电力电子变流技术课程设计
- 格式:doc
- 大小:475.50 KB
- 文档页数:10
课程设计任务书图1三相半波可控整流电路原理图对于VS1、VS2、VS3,只有在1、2、3点之后对应于该元件承受正向电压期间来触发脉冲,该晶闸管才能触发导通,1、2、3点是相邻相电压波形的交点,也是不可控整流的自然换相点。
对三相可控整流而言,控制角α就是从自然换相点算起的。
控制角0<α£2π/3,导通角0<θ£2π/3。
晶闸管承受的最大正向电压.承受的最大反向电压:2.1.2负载电压当0 ≤ α ≤ π/6时图2电路输出电压波形在一个周期内三相轮流导通,负载上得到脉动直流电压Ud,其波形是连续的。
电流波形与电压波形相似,这时,每只晶闸管导通角为120°,负载上电压平均值为:当π/6 < α ≤ 5π/6时图3电路输出电压波形2.2带阻感负载时的工作情况2.2.1原理说明电感性负载由于电感的存在使得电流始终保持连续,所以每只晶闸管导通角为2π/3,输出电压的平均值为:当α=π/2时,Ud =0,因此三相半波整流电感负载时的控制角为0~ π/2正向承受的最大电压为反向承受的最大电压为图4是电路接线图图4阻感负载接线图图5输出电压波形3.设计结果与分析3.1仿真模型根据原理图利用MATLAB/SIMULINK软件中,电力电子模块库建立相应的仿真模型如图5图6仿真模型图3.2 仿真参数设置晶闸管参数:I vt=I/√3=0.577I d=0.577×6.04=3.46AI fav=I VT/1.57=2.2A额定值一般取正向电流的1.5-2倍,所以取3.3-4.4A之间的数值。
UFM=URM=2.45U2=245V晶闸管额定电压选值一般为最大承受电压的2-3倍,所以额定电压取值为490-735V之间。
变压器参数计算Ud=100V变压器二次侧采用星形接法,所以变压器二次侧峰值为141.4V变压器一次侧采用三角形接法,因此每相接入电压峰值为380V一次侧电压接电网电压220V电压器变比则约为2.693.3仿真结果U2波形仿真图图7 U2波形仿真图U波形图vt1图8 U vt1波形图波形图Ivt1Ivt图9 I vt1波形图u波形图d图10 u d波形图i波形图d图11 i d波形图设置触发脉冲α分别为0°。
电力电子技术的课程设计一、课程目标知识目标:1. 掌握电力电子器件的基本工作原理,如二极管、晶体管、晶闸管等;2. 了解电力电子电路的基本类型,如整流电路、斩波电路、逆变电路等;3. 学会分析简单电力电子电路的性能、特点及应用场合;4. 掌握电力电子设备在实际应用中的参数计算和选型方法。
技能目标:1. 能够正确使用实验设备搭建简单的电力电子电路;2. 学会运用电路分析方法,对电力电子电路进行性能分析和故障排查;3. 能够根据实际需求设计简单的电力电子系统,并进行参数计算和选型。
情感态度价值观目标:1. 培养学生对电力电子技术的兴趣,激发学习热情;2. 增强学生的团队合作意识,提高沟通与协作能力;3. 培养学生严谨的科学态度,树立工程伦理观念。
课程性质:本课程为电力电子技术的基础课程,旨在使学生掌握电力电子器件、电路及其应用,培养实际操作能力和工程素养。
学生特点:学生具备一定的电子技术基础,具有较强的学习能力和动手能力,但对电力电子技术尚处于入门阶段。
教学要求:结合学生特点,注重理论与实践相结合,强调动手实践和实际应用,提高学生的综合能力。
通过本课程的学习,使学生能够达到上述课程目标,为后续相关课程和实际工作打下坚实基础。
二、教学内容1. 电力电子器件:介绍二极管、晶体管、晶闸管等基本器件的结构、工作原理及特性,重点讲解其在电力电子电路中的应用。
教材章节:第一章至第三章内容安排:2学时2. 电力电子电路:讲解整流电路、斩波电路、逆变电路等基本电路的类型、工作原理及性能特点。
教材章节:第四章至第六章内容安排:4学时3. 电力电子电路分析:教授电路分析方法,如平均值法、等效电路法等,分析典型电力电子电路的性能和应用。
教材章节:第七章内容安排:3学时4. 电力电子设备设计:介绍参数计算和选型方法,结合实际案例进行设备设计。
教材章节:第八章内容安排:3学时5. 实践操作:安排学生进行电力电子电路搭建、性能测试和故障排查,提高动手能力。
课程设计报告题目三相可控整流技术的工程应用学院名称电气信息学院专业班级 xxxxxxxxxxxxxxx学号 xxxxxxxxxx学生姓名 xxxxx指导教师 xxxxxxx2012年1月12日摘要电力电子技术在电力系统中有着非常广泛的应用。
据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。
电力系统在通向现代化的进程中,电力电子技术是关键技术之一。
可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。
