2017~2018(一)概率统计试卷(理工类)A卷(答案)
- 格式:pdf
- 大小:473.13 KB
- 文档页数:6
2013-2017年新课标I 卷高考理科数学解答题概率统计(随机变量及其分布列 本小题满分12分)(2017全国1.理数.19)(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得x =0.212≈,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2=0.09≈.【考点】:统计与概率。
【思路】:(1)这是典型的二项分布,利用正态分布的性质计算即可。
(2)考察正态分布,代入运算即可。
【解析】:(1)()()1611010.997410.95920.0408P X P X ≥=-==-=-= 由题意可得,X 满足二项分布()~16,0.0016X B , 因此可得()16,0.0016160.00160.0256EX ==⨯= (2)○1由(1)可得()10.04085%P X ≥=<,属于小概率事件,故而如果出现(3,3)μσμσ-+的零件,需要进行检查。
绝密★启用前吉林省2017年高考理科数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.31ii+=+( ) A .12i + B .12i - C .2i + D .2i -2. 设集合{}1,2,4A =,{}240B x x x m =-+=.若{1}AB =,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,53. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A . 90πB .63πC .42πD .36π5. 设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 8. 执行右面的程序框图,如果输入的1a =-,则输出的S =( )A .2B .3C .4D .59. 若双曲线C :22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2 BC10. 已知直三棱柱111ABC A B C -中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1CB所成角的余弦值为( ) A.2 B.5 C.5D.3 11. 若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -D.112. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是( )A.2-B.32-C. 43- D.1- 二、填空题:本题共4小题,每小题5分,共20分。
2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .8πC .12D .4π19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得19.9716i i x x ===∑,161622221111()(16)0.2121616i i i i s x x x x ===-=-≈∑∑,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=, 160.997 40.959 2=,0.0080.09≈.13. 一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D X= .18.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率分布直方图如下:(1) 设两种养殖方法的箱产量相互独立,记A 表示事件“旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg ”,估计A 的概率;(2) 填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖箱产量<50kg 箱产量≥50kg 旧养殖法 新养殖法(3) 根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)22()()()()()n ad bc K a b c d a c b d -=++++P () 0.050 0.010 0.001k 3.841 6.635 10.828(2017年课标全国卷Ⅲ)3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶,为了确定六月份的订最高气温[)1015,[)1520,[)2025,[)2530,[)3035,[)3540,天数 2 16 36 25 7 4(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量(单位:瓶)为多少时,Y的数学期望达到最大值?(2018年课标全国卷Ⅰ)3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC 的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A.p1=p2 B.p1=p3 C.p2=p3 D.p1=p2+p320.(12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为)1p,且各件产品是否为不合格品相<p0(<互独立.学科&网(1)记20件产品中恰有2件不合格品的概率为)f的最大值点(p(pf,求)p.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定p作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户的手中,则工厂要对每件不合格品支付25元的赔偿费用.学.