《概率论与数理统计》课程练习计算题 2
- 格式:doc
- 大小:2.58 MB
- 文档页数:31
《概率论与数理统计》习题及答案第 二 章1.假设一批产品中一、二、三等品各占60%,30%,10%,从中任取一件,发现它不是三等品,求它是一等品的概率.解 设i A =‘任取一件是i 等品’ 1,2,3i =,所求概率为13133()(|)()P A A P A A P A =,因为 312A A A =+所以 312()()()0.60.30.9P A P A P A =+=+=131()()0.6P A A P A ==故1362(|)93P A A ==. 2.设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,求另一件也是不合格品的概率.解 设A =‘所取两件中有一件是不合格品’i B =‘所取两件中恰有i 件不合格’ 1, 2.i = 则12A B B =+11246412221010()()()C C C P A P B P B C C =+=+, 所求概率为2242112464()1(|)()5P B C P B A P A C C C ===+. 3.袋中有5只白球6只黑球,从袋中一次取出3个球,发现都是同一颜色,求这颜色是黑色的概率.解 设A =‘发现是同一颜色’,B =‘全是白色’,C =‘全是黑色’,则 A B C =+, 所求概率为336113333611511/()()2(|)()()//3C C P AC P C P C A P A P B C C C C C ====++ 4.从52张朴克牌中任意抽取5张,求在至少有3张黑桃的条件下,5张都是黑桃的概率.解 设A =‘至少有3张黑桃’,i B =‘5张中恰有i 张黑桃’,3,4,5i =, 则345A B B B =++, 所求概率为555345()()(|)()()P AB P B P B A P A P B B B ==++51332415133********1686C C C C C C ==++. 5.设()0.5,()0.6,(|)0.8P A P B P B A ===求()P A B 与()P B A -.解 ()()()() 1.1()(|) 1.10P AB P A P B P A B P A P B A =+-=-=-= ()()()0.60.40.2P B A P B P AB -=-=-=.6.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。
概率论与数理统计课程第二章练习题及解答一、判断题(在每题后的括号中 对的打“√”错的打“×” )1、连续型随机变量X 的概率密度函数)(x f 也一定是连续函数 (×)2、随机变量X 是定义在样本空间S 上的实值单值函数 (√)3、取值是有限个或可列无限多个的随机变量为离散随机变量 (√)4、离散型随机变量X 的分布律就是X 的取值和X 取值的概率 (√)5、随机变量X 的分布函数()F x 表示随机变量X 取值不超过x 的累积概率(√)6、一个随机变量,如果它不是离散型的那一定是连续型的 (×)7、我们将随机变量分成离散型和连续型两类 (×)8、若()()()()P ABC P A P B P C =成立,则,,A B C 相互独立 (×)9、若,,A B C 相互独立,则必有()()()()P ABC P A P B P C = (√) 二、单选题1、设123,,X X X 是随机变量,且22123~(0,1),~(0,2),~(5,3),X N X N X N{22)(1,2,3)i i P P X i =-≤≤=,则( A )A .123P P P >> B. 213P P P >> C. 321P P P >> D. 132P P P >>2、设随机变量~(0,1)X N ,其分布函数为()x Φ,则随机变量min{,0}Y X =的分布函数()F y 为( D )A 、1,()(),0y F y y y >⎧=⎨Φ≤⎩ B 、1,()(),0y F y y y ≥⎧=⎨Φ<⎩C 、0,()(),y F y y y ≤⎧=⎨Φ>⎩ D 、0,()(),y F y y y <⎧=⎨Φ≥⎩ 