整流电路技术在工业生产上应用极广。
如调压调速直流电源、电解及电镀的直流电源等。
整流电路就是把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要也是应用得最为广泛的电路,不仅应用于一般工业,也广泛应用于交通运输、电力系统、通信系统、能源系统及其他领域。
因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义,这不仅是电力电子电路理论学习的重要一环,而且对工程实践的实际应用具有预测和指导作用。
关键词:电力电子三相桥式可控电路整流AbstractPower electronics technology has a very wide range of applications in the power system. It is estimated that in developed countries more than 60% of the electrical energy at least through the end-use of electricity, more than once device processing power electronic converters. Power system in the process leading to the modern power electronics technology is one of the key technologies. It is no exaggeration to say that, if you leave power electronics technology, the modernization of the electric power system is unthinkable.Rectifier circuit technology has very wide application in industrial production. Such as voltage variable speed DC power supply, electrolysis and electroplating DC power. The rectifying circuit is the AC power is converted to DC power circuit. Most of the rectifier circuit by the transformer, rectifier circuit, and filters. It has been widely used in the field of DC motor speed control, generator excitation regulator, electrolysis, electroplating.Rectifier circuit, especially the three-phase bridge controlled rectifier circuit is the most important and the most widely used application circuit in the power electronics technology is not only used in general industrial, is also widely used in the transportation, electric power systems, communication systems, energy systems and other fields. Comparative analysis and study of the three-phase bridge controlled rectifier circuit parameters and the different nature of the work load has great practical significance, this is not only an important part of the learning power electronic circuit theory and engineering practice The practical application of predictive and guiding role.Key words:Power electronic Three-phase bridge controlled circuit Rectifier目录摘要 (2)一.设计任务书 (5)二.设计说明 (6)2.1设计目的 (6)2.2作用 (6)2.3技术指标 (6)三.