科网(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?(2018年课标全国卷Ⅱ)8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A.112B.114C.115D.11818.(12分)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1217,,…,)建立模型①:ˆ30.413.5yt =-+;根据2010年至2016年的数据(时间变量t 的值依次为127,,…,)建立模型②:ˆ9917.5y t =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.(2018年课标全国卷Ⅲ)8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p = A .0.7 B .0.6 C .0.4 D .0.3 18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所超过m 不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bcKa b c d a c b d-=++++,()2P K k≥0.0500.0100.001k 3.841 6.63510.828(2019年课标全国卷Ⅰ)4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm,头顶至脖子下端的长度为26 cm,则其身高可能是A.165 cm B.175 cm C.185 cm D.190 cm 6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.516B.1132C.2132D.111615.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4∶1获胜的概率是____________.21.(12分)为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =L 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =L ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}i i p p +-(0,1,2,,7)i =L 为等比数列;(ii)求4p ,并根据4p 的值解释这种试验方案的合理性.(2019年课标全国卷Ⅱ)5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差 D .极差13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为__________.18.(12分)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.(2019年课标全国卷Ⅲ)3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为A.0.5 B.0.6 C.0.7 D.0.8 17.(12分)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A、B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液,每组小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).。
第1页(共3页)中国矿业大学(北京) 2017-2018 学年 第1 学期《概率论与数理统计》试卷( A 卷)答案和评分标准一、填空题(每小题3分,共30分)1、设,A B 为两个事件,()0.4,()0.8,()0.5P A P B P AB ===,则(|)P B A =____0.75__________ 2、设随机变量X 在(3,3)-上服从均匀分布,关于t 的方程24420t Xt X +++=有实根的概率为______21_________ 3、设随机变量X 的概率密度函数为)(x f X ,则随机变量X e Y 3=的概率密度函数为=)(y f Y _____⎪⎩⎪⎨⎧+∞<<⎪⎭⎫ ⎝⎛其他,00,13ln y y y f X ___________4、如果随机变量X 在)10,0(上服从均匀分布,现在对X 进行4次独立重复观测,至少有3次观测值大于5的概率为____516__________ 5、设随机变量X 服从参数为(0)λλ>的泊松分布,且[(1)(2)]1E X X --=,则λ=______1_________6、设随机变量,X Y 相互独立,且都服从参数2θ=的指数分布,则{max{,}2}P X Y ≤=_____12(1)e --_________7、设随机变量X 的方差为2.5,由切比雪夫不等式估计概率{|()|7.5P X E X -≥≤____245_______ 8、设总体2~(,)X N μσ,12,,,n X X X 是该总体X 的一个样本,1211()n i i i c X X -+=-∑为2σ的无偏估计,则c =_______)1(21-n ___________9、设随机变量X 和Y 相互独立,且都服从正态分布2(0,3)N ,而129,,X X X 和129,,,Y Y Y 分别来自正态总体X 和Y 的简单随机样本,则统计量Y服从____)9(t ________分布10、设总体),(~2σμN X ,抽取容量16n =的样本n x x x ,,,21 ,经计算得均值,2.5=x 样本标准方差2=s ,则未知参数μ的置信度为0.95的置信区间为_____)266.6,134.4(____________二、(10分)设工厂A 和工厂B 的产品次品率分别为1%和2%.现从A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,求该次品属于工厂A 生产的概率.