3、设随机变量X 的密度函数为()x ϕ,且()()x x ϕϕ-=,()F x 是X 的分布函数,则对任意实数a ,有( B )A 、0()1()aF a x dx ϕ-=-⎰B 、01()()2a F a x dx ϕ-=-⎰C 、()()F a F a -=D 、()2()1F a F a -=-分析 ()()()()a a aF a x dx x tt dt x dx ϕϕϕ-+∞-∞+∞-==--=⎰⎰⎰令1()()()()()2()aa a aax dx x dx x dx x dx x dxFa a x dxϕϕϕϕϕϕ+∞-+∞-∞-∞-==+++=⎰⎰⎰⎰⎰⎰(-)+21()()2a F a x dx ϕ-=-⎰,选B4、设1F x ()与2F x ()分别为随机变量1X 与2X 的分布函数,为使12F x aF x bF x()=()-()是某一随机变量的分布函数,在下列给定的各组数值中应取( A )A 、3255a b ==-,B 、2233a b ==,C 、1322a b =-=,D 、1322a b ==-,分析 根据分布函数的性质lim 1x F x →+∞=(),即121lim x F x F aF bF a b →+∞=∞∞∞()=(+)=(+)-(+)=-在给的四个选项中只有A 满足1a b =-,选A5、设1X 和2X 是任意两个相互独立的连续型随机变量,它们的概率密度分别为1f x ()和2f x (),分布函数分别为1F x()和2F x (),则( D ) A 、12f x f x ()+()必为某一随机变量的概率密度 B 、12f x f x ()()必为某一随机变量的概率密度C 、12F x F x()+()必为某一随机变量的分布密度 D 、12F x F x()()必为某一随机变量的分布密度 分析 首先可否定选项A 与C ,因为1212[]21f x f xdx f xdx f xdx +∞+∞+∞-∞-∞-∞=+=≠⎰⎰⎰()+()()()12F F ∞∞≠(+)+(+)=1+1=21对于选项B ,若112x f x -⎧⎨⎩,〈〈-1()=0,其它,210x f x ⎧⎨⎩,〈〈1()=0,其它,则对任何 1212(,),0,01x f x f x f xf x dx +∞-∞∈-∞+∞≡=≠⎰()()()(),也应否定C 。
北京交通大学远程教育课程作业年级:层次:专业名称:课程名称:作业序号:学号:姓名:作业说明:1、请下载后对照网络学习资源、光盘、学习导航内的导学、教材等资料学习;有问题在在线答疑处提问;2、请一定按个人工作室内的本学期教学安排时间段按时提交作业,晚交、不交会影响平时成绩;需要提交的作业内容请查看下载作业处的说明3、提交作业后,请及时查看我给你的评语及成绩,有疑义请在课程工作室内的在线答疑部分提问;需要重新上传时一定留言,我给你删除原作业后才能上传4、作业完成提交时请添加附件提交,并且将作业附件正确命名:学号课程名称作业次数《概率论与数理统计》习题二第三章多维随机变量及其分布一、选择题1、设二维随机变量(X,Y则P{XY=2}=()A. B. C. D.2、设二维随机变量(X,Y)的概率密度为,则当时,(X,Y)关于X的边缘概率密度为f x(x)=()A. B.2x C. D. 2y3、二维随机变量(X,Y)的联合密度函数是f(x,y),分布函数为F(x,y),关于X,Y的边缘分布函数分别是F X(x),F Y(y),则,,分别为()A.0,F X(x),F(x,y) B. 1,F Y(y),F(x,y)C. f(x,y), F(x,y) , F Y(y)D. 1, F X(x),F(x,y)4、设随机变量X,Y,独立同分布且X的分布函数为F(x),则Z=max{X,Y}的分布函数为()A.F2(z) B. 1,F(x)F(y)C. 1-[1-F(z)]2D. [1-F(x)][1-F(y)]5、设X~N(-1,2),Y~N(1.3),且X与Y相互独立,则X+2Y~()A.N(1,8) B.N(1,14) C.N(1,22) D. N(1,40)二、填空题1、设X和Y为两个随机变量,且P{X,Y}=,P{X}= P{Y}=,则P{max{X,Y}}=______2、设随机变量Xi~(i=1,2……),且满足P{X1X2=0}=1,则P{X1=X2}等于_______________3、设平面区域D由曲线y=及直线y=0,x=1,x=e2,所围成,二维随机变量(X,Y)在区域D上服从均匀分布,则(X,Y)关于X的边缘概率密度在x=2处的值为__________4、 设随机变量X 与Y 相互独立,且服从区间[0,3]上的均匀分布,则P{max{X,Y }}=___________5、 设随机变量(X ,Y )~N (0,22;1,32;0),则P{}=_________三、解答题1. 