设计方案的选择 (7)3.1三相桥式可控整流电路原理 (7)3.2三相桥式可控整流电路原理图 (7)3.3三相桥式可控整流电路工作波形 (8)3.4总设计框图 (10)四.触发电路的设计 (11)五.保护电路的设计 (12)5.1过电压保护 (12)5.2过电流保护 (13)六.参数的计算 (14)七.器件选择清单 (15)八.三相桥式可控整流电路的工程应用 (16)九.心得体会 (16)参考文献 (17)一.设计任务书院系:xxxxxxxxx年级:xxxxxx专业班级:xxxxxxxxxx二.设计说明2.1设计目的合理运用所学知识,进行电力电子电路和系统设计的能力,理解和掌握常用的电力电子电路及系统的主电路、控制电路和保护电路的设计方法,掌握元器件的选择计算方法。
一、一、 教学课题学课题: : 电力电子技术课程设计电力电子技术课程设计 二、教学目的和任务二、教学目的和任务 电力电子技术是研究利用电力电子器件、电力电子技术是研究利用电力电子器件、电路理论和控制技术,电路理论和控制技术,电路理论和控制技术,实现对电能的控制、实现对电能的控制、变换和传输的科学,其在电力、工业、交通、通信、航空航天等很多领域具有广泛的应用。
电力电子技术不但本身是一项高新技术,力电子技术不但本身是一项高新技术,而且还是其它多项高新技术发展的基础。
而且还是其它多项高新技术发展的基础。
而且还是其它多项高新技术发展的基础。
因此,因此,提高学生的电力电子领域综合设计和综合应用能力是教学计划中必不可少的重要一环。
通过电通过电力电子技术的课程设计达到以下几个目的:力电子技术的课程设计达到以下几个目的:1、培养学生文献检索的能力,特别是如何利用Intel 网检索需要的文献资料。
网检索需要的文献资料。
2、培养学生综合分析问题、发现问题和解决问题的能力。
、培养学生综合分析问题、发现问题和解决问题的能力。
3、培养学生运用知识的能力和工程设计的能力。
、培养学生运用知识的能力和工程设计的能力。
4、提高学生的电力电子装置分析和设计能力。
、提高学生的电力电子装置分析和设计能力。
5、提高学生课程设计报告撰写水平。
、提高学生课程设计报告撰写水平。
三、课程设计的基本要求三、课程设计的基本要求1. 教师确定方向,在教师的指导下,学生自立题目教师确定方向,在教师的指导下,学生自立题目注意事项:注意事项: ① 所立题目必须是某一电力电子装置或电路的设计,题目难度和工作量要适应在一周内完成,题目要结合工程实际。
学生也可以选择规定题目方向外的其他电力电子装置设计,如开关电源、调光灯、镇流器、如开关电源、调光灯、镇流器、UPS UPS 电源等,但不允许选择其他班题目方向的内容设计(复合变换除外)。
② 通过图书馆和Intel 网广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计题目。
电力电子技术课程设计范例电力电子技术课程设计是电气工程专业的一门重点课程,该课程设计主要涉及到电力电子变流器的设计、控制和应用。
此外,该课程还包括功率半导体器件的选型、电路设计、控制系统设计以及电磁兼容等方面的内容。
本文主要介绍一种电力电子技术课程设计的范例,以期为电力电子技术课程设计的读者提供一些参考和借鉴。
1. 课程设计目标电力电子技术课程设计的主要目标是培养学生的电气设计能力、模拟仿真能力、实验操作能力和团队合作意识,以及使学生掌握电力电子变流器的设计和控制技术。
2. 课程设计主题设计具有稳定输出电压的电力电子变流器。
具体包括:(1)设计一个交流输入、直流输出的电力电子变流器。
(2)根据实际需要选择并计算所需的功率半导体装置。
(3)设计适当的电路保护和故障检测系统。
(4)编写控制程序实现变流器的开关控制。
(5)进行电路仿真和实验验证。
其中,电力电子变流器可以采用全桥式、半桥式、双向直流-直流变换器等常用拓扑结构。
3. 课程设计步骤(1)确定项目的范围和目标。
明确所需完成的技术任务和各个环节的时间计划,提前预估和解决可能遇到的技术问题。
(2)收集相关的技术资料。
包括相关电路设计资料和器件规格书等。
(3)根据设计需求进行选型计算,选择满足要求的元器件。
(4)进行电路仿真验证。
采用MATLAB/Simulink软件搭建电路模型,对所设计的电路进行仿真,进一步验证电路的性能和可靠性。
(5)设计控制系统。
采用单片机或FPGA等控制芯片,编写控制程序实现变流器的开关控制,并对控制程序进行仿真和验证。
(6)进行实验验证。
制作样品电路,进行实际测试和验证。
实验过程中,需要注意电路稳定性和安全性,防止短路等电路故障。
(7)编写课程设计报告。
对整个设计过程进行总结和评估,包括设计思路、设计过程、实验结果等方面内容。
4. 课程设计评分电力电子技术课程设计评分主要包括以下几个方面:(1)方案设计(20分)。