解:设事件A 表示产品来自工厂A ,事件B 表示产品来自工厂B ,事件C 表示抽取到的产品是次品,则%1)|(=A C P ,%2)|(=B C P ,%60)(=A P ,%40)(=B P 5分从而73%2%40%1%60%1%60)|()()|()()|()()|(=∙+∙∙=+=B C P B P A C P A P A C P A P C A P 5分第2页(共3页)三、(12分)学生完成一道作业的时间X 是一个随机变量,单位为小时.它的概率密度函数为21,0()20,cx x x f x ⎧+≤≤⎪=⎨⎪⎩其他(1)确定常数c ;(2)写出X 的分布函数;(3)试求出在20分钟以内完成一道作业的概率.解:(1)由概率密度函数的性质()122011()248c f x dx cx x dx +∞-∞==+=+⎰⎰ 解得21c = 4分(2)由2121,0()20,x x x f x ⎧+≤≤⎪=⎨⎪⎩其他,则()2230001()()217022112xxx x F x f t dt t t dt x x x -∞⎧<⎪⎪⎪==+=+≤≤⎨⎪⎪>⎪⎩⎰⎰ 4分 (3)1117()()3354P X F ≤==4分 四、(10分)设,X Y 是两个相互独立的随机变量,其概率密度函数分别是1,01()0,X x f x ≤≤⎧=⎨⎩其他 ,0()0,y Y e y f y -⎧>=⎨⎩其他 求随机变量Z X Y =+的概率密度函数.解:由卷积公式()()()X Y X Y f z f x f z x dx +∞+-∞=-⎰3分易知仅当010x z x ≤≤⎧⎨->⎩ 即 01x x z≤≤⎧⎨<⎩时被积函数不为零 2分()01()00,0()011zz x X Y z x z f z e dx z e dx z --+--⎧<⎪⎪=≤<⎨⎪⎪≥⎩⎰⎰ 3分即0,0()101(1)1zX Y z z f z ez e e z -+-<⎧⎪=-≤<⎨⎪-≥⎩2分 五、(10分)设(Y X ,)具有概率密度为26,01,01(,),0,xy x y f x y ⎧<<<<=⎨⎩其它 (1)求边缘概率密度(),()X Y f x f y ,并判断,X Y 是否独立; (2) 求条件概率密度)(y x f YX.解:(1)1206201()(,)0X xy dy x x f x f x y dy +∞-∞⎧=<<⎪==⎨⎪⎩⎰⎰其他12206301()(,)0Y xy dx y y f y f x y dx +∞-∞⎧=<<⎪==⎨⎪⎩⎰⎰其他 显然,(,)()()X Y f x y f x f y =,所以,X Y 相互独立 6分(2)当10<<y 时,⎩⎨⎧<<==取其他值x x x y f y x f y x f Y Y X ,010,2)(),()( 4分第3页(共3页)六、(10分)设二维随机变量),(Y X 的联合概率密度函数为⎩⎨⎧<<<=其他,010,3),(x y x y x f (1)求随机变量),(Y X 的协方差cov(,)X Y ; (2)求随机变量),(Y X 的相关系数. 解:(1)⎰⎰⎰⎰⎰+∞∞-+∞∞-====103233),()(1040210dx x ydy x dx dxdy y x xyf XY E x4333),()(1030210====⎰⎰⎰⎰⎰+∞∞-+∞∞-dx x dy x dx dy y x xf dx X E x83233),()(103010====⎰⎰⎰⎰⎰+∞∞-+∞∞-dx x dy xy dx dy y x yf dx Y E x则3cov(,)=()()()160X Y E XY E X E Y -= 5分(2)5333),()(104031022====⎰⎰⎰⎰⎰+∞∞-+∞∞-dx x dy x dx dy y x f x dx X E x513),()(104021022====⎰⎰⎰⎰⎰+∞∞-+∞∞-dx x dy xy dx dy y x f y dx Y E x8034353)()()(222=⎪⎭⎫ ⎝⎛-=-=X E X E X D320198351)()()(222=⎪⎭⎫ ⎝⎛-=-=Y E Y E Y D 193)()(),(==Y D X D Y X Cov ρ 5分 七、(8分)一个复杂的系统由100个相互独立起作用的部件所组成,在整个运行期间每个部件损坏的概率为0.10,为了使整个系统起作用,至少必须84个部件正常工作,求整个系统起作用的概率.解:设X 表示正常工作的部件个数,则~(100,0.9)X B ,由棣莫弗-拉普拉斯定理,近似服从(0,1)N 分布, 4分则()()908490(84)1(84)11220.977233X P X P X P --⎛⎫≥=-<=-<≈-Φ-=Φ= ⎪⎝⎭4分八、(10分)设总体X 的概率密度函数为23,0,(,)0,.x e x f x x θθθ-⎧>⎪=⎨⎪⎩其他其中θ为未知参数且大于零,12,,,n X X X 为来自总体X 的简单随机样本,(1)求θ的矩估计量;(2)求θ的最大似然估计量.解:(1)由于22320()xxx E X xe dx e dx e d x x x θθθθθθθθ---+∞+∞+∞⎛⎫===-= ⎪⎝⎭⎰⎰⎰, 令X θ=,解得θ的矩估计量为11=ni i X X n θ==∑ 5分(2)似然函数为2311,0(1,2,,)()(,)0,.i n xni i i ii e x i n L f x x θθθθ-==⎧>=⎪==⎨⎪⎩∏∏其他当0(1,2,,)i x i n >=时,()L θ=231inx i iexθθ-=∏,两边取对数31ln ()2ln ln ni i i L x x θθθ=⎡⎤=--⎢⎥⎣⎦∑令11ln ()21210n n i i i i d L n d x x θθθθ==⎡⎤=-=-=⎢⎥⎣⎦∑∑,解得θ的最大似然估计量为12=1ni inX θ=∑ 5分第4页(共3页)。