在一箱子里装有12只开关,其中2只是次品,在其中随机地取两次,每次取一只。
1. 试分别给出随机变量的可能取值为可列、有限的实例.解 用X 表示一个电话交换台每小时收到呼唤的次数,X 的全部可能取值为可列的 0,1,2,3,…,;用Y 表示某人掷一枚骰子出现的点数,Y 的全部可能取值为有限个 1,2,3,4,5,6 ;2. 试给出随机变量的可能取值至少充满一个实数区间的实例.解 用X 表示某灯泡厂生产的灯泡寿命(以小时记),X 的全部可能取值为区间 (0,+∞)3. 设随机变量X 的分布函数()F x 为()F x = 2 1, >20, 2A x xx ⎧-⎪⎨⎪≤⎩ 确定常数A 的值,计算(04)P X ≤≤.解 由(20)(2),F F +=可得10, =44AA -= (04)(04)(4)(0)0.75P X P X F F ≤≤=<≤=-=.4.试讨论:A 、B 取何值时函数()arctan3xF x A B =+ 是分布函数. 解 由分布函数的性质,有()()0,1F F -∞=+∞=,可得0,211,,21,2A B A B A B πππ⎧⎛⎫+-= ⎪⎪⎪⎝⎭⇒==⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩于是()11arctan ,.23xF x x π=+-∞<<+∞1.设10个零件中有3个不合格. 现任取一个使用,若取到不合格品,则丢弃重新抽取一个,试求取到合格品之前取出的不合格品数X 的概率分布.解 由题意知,X 的取值可以是0,1,2,3.而X 取各个值的概率为{}{}70,103771,10930P X P X ====⨯= {}{}32772,1098120321713.10987120P X P X ==⨯⨯===⨯⨯⨯= 因此X 的概率分布为012 377711030120120X ⎡⎤⎢⎥⎢⎥⎣⎦2.从分别标有号码1 ,2 ,… ,7的七张卡片中任意取两张, 求余下的卡片中最大号码的概率分布.解 设X 为余下的卡片的最大号码 ,则X 的可能取值为5、6、7,且1{5}21P X ==5{6}21P X ==15{7}21P X ==即所求分布为567 1515212121X ⎡⎤⎢⎥⎢⎥⎣⎦ 3.某人有n 把外形相似的钥匙,其中只有1把能打开房门,但他不知道是哪一把,只好逐把试开.求此人直至将门打开所需的试开次数的概率分布.解 设此人将门打开所需的试开次数为X ,则X 的取值为1,2,3,...,k n =,事件{}{}1X k k k ==-前次未打开,第次才打开,且{}11P X n ==, {}11121n P X n n n-==⋅=-,… …,{}()121112111,2,....,n n n k P X k n n n k n k k n n ---+==⋅⋅⋅⋅--+-+== 故所需试开次数的分布为12~111X n nn ⎡⎤⎢⎥⎢⎥⎣⎦ ... n .... 4.随机变量X 只取1 、2 、3共三个值,并且取各个值的概率不相等且组成等差数列,求X 的概率分布.解 设{}{}{}1,2,3P X a P X b P X c ======,则由题意有1a b c c b b a ++=⎧⎨-=-⎩解之得2313a c b ⎧+=⎪⎪⎨⎪=⎪⎩设三个概率的公差为d ,则11,33a d c d =-=+,即X 的概率分布为 12 3111333X d d⎡⎤⎢⎥⎢⎥-+⎢⎥⎣⎦,103d << 5.设随机变量X 的全部可能取值为1 ,2 ,… ,n ,且()P X k = 与k 成正比,求X 的概率分布.