设计方案的完备性、实现难度、适用性和创新性等方面考虑。
电力电子技术课程设计一、教学目标本课程旨在让学生掌握电力电子技术的基本概念、原理和应用,培养学生分析和解决电力电子技术问题的能力。
具体目标如下:1.知识目标:–了解电力电子技术的基本原理和特性;–掌握电力电子器件的工作原理和选用方法;–熟悉电力电子电路的分析和设计方法。
2.技能目标:–能够分析简单的电力电子电路;–能够选用合适的电力电子器件进行电路设计;–能够进行电力电子设备的安装、调试和维护。
3.情感态度价值观目标:–培养学生的创新意识和团队合作精神;–增强学生对电力电子技术领域的兴趣和自信心;–培养学生对电力电子技术应用的的责任感和使命感。
二、教学内容本课程的教学内容主要包括电力电子技术的基本原理、电力电子器件、电力电子电路的分析与设计以及电力电子技术的应用。
具体安排如下:1.电力电子技术的基本原理:–电力电子器件的工作原理;–电力电子电路的特性与分类。
2.电力电子器件:–晶闸管及其驱动电路;–整流器、逆变器及其控制电路。
3.电力电子电路的分析与设计:–电力电子电路的基本分析方法;–电力电子电路的设计原则与步骤。
4.电力电子技术的应用:–电力电子设备的功能与结构;–电力电子技术的应用领域。
三、教学方法本课程采用多种教学方法,以激发学生的学习兴趣和主动性。
主要包括:1.讲授法:通过教师的讲解,让学生掌握电力电子技术的基本概念和原理;2.讨论法:通过小组讨论,培养学生分析问题和解决问题的能力;3.案例分析法:通过分析实际案例,让学生了解电力电子技术的应用;4.实验法:通过实验操作,让学生熟悉电力电子器件和电路的工作原理。
四、教学资源本课程的教学资源包括教材、参考书、多媒体资料和实验设备。
教材选用《电力电子技术》一书,参考书包括《电力电子器件》和《电力电子电路设计》。
多媒体资料包括教学PPT、视频动画等。
实验设备包括晶闸管、整流器、逆变器等实验装置。
这些资源能够支持教学内容和教学方法的实施,丰富学生的学习体验。
基于OBE的《电力电子技术》课程教学设计与实践电力电子技术是电气工程专业的重要课程之一,它涉及到电力系统中能量转换与控制的基本理论和技术。
随着科技的不断发展,电力电子技术在能源转换与控制、电力电子装置与系统以及新能源领域中发挥着重要作用。
为了提高学生的学习兴趣和教学质量,基于OBE(Outcome-Based Education)的教学模式引入到电力电子技术课程中,能够更好地满足社会对电气工程专业人才培养的需求。
一、课程目标和学习成果在基于OBE的教学模式下,我们首先要确定电力电子技术课程的目标和学习成果。
通过课程目标的确定,可以明确学生在学习过程中应该掌握的知识和技能,以及所期望达到的综合素质和能力。
电力电子技术课程的目标可能包括:(1)掌握电力电子技术的基本原理和工作原理,理解电力电子器件、电力电子电路以及电力电子系统的工作原理和特点;(2)能够分析和设计常见的电力电子系统和电力电子控制器,掌握电力电子转换与控制的基本技术方法和手段;(3)了解电力电子技术在工程实践中的应用领域和发展趋势,具备较强的创新意识和实践能力;(4)具备团队协作能力和良好的沟通能力,能够与工程技术人员和管理人员协作,解决复杂的电力电子技术问题。
二、课程内容和教学方法在明确了课程目标和学习成果之后,我们需要确定电力电子技术课程的内容和教学方法。
课程内容需要根据课程目标和学习成果来确定,并且要结合实际工程应用,突出理论与实践相结合的特点。
电力电子技术课程的内容可能包括:(1)电力电子器件和电路:介绍常见的电力电子器件(如二极管、晶闸管、场效应管等)和电力电子电路(如整流电路、逆变电路、斩波电路等)的工作原理和特点,重点讲解它们在电能转换和功率控制中的应用;(2)电力电子系统:介绍电力电子系统的组成和工作原理,包括各种类型的电力电子变换器和调速装置的设计和实现原理;(3)电力电子控制:介绍电力电子控制的基本原理和方法,包括模拟控制、数字控制和智能控制等技术;(4)电力电子应用:介绍电力电子技术在电力系统、工业控制、交通运输、新能源等领域的应用和发展趋势。
前言按照《电力电子变流技术》课程设计的要求,经过一周的准备时间现在开始正式整理此份设计任务书。
电力电子技术又称为功率电子技术,他是用于电能变换和功率恐控制的电子技术。
电力电子技术示弱电控制强电的方法和手段,是当代高兴技术发展的重要内容,也是支持电力系统技术革命和技术革命的发展的重要基础,并节能降耗、增产节约提高生产效能的重要技术手段。
微电子技术、计算机技术以及大功率电力电子技术的快速发展,极大地推动了电工技术、电气工程和电力系统的技术发展和进步。
电力电子器件是电力电子技术发展的基础。
正是大功率晶闸管的发明,使得半导体变流技术从电子学中分离出来,发展成为电力电子技术这一专门的学科。