2017-2018年高考真题解答题专项训练概率与统计(理科)学生版2017------2018年高考真题解答题专项训练:概率与统计(理科)学生版1.已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I)应从甲、乙、丙三个部门的员工中分别抽取多少人?(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足..的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.2.电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数14050300200800510好评0.40.20.150.250.20.1率好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“ξk= 1”表示第k类电影得到人们喜欢,“ξk= 0”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差Dξ1,Dξ2,Dξ3,Dξ4,Dξ5,Dξ6的大小关系.3.某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工4.下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1, 2, ⋯, 17)建立模型①:ŷ=−30.4+13.5t;根据2010年至2016年的数据(时间变量t的值依次为1, 2, ⋯, 7)建立模型②:ŷ=99+17.5t.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.5.根据预测,某地第n(n∈N∗)个月共享单车的投放量和损失量分别为a n和b n(单位:辆),其中a n={5n4+15,1≤n≤3−10n+470,n≥4,b n=n+5,第n个月底的共享单车的保有量是前n个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n个月底的单车容纳量S n=−4(n−46)2+8800(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?6.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率。
最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改2017------2018年高考真题解答题专项训练:概率与统计(理科)学生版1.已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I)应从甲、乙、丙三个部门的员工中分别抽取多少人?(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期..望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.2.电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“”表示第k类电影得到人们喜欢,“”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差,,,,,的大小关系.3.某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:超过不超过第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:,4.下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.5.根据预测,某地第个月共享单车的投放量和损失量分别为和(单位:辆),其中,,第个月底的共享单车的保有量是前个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第个月底的单车容纳量(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?6.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率。
2017------2018 年高考真题解答题专项训练:概率与统计(理科)学生版1.已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7 人,进行睡眠时间的调查.(I)应从甲、乙、丙三个部门的员工中分别抽取多少人?(II)若抽出的7 人中有4 人睡眠不足,3 人睡眠充足,现从这7 人中随机抽取 3 人做进一步的身体检查.(i)用 X 表示抽取的3 人中睡眠不.足.的员工人数,求随机变量X 的分布列与数学期望;(ii)设 A 为事件“抽取的 3 人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件 A 发生的概率 .2.电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数140 50 300 200 800 510好评率0.4 0.2 0.15 0.25 0.2 0.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取 1 部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)从第四类电影和第五类电影中各随机选取 1 部,估计恰有1部获得好评的概率;(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“”表示第k 类电影得到人们喜欢,“”表示第k 类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差,,,,,的大小关系.3.某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40 名工人,将他们随机分成两组,每组20 人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:试卷第 1 页,总4 页(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40 名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:超过不超过第一种生产方式第二种生产方式(3)根据( 2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:,4.