解 由题意,得{}() 1,2,,k P X k p ck k n ====其中c 是大于0的待定系数.由11nkk p==∑,有12....1nk k cp c c n c ==+++=∑ 即()112n n c +=,解之得 ()21c n n =+.把()21c n n =+代入k p ,可得到X 的概率分布为{}()2,1,2,...,.1kP X k k n n n ===+6.一汽车沿街道行驶时须通过三个均设有红绿灯的路口.设各信号灯相互独立且红绿两种信号显示的时间相同,求汽车未遇红灯通过的路口数的概率分布.解 设汽车未遇红灯通过的路口数为X ,则X 的可能值为0,1,2,3.以()1,2,3i A i =表示事件“汽车在第i 个路口首次遇到红灯”,则123,,A A A 相互独立,且()()1,1,2,32i i P A P A i ===.对0,1,2,3k =,有{}()1102P X P A ==={}()()()1212211142P X P A A P A P A ===== {}()123311282P X P A A A ==== {}()123311382P X P A A A ==== 所以汽车未遇红灯通过的路口数的概率分布为012 311112488X ⎡⎤⎢⎥⎢⎥⎣⎦7.将一颗骰子连掷若干次,直至掷出的点数之和超过3为止.求掷骰子次数的概率分布.解 设掷骰子次数为X ,则X 可能取值为1,2,3,4,且31{1}62P X === 141515{2}6666612P X ==⨯+⨯+=;115111117{3}6666666216P X ==⨯⨯+⨯+⨯=; 1111{4}666216P X ==⨯⨯=所以掷骰子次数X 的概率分布为123 415171212216216X ⎡⎤⎢⎥⎢⎥⎣⎦ 8.设X 的概率分布为试求(1)X 的分布函数并作出其图形;(2) 计算{11}P X -≤≤ ,{0 1.5}P X ≤≤ ,{2}P X ≤ . 解(1)由公式 (){}()k kx xF X P X x p x ≤=≤=-∞<<+∞∑,得()0,00.2,010.5,120.6,231,3x x F X x x x <⎧⎪≤<⎪⎪=≤<⎨⎪≤<⎪≥⎪⎩(2) {}11(1)(10)0.500.5P X F F -≤≤=---=-= {}0 1.5(1.5)(00)0.500.5P X F F ≤≤=--=-={}2(2)0.6P X F ≤==9.设随机变量X 的分布函数为010.210()0.70212x x F x x x <-⎧⎪-≤<⎪=⎨≤<⎪⎪≥⎩,,,,试求(1) 求X 的概率分布;(2) 计算1322P X ⎧⎫-<≤⎨⎬⎩⎭,{1}P X ≤- ,{03}P X ≤< ,{1|0}P X X ≤≥解 (1)对于离散型随机变量,有{}()()0P X k F k F k ==--,因此,随机变量X 的概率分布为10 2 0.20.50.3X -⎡⎤⎢⎥⎣⎦ (2) 由分布函数计算概率,得13310.52222P X F F ⎧⎫⎛⎫⎛⎫-<≤=--=⎨⎬ ⎪ ⎪⎩⎭⎝⎭⎝⎭;{}()110.2P X F ≤-=-=;{}()0330(00)10.20.8P X F F ≤<=---=-=; {}{}{}{}{}1,0100010.50.625.00.8P X X P X X P X P X P X ≤≥≤≥=≥≤≤===≥10.已知随机变量X 服从0—1分布,并且{0}P X ≤=0.2,求X 的概率分布 . 解 X 只取0与1两个值,{0}P X =={0}P X ≤-{0}P X <=0.2,{1}1{0}0.8P X P X ==-==11.已知{}P X n == nP ,n =1,2,3,⋯,求P 的值 .解 因为1{}1,n P X n ∞===∑ 有 11=,1n n pp p∞==-∑解此方程,得0.5p =. 12.商店里有5名售货员独立地售货.已知每名售货员每小时中累计有15分钟要用台秤.(1) 求在同一时刻需用台秤的人数的概率分布;(2) 若商店里只有两台台秤,求因台秤太少而令顾客等候的概率.