而二十时间九十年代各种全控型大功率半导体器件的发明,进一步拓展了电力电子技术应用和覆盖的领域和范围。
电力电子技术的应用领域已经深入到国民经济的各个部门,包括钢铁、冶金、化工、电力、石油、汽车、运输以及人们的日常生活。
功率范围大到几千兆瓦的高压直流输电,小到一瓦的手机充电器,电力电子技术随处可见。
电力电子技术在电力系统中的应用中也有了长足的发展,电力电子装置与传统的机械式开关操作设备相比有动态响应快,控制方便,灵活的特点,能够显著地改善电力系统的特性,在提高系统稳定、降低运行风险、节约运行成本方面有很大潜力。
2010年7月4日目录前言-----------------------------------------------------------------------------------------1目录-----------------------------------------------------------------------------------------2 一设计任务书简介1.1.设计题目-------------------------------------------------------------------------------3 1.2.设计任务及条件---------------------------------------------------------- -----------3 1.3设计注意事项-------------------------------------------------------------------------3 二相关知识回顾2.1 晶闸管的结构------------------------------------------------------------------------3 2.2晶闸管的工作原理简单回顾-------------------------------------------------------4 三设计方案简介3.1 单相桥式全控整流电路电阻性负载触发电路的设计------------------------6 3.2单相桥式全控整流电路电阻性负载工作波形----------------------------------6 四器件的选择及参数的计算4.1变压器的选择及参数计算----------------------------------------------------------7 4.2晶闸管的选用及参数计算-----------------------------------------------------------8 五心得体会------------------------------------------------------------------------------9 六特别鸣谢------------------------------------------------------------------------------9七参考文献------------------------------------------------------------------------------9一.设计任务书简介1.1设计题目:单相桥式全控整流电路电阻性负载1.2设计任务及设计条件1.2.1设计条件:(1)电网:380V,50Hz;(2)晶闸管单相桥式全控整流电路;(3)负载阻值:15Ω;负载工作电压:50V~150V可调。
1.2.2设计任务:(1)电源变压器设计,计算变压器容量、变比、2次侧电压有效值;(2)晶闸管选择,计算晶闸管额定电压、额定电流;(3)主电路图设计。
1.3设计注意事项:1.3.1设计提示:(1)电源变压器2次侧电压有效值应当满足负载电压的要求,所留裕量适当即可;(2)根据变压器2次侧电压有效值可以得到控制角的移相范围;(3)当控制角为最大值时,电流波形系数最大,选择晶闸管时,应当在此情况下考虑其额定电流。
1.3.2注意项目:(1)应当给出具体的计算过程和分析过程;(2)涉及电流、电压计算时,必须用波形图配合说明计算过程;(3)选型参数(额定电压、额定电流、容量等)应当取整。
二. 相关知识回顾:2.1 晶闸管的结构晶闸管是大功率的半导体器件,从总体结构上看,可区分为管芯及散热器两大部分,如图 2.1所示晶闸管管芯及电路符晶闸管的散热器如上图2.2所示2.2晶闸管的工作原理简单回顾2.2.1晶闸管管芯的内部结构如图2.3所示,是一个四层(P 1—N 1—P 2—N 2)三端(A 、K 、G )的功率半导体器件。
它是在N 型的硅基片(N 1)的两边扩散P型半导体杂质层(P 1、P 2),形成了两个PN 结J 1、J 2。
再在P 2层内扩散N型半导体杂质层N 2又形成另一个PN 结J 3。