下图是某地区2000 年至 2016 年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018 年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000 年至 2016 年的数据(时间变量的值依次为)建立模型①:;根据 2010年至 2016 年的数据(时间变量的值依次为)建立模型②:.(1)分别利用这两个模型,求该地区2018 年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.5.根据预测,某地第个月共享单车的投放量和损失量分别为和(单位:试卷第 2 页,总4 页辆),其中,,第个月底的共享单车的保有量是前个月的累计投放量与累计损失量的差.(1)求该地区第 4 个月底的共享单车的保有量;(2)已知该地共享单车停放点第个月底的单车容纳量(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?6.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶 4 元,售价每瓶 6 元,未售出的酸奶降价处理,以每瓶 2 元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20 ,25),需求量为300 瓶;如果最高气温低于20,需求量为200 瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数 2 16 36 25 7 4以最高气温位于各区间的频率代替最高气温位于该区间的概率。
肇庆市中小学教学质量评估 2018届高中毕业班第一次统一检测题理科数学参考答案及评分标准一、选择题二、填空题13. 0.8413 14. 120- 15. 22π+ 16. 1700三、解答题(17)(本小题满分12分) 解:(Ⅰ) 满意度评分的众数=6070652+= (2分) 因为()()0.010.02100.30.5,0.010.020.03100.60.5+⨯=<++⨯=>,所以满意度评分的中位数在[60,70)之间,设中位数为a ,则()600.030.50.3a -⨯=-,得66.7a ≈ (5分) (Ⅱ)(9分)()22802430101610.03 6.63540403446K ⨯⨯-⨯=≈>⨯⨯⨯, (11分)所以有99.9%的把握认为用户满意度与地区有关. (12分)(18)(本小题满分12分)(Ⅰ)证明:如图,取VD 的中点F ,连接,EF AF . (1分)在VCD ∆中,EF 是中位线,所以1//2EF CD , (2分)又1//2AB CD ,所以//EF AB , (3分) 所以四边形ABEF 是平行四边形,所以//BE AF . (4分) 又,BE VAD AF VAD ⊄⊂面面,所以//BE VAD 面. (6分) (Ⅱ)因为//,AB CD CD VD ⊥,所以AB VD ⊥, (8分) 又因为AB VA ⊥,VA VD V =,,VA VD 都在VAD 面内,所以AB VAD ⊥面. (10分) 又AB ABCD ⊂面,所以面ABCD ⊥VAD 面. (12分)(19)(本小题满分12分)解:(Ⅰ)设“小王恰好抽奖3次停止”为事件A ,则()1123223515C C A P A A ==. (4分) (2)X 可取200,300,400,500 (5分)()2225120010A P X A ===,()()1123223513005C C A P X P A A ====, (7分) ()21332345340010C C A P A ==,()3143245525005C C A P A ==. (9分) X 的分布列如下表200300400500400105105EX =⨯+⨯+⨯+⨯= (12分)(20)(本小题满分12分)(Ⅰ)证明:如图,取AD 的中点E ,连接,SE BE . (1分) 因为SA SD =,所以AD SE ⊥. (2分) 在菱形ABCD 中,060DAB ∠=,所以ABD ∆是等边三角形,所以AD BE ⊥. (3分) 又因为,,SEBE E SE SBE BE SBE =⊂⊂面面,所以AD SBE ⊥面. (5分)因为BS SBE ⊂面,所以AD BS ⊥. (6分)(Ⅱ)因为ABD ∆和ASD ∆是等边三角形,经计算,22SE BE ==. (7分) 由(Ⅰ)知,SEB ∠是二面角S AD B --的平面角, (8分)222cos 27SE BE SB SEB SE SB +-∠==-, (11分) 所以二面角S AD B --的余弦值为. (12分)(21)(本小题满分12分)解:(Ⅰ)在Rt BEC ∆中,03cos302CE CB ==,12AE AC CE =-=,03sin 30BE CB ==由tan BEBAC AE∠==,得060BAC ∠= 0000180603090ABC ∠=--=,即BC AB ⊥. (1分)又因为PAB ABC ⊥面面,PABABC AB =面面,BC ABC ⊂面所以BC PAB ⊥面,所以BC PA ⊥ (3分) 由BE AC ⊥,同理可得BE PA ⊥,又BEBC B =,所以PA ABC ⊥面. (4分)(Ⅱ)如图,建立空间直角坐标系,则10,,02E ⎛⎫⎪⎝⎭,1,02B ⎫⎪⎪⎝⎭,()0,2,0C ,()0,0,1P,3,,022BC ⎛⎫=- ⎪ ⎪⎝⎭,()0,2,1CP =-. (5分) 设(),,n x y z =是面PBC 的一个法向量,则00BC n PC n ⎧=⎪⎨=⎪⎩即30220y y z ⎧+=⎪⎨⎪-+=⎩,方程组的一组解为12x y z ⎧=⎪=⎨⎪=⎩,即()3,1,2n = (7分)设()01CF CP λλ=≤≤则AF AC