第六章 pn结二极管:I-V特性
- 格式:ppt
- 大小:1.47 MB
- 文档页数:65
发光二极管主要参数与特性LED是利用化合物材料制成pn结的光电器件。
它具备pn结结型器件的电学特性:I-V特性、C-V 特性和光学特性:光谱响应特性、发光光强指向特性、时间特性以及热学特性。
1、LED电学特性1.1 I-V特性表征LED芯片pn结制备性能主要参数。
LED的I-V特性具有非线性、整流性质:单向导电性,即外加正偏压表现低接触电阻,反之为高接触电阻。
如左图:(1) 正向死区:(图oa或oa′段)a点对于V0 为开启电压,当V<Va,外加电场尚克服不少因载流子扩散而形成势垒电场,此时R很大;开启电压对于不同LED其值不同,GaAs为1V,红色GaAsP 为1.2V,GaP为1.8V,GaN为2.5V。
(2)正向工作区:电流I F与外加电压呈指数关系I F = I S (e qVF/KT –1) -------------------------I S 为反向饱和电流。
V>0时,V>V F的正向工作区I F 随V F指数上升I F = I S e qVF/KT(3)反向死区:V<0时pn结加反偏压V= - V R 时,反向漏电流I R(V= -5V)时,GaP为0V,GaN为10uA。
(4)反向击穿区V<- V R ,V R 称为反向击穿电压;V R 电压对应I R为反向漏电流。
当反向偏压一直增加使V<- V R时,则出现I R突然增加而出现击穿现象。
由于所用化合物材料种类不同,各种LED 的反向击穿电压V R也不同。
1.2 C-V特性鉴于LED的芯片有9×9mil (250×250um),10×10mil,11×11mil (280×280um),12×12mil (300×300um),故pn结面积大小不一,使其结电容(零偏压)C≈n+pf左右。
C-V特性呈二次函数关系(如图2)。
由1MH Z交流信号用C-V特性测试仪测得。
发光二极管主要参数与特性LED 是利用化合物材料制成pn 结的光电器件。
它具备pn 结结型器 件的电学特性:I-V 特性、C-V 特性和光学特性:光谱响应特性、发 光光强指向特性、时间特性以及热学特性。
1、LED电学特性而形成势垒电场,此时R 很大;开启电压对于不同LED 其值不同, GaAs 为 1V ,红色 GaAsP 为 1.2V , GaP 为 1.8V , GaN 为 2.5V 。
(2) 正向工作区:电流I F 与外加电压呈指数关系I F = I S (e qv F/KT -) ------------------------------ 1 s 为反向饱和电流 。
V >0时,V > V F 的正向工作区I F 随V F 指数上升 I F = I s e qVF/KT (3) 反向死区:V v 0时pn 结加反偏压V= - V R 时,反向漏电流 |R (V 二-5V )时,GaP 为 0V , GaN 为 10uA 。
(4) 反向击穿区 V v - V R , V R 称为反向击穿电压;V R 电压对应I R 为反向漏电流。
当反向偏压一直增加使 V V - V R 时,贝y 出现I R 突 然增加而出现击穿现象。
由于所用化合物材料种类不同,各种LED 的反向击穿电压V R 也不同。
1.2 C-V 特性鉴于 LED 的芯片有 9 X 9mil (250 X 250um) , 10X 10mil , 11 X 11mil (280 X 280um) , 12 X 12mil1.1 I-V 特性 表征LED 芯片pn 结制备性能主要参数。
LED 的I-V 特性具有非线性、整流性质:单向导电性,即外加正偏压表现低接触 电阻,反之为高接触电阻。
如左图:⑴正向死区:(图oa 或oa'段) a 点对于V o 为开启电 压,当V v Va ,外加电 场尚克服 不少因载 流子扩散V R击 反向死区 穿_---------- 区工作区VFVI-V 特性曲线C0 -C 0(300 X 300um),故 pn 结面积大 小不一,使其结电容(零偏压) c ~n+pf 左右。
PN结二极管概述、特性、分类PN结二极管概述PN结简述1949年PN结理论发表,1950年制造PN结二极管的扩散法出现,半导体技术从此蓬勃发展,人类进入了微电子时代。
