《人工智能》课程大纲
- 格式:doc
- 大小:26.50 KB
- 文档页数:2
人工智能课程标准大纲一、引言人工智能(Artificial Intelligence,AI)作为一门前沿科技,正在深刻改变我们的生活和工作方式。
为了满足人工智能领域的人才需求,制定一份全面、系统的人工智能课程标准大纲是必要的。
本文将基于该需求,提出人工智能课程标准大纲的内容和要求。
二、课程目标1. 培养学生对人工智能基本概念和原理的了解;2. 培养学生掌握人工智能算法和技术的基本应用;3. 培养学生具备人工智能项目开发和应用的实践能力;4. 培养学生具备研究和创新的能力,能够解决人工智能领域的实际问题。
三、课程内容1. 人工智能基础知识1.1 人工智能的定义和发展历程1.2 人工智能的核心思想和基本原理1.3 人工智能在不同领域的应用案例2. 机器学习与数据挖掘2.1 机器学习的概念和分类2.2 监督学习、无监督学习和强化学习2.3 数据挖掘的基本任务和方法2.4 机器学习和数据挖掘在人工智能中的应用3. 自然语言处理与智能对话3.1 自然语言处理的基本任务和挑战3.2 词法分析、句法分析和语义分析3.3 机器翻译和智能问答系统3.4 智能对话系统的设计和实现4. 计算机视觉与图像处理4.1 数字图像的基础知识和处理方法4.2 特征提取和图像识别技术4.3 目标检测和目标跟踪算法4.4 计算机视觉在人工智能中的应用5. 人工智能项目开发与实践5.1 人工智能项目开发的基本流程5.2 数据采集、清洗和预处理5.3 模型训练、评估和优化5.4 项目部署和应用实践案例四、教学方法与评估方式1. 教学方法1.1 理论授课与案例分析相结合,提高学生的理论水平和实际应用能力1.2 实验操作和项目实践,培养学生的动手能力和团队合作意识1.3 学生讨论与思考,促进学生的批判性思维和创新思维2. 评估方式2.1 平时成绩:包括课堂参与、作业完成、实验报告等2.2 期中考试:考察学生对课程内容的理解和掌握程度2.3 期末项目:要求学生结合所学知识实现一个人工智能项目并撰写项目报告2.4 学科竞赛和学术论文:鼓励学生参与学科竞赛和撰写学术论文,对其进行评价和奖励五、参考教材和学习资源1. 参考教材1.1 "人工智能导论",作者:XXX1.2 "机器学习导论",作者:XXX1.3 "自然语言处理基础",作者:XXX1.4 "计算机视觉与图像处理",作者:XXX2. 学习资源2.1 人工智能开放平台提供的教学资源和案例2.2 相关学术期刊和会议上发表的最新研究成果2.3 网上公开课程和学术论文数据库的学习资料六、结语人工智能课程标准大纲旨在培养学生的人工智能基础知识、技术应用和实践能力,以应对快速发展的人工智能领域的需求。
人工智能课程大纲第一部分:介绍人工智能(Artificial Intelligence,简称AI)是目前信息技术领域的热门话题,它涉及到机器智能的发展和应用。
本课程旨在帮助学生了解人工智能的基本概念、原理和应用,使他们具备一定的人工智能技术应用能力。
第二部分:课程目标1. 掌握人工智能的基本概念和分类;2. 熟悉人工智能的代表性算法和技术;3. 具备人工智能技术的应用和实践能力;4. 培养学生的创新思维和问题解决能力。
第三部分:课程内容1. 人工智能发展历史和基本概念;2. 人工智能主要技术分类和代表性算法;3. 机器学习、深度学习和神经网络;4. 自然语言处理、图像识别和智能推荐;5. 人工智能在各领域的应用案例。
第四部分:教学方法1. 理论课堂教学:讲授人工智能的基本理论知识;2. 实践教学:通过编程实践,帮助学生掌握人工智能算法和技术;3. 项目案例分析:讲解人工智能在各个领域的应用案例,激发学生创新思维。
第五部分:考核方式1. 平时表现(包括课堂参与、作业完成情况等)占比30%;2. 期中考试占比30%;3. 期末项目实践占比40%。
第六部分:参考教材1. 《人工智能基础》;2. 《Python深度学习》;3. 《机器学习实战》;4. 《神经网络与深度学习》。
第七部分:教学团队本课程由具有丰富教学经验和人工智能实践经验的教师团队共同执教,以确保教学质量和效果。
