母离子选一个离子,碰撞后,从形成的子离子中也只选一个离子。
因为两次都只选单离子,所以噪音和干扰被排除得更多,灵敏度信噪比会更高,尤其对于复杂的、基质背景高的样品。
我们不妨把它看成二级质谱的SIM,上述关于SIM的特点也适用,即分辨率高些,抗背景排干扰的能力就更强。
(4)MRM:Multi Reaction Monitor,指多反应监测,其实就是多个化合物同时测定时,多个SRM一起做。
那么特点就跟SRM是一样的。
有的厂家并不区分SRM和MRM,因为只要一次实验同是做几个SRM就是MRM方式了。
定性,一定会用Full Scan,因为想看到更多的离子。
定量,倾向于用SIM或SRM/MRM,因为想提高已知信号的强度。
背景基质越复杂,SRM/MRM就越好,尤其是分辨率设得高的SRM/MRM就越好。