解 (1) 由题意知,每名售货员在某一时刻使用台秤的概率为150.2560p ==, 设在同一时刻需用台秤的人数为X , 则()~5,0.25X B , 所以{}550.250.75(0,1,2,3,4,5)kk k P X k C k -===(2) 因台秤太少而令顾客等候的概率为{}{}55553320.250.75k k k k k P X P X k C -==>===∑∑332445550.250.750.250.750.250.1035C C =++≈13.保险行业在全国举行羽毛球对抗赛,该行业形成一个羽毛球总队,该队是由各地区的部分队员形成.根据以往的比赛知,总队羽毛球队实力较甲地区羽毛球队强,但同一队中队员之间实力相同,当一个总队运功员与一个甲地区运动员比赛时,总队运动员获胜的概率为0.6,现在总队、甲队双方商量对抗赛的方式,提出三种方案:(1)双方各出3人; (2)双方各出5人; (3)双方各出7人.3种方案中得胜人数多的一方为胜利.问:对甲队来说,哪种方案有利?解 设以上三种方案中第i 种方案甲队得胜人数为(1,2,3),i X i =则上述3种方案中,甲队胜利的概率为(1){}331322(0.4)(0.6)0.352k k k k P X C -=≥=≈∑(2){}552533(0.4)(0.6)0.317k k k k P X C -=≥=≈∑(3){}773744(0.4)(0.6)0.290kk k k P X C -=≥=≈∑因此第一种方案对甲队最为有利.这和我们的直觉是一致的。
第二章练习题(答案)一、单项选择题1.已知连续型随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤+<=ππx x b kx x x F ,10,0,0)( 则常数k 和b 分别为 ( A )(A )0,1==b k π (B )π1,0b k = (C )0,21==b k π (D )π21,0==b k . 2.下列函数哪个是某随机变量的分布函数 ( A )A. f (x )={xa e −x 22a,x ≥01, x <0(a >0); B. f (x )={12cosx, 0< x <π0, 其他C. f (x )={cosx, −π2< x <π20, 其他D. f (x )={sinx, −π2< x <π20, 其他3.若函数()f x 是某随机变量X 的概率密度函数,则一定成立的是 ( C ) A. ()f x 的定义域是[0,1] B. ()f x 的值域为[0,1] C. ()f x 非负 D. ()f x 在(,)-∞+∞内连续4. 设)1,1(~N X ,密度函数为)(x f ,则有( C ) A.{}{}00>=≤X P X P B. )()(x f x f -= C. {}{}11>=≤X P X P D. )(1)(x F x F --=5. 设随机变量()16,~μN X ,()25,~μN Y ,记()41-<=μX P p ,()52+>=μY P p ,则正确的是 ( A ).(A )对任意μ,均有21p p = (B )对任意μ,均有21p p < (C )对任意μ,均有21p p > (D )只对μ的个别值有21p p = 6. 设随机变量2~(10,)X N ,则随着的增加{10}P X ( C )A.递增B.递减C.不变D.不能确定7.设F 1(x )与F 2(x )分别为随机变量X 1、X 2的分布函数,为使F (x )=aF 1(x )-bF 2(x )是某一随机变量的分布函数,在下列给定的多组数值中应取 ( A )A . a =53, b =52-; B . a =32, b =32;C . 21-=a , 23=b ; D . 21=a , 23-=b .8.设X 1与X 2是任意两个相互独立的连续型随机变量,它们的概率密度函数分别为f 1(x )和f 2(x ),分布函数分别为F 1(x )和F 2(x ),则 ( D ) (A) f 1(x )+f 2(x ) 必为某个随机变量的概率密度; (B )f 1(x )•f 2(x ) 必为某个随机变量的概率密度; (C )F 1(x )+F 2(x ) 必为某个随机变量的分布函数; (D) F 1(x ) •F 2(x ) 必为某个随机变量的分布函数。