AP AC λλ-=-, 即()1AF AP AC λλ=+-=()022,λλ-,,30,2,2EF AF AE λλ⎛⎫=-=- ⎪⎝⎭(8分)依题意有385cos ,68EF n EF n EF n==,得1=10λ或11=10λ(舍去) (10分)则有410,,510F ⎛⎫⎪⎝⎭,即三棱锥F CBE -的高为110,(11分) 113132210F CBE V -=⨯⨯=(12分)(22)(本小题满分10分) 解:(Ⅰ)24cos ,4cos ρθρρθ=∴=, (1分)由222,cos x y x ρρθ=+=,得224x y x +=. (3分)所以曲线C 的直角坐标方程为()2224x y -+=. (4分)(Ⅱ)把 1cos sin x t y t αα=-+⎧⎨=⎩代入224x y x +=,整理得26cos 50t t α-+= (5分)设其两根分别为 12,t t ,则12126cos ,5,t t t t α+==(6分)12PQ t t ∴=-===(7分)得cos 2α=±,566ππα=或,(9分)所以直线l 的斜率为 (10分)(23)(本小题满分10分)解:(Ⅰ)当2x ≥时,125,x x ++-≤ ∴3x ≤,∴23x ≤≤; (1分) 当12x -<<时,125,x x +-+≤∴12x -<<; (2分) 当1x ≤-时,125,x x ---+≤∴2x ≥-,∴21x -≤≤- (3分) 综上所述,23x -≤≤,即不等式()5f x ≤的解集为{|23}x x -≤≤. (4分) (Ⅱ)当[]0,2x ∈时,()123f x x x =+-+=, (5分)()22f x x x m ≥-++ ,即232x x m ≥-++,即2230x x m --+≥. (6分)也就是 ()2120x m --+≥,在[]0,2x ∈恒成立, (7分) 当1x =时,()212x m --+取得最小值2m -, (8分) 由20m -≥,得2m ≤,即m 的取值范围是{|2}m m ≤. (10分)。
2018年普通高等学校招生全国统一考试数学分类解析—概率统计一.选择题:1. (安徽理)(10).设两个正态分布2111()(0)N μσσ>,和2222()(0)N μσσ>,的密度函数图像如图所示。
则有( A ) A .1212,μμσσ<<B .1212,μμσσ<>C .1212,μμσσ><D .1212,μμσσ>>2.(福建理)(5)某一批花生种子,如果每1粒发牙的概率为45,那么播下4粒种子恰有2粒发芽的概率是 (B )A.16625 B.96625 C.192625D.2566253. (福建文)(5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是 (C )A.12125 B.16125 C.48125 D.961254. (广东理)(3).某校共有学生2000名,各年级男、女生人数如表1.已知在全校 学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( C ) A .24 B .18 C .16 D .125.(湖南理) 4.设随机变量ζ服从正态分布N (2,9) ,若P (ζ>c+1)=P (ζ<c -)1,则c =(B)A.1B.2C.3D.46. (江西文)(11).电子钟一天显示的时间是从00:00到23:59,每一时刻都由四个数字组成,则一天中任一时刻显示的四个数字之和为23的概率为 (C )A .1180 B .1288 C .1360D .14807. (辽宁理文)(7).4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( C ) A.13 B.12 C.23 D.348.(山东理)(7)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为(B ) (A )511(B )681 (C )3061(D )40819.(山东理) (8)右图是根据《山东统计年整2018》中的资料作成的1997年至2018年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2018年我省城镇居民百户家庭人口数的平均数为(B )(A )318.6 (B )318.6 (C)318.6 (D)301.6 10.(山东文)9.从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( B )AB C .3D .8510.(陕西文)(3).某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( C ) A .30 B .25 C .20 D .15 11.(重庆理)(5)已知随机变量ζ服从正态分布N (3,a 2),则P (3)ζ<=(D )(A)15(B)14(C)13(D)1212. (重庆文)(5)某交高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是(D )(A)简单随机抽样法(B)抽签法7420136203851192(C)随机数表法 (D)分层抽样法13.(重庆文)(9)从编号为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为 (B )(A)184(B)121(C)25(D)35二.填空题:1.(广东文) (11).为了调查某厂工人生产某种产品的能力,随机抽查 了20位工人某天生产该产品的数量.产品数量的分组区间为[)45,55,[)[)[)55,65,65,75,75,85, [)85,95由此得到频率分布直方图如图,则这20名工人中一天生产该产品数量在[)55,75的人数是 13 .2.(海南宁夏理文)(16).