然后在相应位置放置钼片作电极,引出阳极A ,阴极K 及门极G ,形成了一个四层三端的大功率电子元件。
这个四层半导体器件由于三个PN 结的存在,决定了它的可控导通特性。
2.2.2晶闸管导通和关断特性1)导通条件:晶闸管同时承受阳极正压和门极正压(可为触发脉冲)条件下才可导通。
2)关断条件:阳极正压小时或加反压。
其实质为流过的电流H A I I (维持电流)。
3)正向阻断性:晶闸管具有正向阻断性这个特性是普通二极管所不具备的。
晶闸管导通和关断的特性与晶闸管内部发生的物理过程有关参看图2.4。
晶闸管是一个具有P 1—N 1—P 2—N 2四层半导体的器件,内部形成有三个PN 结J 1、J 2、J 3,晶闸管承受正向阳极电压时,其中J 1、J 3承受反向阻断电压,J 2承受正向阻断电压。
这三个PN 结的功能可以看作是一个PNP 型三极管VT 1(P 1—N 1—P 2)和一个NPN 型三极管VT 2(N 1—P 2—N 2)构成的复合作用。
2.2.3 晶闸管的基本特性2.2.3.1静态特性静态特性又称伏安特性,指的是器件端电压与电流的关系。
(1) 阳极伏安特性晶闸管的阳极伏安特性表示晶闸管阳极与阴极之间的电压U ak 与阳极电流i a 之间的关系曲线,如图2.5所示。
(2) 门极伏安特性晶闸管的门极与阴极间存在着一个PN 结J 3,门极伏安特性就是指这个PN 结上正向门极电压U g与门极电流I g 间的关系。
由于这个结的伏安特性很分散,无法找到一条典型的代表曲线,只能用一条极限高阻门极特性和一条极限低阻门极特性之间的一片区域来代表所有元件的门极伏安特性,如图2.6阴影区域所示。
2.2.3.2动态特性晶闸管常应用于低频的相控电力电子电路时,有时也在高频电力电子电路中得到应用,如逆变器等。
在高频电路应用时,需要严格地考虑晶闸管的开关特性,即开通特性和关断特性。
(1)开通特性晶闸管由截止转为导通的过程为开通过程。
在晶闸管处在正向阻断的条件下突加门极触发电流,由于晶闸管内部正反馈过程及外电路电感的影响,阳极电流的增长需要一定的时间。
从突加门极电流时刻到阳极电流上升到稳定值I T的10%所需的时间称为延迟时间t d,而阳极电流从10%I T 上升到90%I T所需的时间称为上升时间t r,延迟时间与上升时间之和为晶闸管的开通时间t gt=t d+t r,普通晶闸管的延迟时间为0.5~1.5μs,上升时间为0.5~3μs。
延迟时间随门极电流的增大而减少,延迟时间和上升时间随阳极电压上升而下降。
如图2.7所示(2)关断特性要关断已导通的晶闸管,通常给晶闸管加反向阳极电压。
晶闸管的关断,就是要使各层区内载流子消失,使元件对正向阳极电压恢复阻断能力。
突加反向阳极电压后,由于外电路电感的存在,晶闸管阳极电流的下降会有一个过程,当阳极电流过零,也会出现反向恢复电流,反向电流达最大值I RM后,再朝反方向快速衰减接近于零,此时晶闸管恢复对反向电压的阻断能力。
三.设计方案简介单相整流电路可分为单相半波、单相全波和单相桥式全控流电路,它们所连接的负载性质不同就会有不同的特点。
单相半控整流电路虽然具备线路简单、调整方便的优点,但是她也存在的弱点是:输出电压脉动冲大,负载电流脉冲大(电阻性负载时),且整流变压器二次绕组中存在直流分量,使铁心磁化,变压器不能充分利用。
为了克服单向半控整流电路的确定,单相桥式全控整流电路随之诞生。
它具备输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。
单相桥式全控整流电路其输出平均电压是半波整流电路2倍,在相同的负载下流过晶闸管的平均电流减小一半;且功率因数提高了一半。
本任务书将会根据具体的电阻性负载的例子详细介绍和分析单相桥式全控整流电路。
3.1 单相桥式全控整流电路电阻性负载触发电路的设计参考教材《电力电子变流技术》(第三版)相关章节对本电路进行分析。
单相桥式全控整流电路电阻性负载电路图如右图所示。
晶闸管41VT VT 和组成一对桥臂,在u 2正半周承受电压u 2,得到触发脉冲即导通,当u 2过零时关断;32VT VT 和组成另一对桥臂在u 2正半周承受电压-u 2,得到触发脉冲即导通,当u 2过零时关断。
电路图如如3.1所示3.2单相桥式全控整流电路电阻性负载工作波形 当变压器二次侧电压U2为正半周时(即a 端为正,b 端为负),相当于控制角α的瞬间给41VT VT 和以触发脉冲,41VT VT 和即导通,这时电源电流从电源a 端经过41R VT VT 、、流回电路b 端。
这期间32VT VT 和均承受反向电压而截至。
当电源电压过零时,电流也降到零,41VT VT 和即关断。
当电源电压的负半周期,仍在控制角为α处触发晶闸管32VT VT 和,具体过程与正半周相反,此处不再赘述。
很显然上述两组触发脉冲在相位上相差0180,两组晶闸管组成的电路循环工作下去。