半导体材料有如下的一些特点:半导体材料的电阻率受杂质含量的多少的影响极大,如在硅中只要掺入百万分之一的杂质硼,硅的电阻率就会从214,000Ω·cm下降至0.4Ω·cm;半导体材料的电阻率受外界条件影响很大。
例如温度每升高8℃纯净硅的电阻率就会下降一半左右。
因此,半导体材料可以人为地控制电阻率取得不同的导电性能。
在纯净的半导体材料(如硅)中掺入三价原子(如硼原子、镓原子)形成P型半导体;掺入五价原子(如磷原子、砷原子)的半导体材料形成N型半导体材料。
掺入杂质的P型半导体和N型半导体的电阻率下降、导电性能增强。
P型半导体和N型半导体的导电机制分别为"空穴"和"电子"。
有了P型半导体和N型半导体,就出现了"PN"结。
通过扩散等工艺,把一块半导体材料一边做成N型半导体,一边做成P型半导体。
由于P型区的"空穴"多,N型区"电子"多,在P型区和N型区的交界处,"电子"从高浓度的N区向P区扩散,同时"空穴"从浓度高的P区向N区扩散。
在P区内,"电子"称为少数载流子,在N区内,"空穴"称为少数载流子,扩散到对方的"电子"或"空穴"称为"非平衡少数载流子"。
P型半导体体内的"空穴"成为P 型半导体的"多子",同理,N型半导体内的"电子"称为N型半导体的"多子"。
这些非平衡少数载流子的注入,必然与对方的多子复合,在交界面附近使载流子成对的消失,并且各留下不能移动的正、负离子,构成一个空间电荷区,出现一个由N区指向P区的内建电场。
半导体专业实验补充silvac o器件仿真————————————————————————————————作者:————————————————————————————————日期:实验2 PN结二极管特性仿真1、实验内容(1)PN结穿通二极管正向I-V特性、反向击穿特性、反向恢复特性等仿真。
(2)结构和参数:PN结穿通二极管的结构如图1所示,两端高掺杂,n-为耐压层,低掺杂,具体参数:器件宽度4μm,器件长度20μm,耐压层厚度16μm,p+区厚度2μm,n+区厚度2μm。
掺杂浓度:p+区浓度为1×1019cm-3,n+区浓度为1×1019cm-3,耐压层参考浓度为5×1015cm-3。
0 Wp n n图1普通耐压层功率二极管结构2、实验要求(1)掌握器件工艺仿真和电气性能仿真程序的设计(2)掌握普通耐压层击穿电压与耐压层厚度、浓度的关系。
3、实验过程#启动Athenago athena#器件结构网格划分;line x loc=0.0 spac=0.4line x loc=4.0 spac= 0.4lineyloc=0.0spac=0.5line y loc=2.0 spac=0.1line y loc=10spac=0.5line y loc=18spac=0.1line y loc=20 spac=0.5#初始化Si衬底;initsilicon c.phos=5e15 orientation=100 two.d#沉积铝;deposit alum thick=1.1div=10#电极设置electrode name=anode x=1electrodename=cathode backside#输出结构图structureoutf=cb0.strtonyplotcb0.str#启动Atlasgo atlas#结构描述doping p.typeconc=1e20 x.min=0.0 x.max=4.0 y.min=0y.max=2.0 uniformdopingn.type conc=1e20x.min=0.0 x.max=4.0y.min=18y.max=20.0 uniform#选择模型和参数models cvt srh printmethod carriers=2impact selb#选择求解数值方法methodnewton#求解solve initlog outf=cb02.logsolve vanode=0.03solve vanode=0.1vstep=0.1 vfinal=5 name=anode#画出IV特性曲线tonyplot cb02.log#退出quit图2为普通耐压层功率二极管的仿真结构。