从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm ),结果如下:甲品种:271 273 280 285 285 287 292 294 295 301 318 318 318 318 310 314 319 323 325 325 328 331 334 337 352乙品种:284 292 295 318 318 318 312 313 315 315 316 318 318 320 322 322 324 327 329 331 333 336 337 343 356 由以上数据设计了如下茎叶图根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论: ① ;3 127 7 5 5 0 28 4 5 4 2 29 2 5 8 7 3 3 1 30 4 6 79 4 0 31 2 3 5 5 6 8 8 8 5 5 3 32 0 2 2 4 7 9 7 4 1 33 1 3 6 734 3 2 35 6甲乙② .以下任填两个:(1).乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度). (2).甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大). (3).甲品种棉花的纤维长度的中位数为318mm ,乙品种棉花的纤维长度的中位数为318mm . (4).乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀.3. (湖北文)11.一个公司共有1 000名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为50的样本,已知某部门有200名员工,那么从该部门抽取的工人数是 10 . 4.(湖北文)14.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一准时响的概率是 0.98 .5. (湖南理)15.对有n (n ≥4)个元素的总体{1,2,3,…,n }进行抽样,先将总体分成两个子总体{1,2,…,m }和{m +1、m +2,…,n }(m 是给定的正整数,且2≤m ≤n -2),再从每个子总体中各随机抽取2个元素组成样本,用P i j 表示元素i 和f 同时出现在样本中的概率,则P 1m =4()m n m -;所有P if (1≤i <j ≤)n 的和等于 6 .6. (湖南文)(12)从某地区15000位老人中随机抽取500人,其生活能否自理的情况如下表所示:则该地区生活不能自理的老人中男性比女性约多____60____人。
2018届高考数学(理)热点题型:概率与统计((有答案))D23456=⎝ ⎛⎭⎪⎫232+13×⎝ ⎛⎭⎪⎫232+23×13×⎝ ⎛⎭⎪⎫232=5681. (2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)·P (B 2)=59,P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=29,P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)P (B 4)=1081, P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881. 故X 的分布列为X 2 3 4 5 P59291081881E (X )=2×59+3×29+4×1081+5×881=22481.【类题通法】求离散型随机变量的均值和方差问题的一般步骤 第一步:确定随机变量的所有可能值; 第二步:求每一个可能值所对应的概率; 第三步:列出离散型随机变量的分布列; 第四步:求均值和方差;第五步:反思回顾.查看关键点、易错点和答题规范.【对点训练】为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元.求: ①顾客所获的奖励额为60元的概率; ②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和507元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由. 解 (1)设顾客所获的奖励额为X .①依题意,得P (X =60)=C 11C 13C 24=12,即顾客所获的奖励额为60元的概率为12.②依题意,得X 的所有可能取值为20,60. P (X =60)=12,P (X =20)=C 23C 24=12,即X 的分布列为X 20 60 P1212所以顾客所获的奖励额的数学期望为E (X )=20×12+60×12=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理,可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2. 以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X 1,则X 1的分布列为X 1 20 60 100 P162316X 1的数学期望为E (X 1)=20×16+60×23+100×16=60(元),X1的方差为D(X1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X240 60 80P162316X2的数学期望为E(X2)=40×16+60×23+80×16=60(元),X2的方差为D(X2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.热点三概率与统计的综合应用概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键.复习时要在这些图表上下工夫,把这些统计图表的含义弄清楚,在此基础上掌握好样本特征数的计数方法、各类概率的计算方法及数学均值与方差的运算.【例3】2018年6月14日至7月15日,第21届世界杯足球赛将于俄罗斯举行,某大学为世界杯组委会招收志愿者,被招收的志愿者需参加笔试和面试,把参加笔试的40名大学生的成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示:(1)分别求出成绩在第3,4,5组的人数;(2)现决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6人进行面试.