概率论与数理统计(二)(02197)1[计算题]设随机变量X的概率密度为2[计算题]设随机变量X服从[0,0.2]上的均匀分布,随机变量Y的概率密度为且X与Y相互独立,求(X,Y)的概率密度。
综合题]设(X,Y)的分布律为:且X与Y相互独立,求常数和的值。
[综合题]设随机变量X与Y相互独立,且X,Y的分布律分别为求二维随机变量(X,Y)的分布律。
[应用题]五家商店联营,它们每两周售出的某种农产品的数量(以千克计)分别记为随机变量.已知,,,,,且它们相互独立,求这五家商店两周的总销量的均值和方差?解:设随机变量X指五家商店两周的总销量,则由已知可得(1)这五家商店两周的总销量的均值(2)这五家商店两周的总销量的方差[应用题]设电压(以计),将电压施加于一检波器,其输出电压为,求输出电压Y的均值?[计算题][计算题][综合题]设随机变量X的分布律为记综合题]设离散型随机变量X的分布律为[应用题]已知甲进行一次射击的命中率为,求:“甲进行三次独立的射击,至少一次命中”的概率?应用题]随机地取8只活塞环,测得它们的直径为(以mm计)74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002试求总体均值的矩估计值?[计算题][计算题]12把钥匙中有4把能打开门,今任取两把,求能打开门的概率。
综合题]设袋中有依次标着-1,0,1,2,3,4数字的6个球,现从中任取一球,记随机变量X为取得的球标有的数字,求:(1)X的分布律;(2)的概率分布。
[综合题]设二维随机变量(X,Y)的分布律为(1)求(X,Y)分别关于X,Y的边缘分布律;(2)试问X与Y是否相互独立,为什么?[应用题]已知男人中有5%是色盲患者,女人中有0.25%是色盲患者,今从男女人数相等的人群中随机地挑选一个人,恰好是色盲患者,问此人是男性的概率是多少?解:设A表示“男人”,B表示“女人”,C表示“这人有色盲”,则由贝叶斯公式可得:应用题]某同学的钥匙掉了,掉在宿舍里、掉在教室里、掉在路上的概率分别是0.7,0.2,0.1,而掉在上述三处地方被找到的概率分别是0.8,0.2,0.2,试求他找到钥匙的概率?解:设:A1 =“钥匙掉在宿舍里”,A2=“钥匙掉在教室里”,A3=“钥匙掉在路上”,B=“钥匙被找到”,已知。
三、解答题1.设对于事件A 、B C 、有=)(A P 4/1)()(==C P B P ,0)()(==BC P AB P ,8/1)(=AC P ,求A 、C B 、至少出现一个的概率。
解:由于,AB ABC ⊂从而由性质4知,0)()(=≤AB P ABC P ,又由概率定义知0)(≥ABC P ,所以0)(=ABC P ,从而由概率的加法公式得)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=8581341=-⨯= 2.设有10件产品,其中有3件次品,从中任意抽取5件,问其中恰有2件次品的概率是多少?解:设A 表示:“任意抽取的5件中恰有2件次品”。
则510)(C n =Ω。
5件产品中恰有2件次品的取法共有23C 37C 种,即23)(C A n =37C 。
于是所求概率为P A n A n ()()/()==Ω23C 37C /84/35510=C3.一批产品共有10个正品2个次品,从中任取两次,每次取一个(有放回)。
求:(1)第二次取出的是次品的概率;(2)两次都取到正品的概率;(3)第一次取到正品,第二次取到次品的概率。
解:设i A 表示:“第i 次取出的是正品”(i =1,2),则(1)第二次取到次品的概率为)(2121A A A A P 611221221221210=⨯+⨯= (2)两次都取到正品的概率为 )(21A A P )|()(121A A P A P =362512101210=⨯=(3)第一次取到正品,第二次取到次品的概率为)(21A A P 3651221210=⨯= 4.一批产品共有10个正品2个次品,从中任取两次,每次取一个(不放回)。
求:(1)至少取到一个正品的概率;(2)第二次取到次品的概率;(3)恰有一次取到次品的概率。