实验一 PN 结器件电流一电压特性一、基本原理PN 结是半导体结型器件的核心,是IC 电路的最基本单元,诸多半导体器件都是由PN结组成的。
最简单的结型器件是半导体二极管, 根据不同场合的用途, 使用不同掺杂及材料制备工艺制成多种二极管,如整流二极管、检波二极管、光电二极管(发光二极管、光敏二 极管)等;三极管与结型晶体管就是由两个PN 结构成的。
因此深入了解与掌握PN 结的基本特性,是掌握与应用晶体管等结型器件的基础。
PN 结的最重要特性是单向导电性,即具有整流特性。
也就是说,正向表现低阻性,反 向为高阻性。
若在 PN 结上加上正向偏压(P 区接正电压、N 区接负电压)则电流与电压呈 指数关系,如下式式中q 是电子电荷,K 是波尔兹曼常数,T 是工作温度(K ), V 是外加电压,n 是复合因子, 根据实际测量曲线求出。
随着电压缓慢升高,电流从小急剧增大,按指数规律递增。
对于用川-V 族宽禁带材料制成的发光二极管而言,当外加电压 V 0.5 V 、电流很小时(I 0.1 mA ),则通过结内深能级复合占主导地位,这时 n ~ 2。
随着外加电压的升高,PN 结载流子注入以扩散电流起支配作用,I 就急剧上升,这时 n ~ 1。
根据实际测量I-V 关系求得n 值大小就可作为判断一个结型二极管优劣的标志。
如果PN 结两边外加反向偏压(P 区接负压、N 区接正电压)这时在 PN 结空间电荷层内 载流子的漂移运动大于扩散运动。
(从P 区内电子向N 区运动,N 区内空穴向P 区运动)从 而空间电荷层展宽,载流子浓度低于热平衡状态下平衡浓度。
反向 PN 结在反偏压比较大时空间电荷区宽度式中,0为自由空间电容率, 介电常数,N 0为PN 结低掺杂边的凈杂质浓度。
所以在外加 反向偏压V V B (反向击穿电压)时,电流 I 值很小,反向偏置 PN 结电流很小、表现很 高电阻性。
当反向偏压一旦增加到某一定值 V B ,则 反向电流瞬间骤然急速增大(如图所示) ,这 现象叫做PN 结的击穿,V B 称为击穿电压。
第八讲8.2 异质PN结的I-V 特性及注入特性1、低势垒尖峰形异质结:势垒尖峰顶低于 p 区导带底,其能带结构如图示。
这种异质 pn 结的电流主要由扩散机制决定,用扩散模型来处理。
针对不同的异质结构,人们提出了多种异质结伏安特性的模型,下面我们以突变反型pN异质结不同的势垒峰型为例来分析。
施加一正向偏压 V 时,通过该异质结的电流密度为:p2n1n p 1020n1p20()exp()1D D qV J J J q n p L L k T ⎡⎤=+=+-⎢⎥⎣⎦式中:D n1 、L n1 分别为窄禁带半导体中电子的扩散系数和扩散长度; D p2 、L p2 分别为宽禁带半导体中空穴的扩散系数和扩散长度; n 10 和 p 20 分别为 p 型窄禁带半导体和 n 型宽禁带半导体的热平衡少子浓度。
上式表明,在正向偏压下,异质 pn 结的电流随电压按指数规律增加。
()p210D v p p200exp exp 1qD p q VE qV J L k T k T -+∆⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦c n 0exp E J k T ⎛⎫∆∝ ⎪⎝⎭v p 0exp E J k T ⎛⎫∆∝- ⎪⎝⎭式中的 J n 、J p 也可用 n 区、p 区多子浓度 n 20 、p 10 表示:△E c 和 △E v 都是正值,且比室温时的 k 0T 大得多,故有:通过异质结面的电流主要由电子电流构成,而空穴电流所占的比例很小。
()D c n120n n100exp exp 1q V E qD n qV J L k T k T --∆⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦J n >> J p从上式看到,J n 和 J p 主要由△E c 和 △E v 决定,即:一、异质结的I-V特性2、高势垒尖峰形异质结:n 区的势垒尖峰顶较 p 区导带底高得多, n 区扩散到结面处的电子,只有能量高于势垒尖峰的电子才能通过发射机制进入 p 区,可以采用热电子发射模型来处理。