①已知甲和乙的成绩均在第3组,求甲或乙进入面试的概率;②若从这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有X名学生被考官D面试,求X的分布列和数学期望.89解 (1)由频率分布直方图知: 第3组的人数为5×0.06×40=12. 第4组的人数为5×0.04×40=8. 第5组的人数为5×0.02×40=4.(2)利用分层抽样,在第3组,第4组,第5组中分别抽取3人,2人,1人. ①设“甲或乙进入第二轮面试”为事件A ,则 P (A )=1-C 310C 312=511,所以甲或乙进入第二轮面试的概率为511.②X 的所有可能取值为0,1,2,P (X =0)=C 24C 26=25,P (X =1)=C 12C 14C 26=815,P (X =2)=C 22C 26=115.所以X 的分布列为X 0 1 2 P25815115E (X )=0×25+1×815+2×115=1015=23.【类题通法】本题将传统的频率分布直方图与分布列、数学期望相结合,立意新颖、构思巧妙.求解离散型随机变量的期望与频率分布直方图交汇题的“两步曲”:一是看图说话,即看懂频率分布直方图中每一个小矩形面积表示这一组的频率;二是活用公式,本题中X 服从超几何分布.【对点训练】某公司为了解用户对某产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下: A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.解(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.(2)记C A1表示事件:“A地区用户的满意度等级为满意或非常满意”;C A2表示事件:“A地区用户的满意度等级为非常满意”;C B1表示事件:“B地区用户的满意度等级为不满意”;C B2表示事件:“B地区用户的满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,C=C B1C A1∪C B2C A2.P(C)=P(C B1C A1∪C B2C A2)10=P (C B 1C A 1)+P (C B 2C A 2) =P (C B 1)P (C A 1)+P (C B 2)P (C A 2).由所给数据得C A 1,C A 2,C B 1,C B 2发生的频率分别为1620,420,1020,820,即P (C A 1)=1620,P (C A 2)=420,P (C B 1)=1020,P (C B 2)=820,故P (C )=1020×1620+820×420=0.48.热点四 统计与统计案例能根据给出的线性回归方程系数公式求线性回归方程,了解独立性检验的基本思想、方法,在选择或填空题中常涉及频率分布直方图、茎叶图及样本的数字特征(如平均数、方差)的考查,解答题中也有所考查.【例4】从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1x i =80,∑10i =1y i =20,∑10i =1x i y i =184,∑10i =1x 2i =720. (1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程y ^=b ^x +a ^中,b ^=,a ^=y -b ^ x ,其中x ,y 为样本平均值.解 (1)由题意知n =10,x =1n ∑n i =1x i =8010=8, y =1n ∑n i =1y i=2010=2, 又l xx =∑ni =1x 2i -n x 2=720-10×82=80, l xy =∑ni =1x i y i -n x y =184-10×8×2=24, 由此得b ^=l xy l xx =2480=0.3,a ^=y -b ^x =2-0.3×8=-0.4, 故所求线性回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b ^=0.3>0),故x 与y 之间是正相关.(3)将x=7代入回归方程可以预测该家庭的月储蓄为y^=0.3×7-0.4=1.7(千元).【类题通法】(1)分析两个变量的线性相关性,可通过计算相关系数r来确定,r的绝对值越接近于1,表明两个变量的线性相关性越强,r的绝对值越接近于0,表明两变量线性相关性越弱.(2)求线性回归方程的关键是正确运用b^,a^的公式进行准确的计算.【对点训练】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查.下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图.若将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.(1)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?非读书迷读书迷总计男15女45总计(2)将频率视为概率.1人,共抽取3次,记被抽取的3人中的“读书迷”的人数为X.若每次抽取的结果是相互独立的,求X 的分布列、期望E(X)和方差D(X).解(1)完成2×2列联表如下:非读书迷读书迷总计男401555女202545总计60 40 100K 2=100×(40×2560×40×55×45≈8.249>6.635,故有99%的把握认为“读书迷”与性别有关.(2)将频率视为概率.则从该校学生中任意抽取1名学生恰为读书迷的概率P =25.由题意可知X ~B ⎝ ⎛⎭⎪⎫3,25,P (X =i )=C i 3⎝ ⎛⎭⎪⎫25i ⎝ ⎛⎭⎪⎫353-i (i =0,1,2,3). X 的分布列为X 0 1 2 3 P2712554125361258125均值E (X )=np =3×25=65,方差D (X )=np (1-p )=3×25×⎝⎛⎭⎪⎫1-25=1825.。