解:设i A 表示:“第i 次取出的是正品”(i =1,2),则(1)至少取到一个正品的概率)(121A A P -)|()(1121A A P A P -=66651111221=⨯-=(2)第二次取到次品的概率为)(2121A A A A P )|()()|()(121121A A P A P A A P A P +=611111221121210=⨯+⨯=(3)恰有一次取到次品的概率为)(2121A A A A P )|()()|()(121121A A P A P A A P A P +=331011101221121210=⨯+⨯=5.一批产品共有10件正品2件次品,从中任取两件,求:(1)两件都是正品的概率;(2)恰有一件次品的概率;(3)至少取到一件次品的概率。
解:设A 表示:“取出的两件都是正品是正品”;B 表示:“取出的两件恰有一件次品”;C 表示:“取出的两件至少取到一件次品”;则(1)两件都是正品的概率)(A P 2215212210==C C(2)恰有一件次品的概率)(B P 331021212110==C C C(3)至少取到一件次品的概率)(C P 227221511)(1212210=-=-=-=C C A P6.一工人照看三台机床,在一小时内,甲机床需要照看的概率是0.6,乙机床和丙机床需要照看的概率分别是0.5和0.8。
求在一小时中,(1)没有一台机床需要照看的概率;(2)至少有一台机床不需要照看的概率。
解:设A 表示:“没有一台机床需要照看”;B 表示:“至少有一台机床不需要照看“;i C 表示:“第i 台机床需要照看”(i =1,2,3)。
则321C C C A =;321C C C B =。
)()(321C C C P A P =)()()(321C P C P C P =04.0))(1))((1))((1(321=---=C P C P C P)()(321C C C P B P =)(321C C C P =)(1321C C C P -=76.0)()()(1321=-=C P C P C P7.在某城市中发行三种报纸A 、C B 、,经调查,订阅A 报的有50%,订阅B 报的有30%,订阅C 报的有20%,同时订阅A 及B 报的有10%,同时订阅A 及C 报的有8%,同时订阅B 及C 报的有5%,同时订阅A 、C B 、报的有3%,试求下列事件的概率:(1)只订阅A 及B 报;(2)恰好订阅两种报纸。
解:(1))()()(ABC AB P C AB P C AB P -=-=)()(ABC P AB P -=07.003.01.0=-= (2)))()()()(C B A P BC A P C AB P C B A BC A C AB P ++=14.005.002.007.0=++=8.一盒子中黑球、红球、白球各占50%、30%、20%,从中任取一球,结果不是红球,求:(1)取到的是白球的概率;(2)取到的是黑球的概率。
解:设A i 分别表示:“取到的是黑球、红球、白球”(i =1,2,3),则问题(1)化为求)|(23A A P ;问题(2)化为求)|(21A A P 。
由题意A A A 123、、两两互不相容,所以,(1))()()(32323A P A A P A A P =-=。
因此由条件概率公式得)|(23A A P ==)()(223A P A A P 723.012.0)()(23=-=A P A P (2))()()(12121A P A A P A A P =-=)|(21A A P ==)()(221A P A A P 753.015.0)()(21=-=A P A P 9.已知工厂A B 、生产产品的次品率分别为1%和2%,现从由A B 、的产品分别占60%和40%的一批产品中随机抽取一件,求:(1) 该产品是次品的概率;(2) 若取到的是次品,那么该产品是B 工厂的概率 。
解:设C 表示“取到的产品是次品”;A “取到的产品是A 工厂的”;B “取到的产品是B 工厂的”。
则 (1) 取到的产品是次品的概率为)|()()|()()(B C P B P A C P A P C P +=5007100210040100110060=⨯+⨯= (2)若取到的是次品,那么该产品是B 工厂的概率为 )|()()|()()|()()()()|(B C P B P A C P A P B C P B P C P BC P C B P +==745007100210040=⨯= 10.有两个口袋,甲袋中盛有4个白球,2个黑球;乙袋中盛有2个白球,4个黑球。
由甲袋任取一球放入乙袋,再从乙袋中取出一球,求从乙袋中取出的是白球的概率。
解:设A 表示:“由甲袋取出的球是白球”;B 表示:“由甲袋取出的球是黑球”;C 表示:“从乙袋取出的球是白球”。
则)|()()|()()(B C P B P A C P A P C P +=21816262161264=+⨯+++⨯= 11.设有一箱同类产品是由三家工厂生产的,其中1/2是第一家工厂生产的,其余两家各生产1/4,又知第一、二、三家工厂生产的产品分别有2%、4%、5%的次品,现从箱中任取一件产品,求:(1)取到的是次品的概率;(2)若已知取到的是次品,它是第一家工厂生产的概率。
解:设事件A 表示:“取到的产品是次品”;事件i A 表示:“取到的产品是第i 家工厂生产的”(i =123,,)。
则A A A 123 =Ω,且P A i ()>0,A A A 123、、两两互不相容,(1) 由全概率公式得∑=⋅=31)|()()(i i i A A P A P A P 40013100541100441100221=⨯+⨯+⨯=(2)由贝叶斯公式得P A A (|)1=∑=3111)|()()|()(j j j A A P A P A A P A P 13440013100221=⨯= 12.三家工厂生产同一批产品,各工厂的产量分别占总产量的40%、25%、35%,其产品的不合格率依次为0.05、0.04、和0.02。
现从出厂的产品中任取一件,求:(1)恰好取到不合格品的概率;(2)若已知取到的是不合格品,它是第二家工厂生产的概率。
解:设事件A 表示:“取到的产品是不合格品”;事件i A 表示:“取到的产品是第i 家工厂生产的”(i =123,,)。
则Ω== 31i i A ,且P A i ()>0,321A A A 、、两两互不相容,由全概率公式得(1)∑=⋅=31)|()()(i i i A A P A P A P1000/37100210035100410025100510040=⨯+⨯+⨯= (2)由贝叶斯公式得)|(2A A P =∑=3122)|()()|()(j j j A A P A P A A P A P0.250.0410/3737/1000⨯== 13.有朋友远方来访,他乘火车、轮船、汽车、飞机的概率分别为3/10、1/5、1/10、2/5,而乘火车、轮船、汽车、飞机迟到的概率分别为1/4、1/3、1/12、1/8。
求:( 1 ) 此人来迟的概率;( 2 ) 若已知来迟了,此人乘火车来的概率。
解:设事件A 表示:“此人来迟了”;事件i A 分别表示:“此人乘火车、轮船、汽车、飞机来”(i =123,,,4)。
则Ω== 41i i A ,且P A i ()>0,4321A A A A 、、、两两互不相容(1)由全概率公式得∑=⋅=41)|()()(i i i A A P A P A P518152121101315141103=⨯+⨯+⨯+⨯= (2)由贝叶斯公式得P A A (|)1=∑=4111)|()()|()(j j j A A P A P A A P A P 3131041/58⨯== 14.有两箱同类零件,第一箱50只,其中一等品10只,第二箱30只,其中一等品18只,今从两箱中任选一箱,然后从该箱中任取零件两次,每次取一只(有放回),试求:(1)第一次取到的是一等品的概率;(2)两次都取到一等品的概率。
解:设i A 表示:“取到第i 箱零件”()i =12,;i B 表示:“第i 次取到的是一等品”()i =12,;则(1))()(21111A B A B P B P =)()(2111A B P A B P +=52301821501021=⨯+⨯= (2))()(22112121A B B A B B P B B P =)()(21121A B B P A B B P +=51)3018(21)5010(2122=⨯+⨯= 15.设一电路由三个相互独立且串联的电子元件构成,它们分别以0.03、0.04、0.06的概率被损坏而发生断路,求电路发生断路的概率。