结语通过本课程的学习,相信学生们能够全面了解人工智能的基本理论和应用技术,为未来在相关领域的发展和应用打下坚实的基础。
希望学生们能够主动参与课程学习和实践,不断提高自身的人工智能技术能力,为社会发展和创新贡献自己的力量。
人工智能详细教学大纲第一章:导论1.1 人工智能的定义和基本概念- 人工智能的定义和起源- 人工智能的发展历程1.2 人工智能的应用领域- 人工智能在医疗领域的应用- 人工智能在金融领域的应用- 人工智能在交通领域的应用第二章:机器学习基础2.1 机器学习的概述- 监督学习、无监督学习、强化学习的基本原理和区别- 机器学习的应用场景2.2 数据预处理- 缺失值处理- 异常值检测与处理- 特征选择与降维2.3 常见的机器学习算法- 逻辑回归- 决策树- 支持向量机- 集成学习第三章:深度学习3.1 深度学习的原理与应用- 深度学习的发展历程- 神经网络的基本结构和工作原理3.2 常用的深度学习框架- TensorFlow- PyTorch- Keras3.3 深度学习的应用案例- 图像分类与识别- 自然语言处理- 人脸识别第四章:自然语言处理4.1 自然语言处理的基础知识- 词向量表示- 语法分析和语义分析4.2 文本分类与情感分析- 文本特征提取- 文本分类算法4.3 机器翻译与问答系统- 神经机器翻译- 阅读理解模型第五章:计算机视觉5.1 计算机视觉的基本概念- 图像处理与特征提取- 目标检测与图像分割5.2 图像识别与物体识别- 卷积神经网络(CNN)- 目标检测算法(如YOLO、Faster R-CNN)5.3 视觉生成与图像风格迁移- 生成对抗网络(GAN)- 图像风格迁移算法第六章:人工智能伦理与法律6.1 人工智能的伦理问题- 隐私与数据安全- 就业与职业变革- 人工智能的道德问题6.2 人工智能的法律问题- 数据保护法与隐私权- 人工智能专利与知识产权- 算法歧视与公平性第七章:人工智能未来发展趋势7.1 人工智能的挑战和机遇- 人工智能的挑战与限制- 人工智能带来的机遇与可能性7.2 人工智能与人类的关系- 人工智能助力人类创新与发展- 人工智能对就业和教育的影响总结与展望本教学大纲全面介绍了人工智能的基本概念、机器学习、深度学习、自然语言处理、计算机视觉等领域的基础知识与应用。
人工智能培训课程大纲一、引言二、课程目标三、课程内容2.数学基础2.1概率论与数理统计2.2线性代数2.3微积分2.4最优化方法3.机器学习3.1监督学习3.2无监督学习3.3强化学习3.4集成学习4.深度学习4.1神经网络基础4.2卷积神经网络(CNN)4.3循环神经网络(RNN)4.4对抗网络(GAN)5.自然语言处理5.15.2词向量表示5.3语法分析5.4机器翻译6.计算机视觉6.1图像处理基础6.2目标检测6.3图像识别6.4人脸识别7.1智能家居7.2智能交通7.3智能医疗7.4智能教育8.2数据安全与隐私保护四、课程安排1.课程周期:6个月2.课程形式:线上授课,每周2次,每次2小时3.实践环节:每节课后布置作业,课程结束后进行项目实践4.评估方式:平时作业占30%,项目实践占70%五、师资力量3.助教团队:协助讲师进行课程辅导、作业批改和技术支持六、课程证书七、报名与咨询2.报名方式:登录培训机构官方网站或公众号进行报名3.咨询方式:方式、、邮件等多种途径,详细咨询课程相关信息八、2.数学基础2.2线性代数:线性代数为处理和理解多维数据提供了工具,是深度学习等算法的理论基础。
2.3微积分:微积分在优化算法中有着重要的作用,对于理解机器学习中的梯度下降等概念至关重要。
3.机器学习3.1监督学习:监督学习是机器学习的一种主要形式,这部分将介绍监督学习的原理、算法和应用。
3.2无监督学习:无监督学习不依赖于标注数据,能够从数据中自动发现模式,这部分将介绍无监督学习的主要技术和应用。
3.3强化学习:强化学习是一种通过与环境交互来学习最优策略的方法,这部分将介绍强化学习的基本概念、算法和实际应用。
3.4集成学习:集成学习通过结合多个学习器来提高学习性能,这部分将介绍集成学习的方法和策略。
4.深度学习4.1神经网络基础:神经网络是深度学习的基石,这部分将介绍神经网络的基本结构和原理。
4.2卷积神经网络(CNN):CNN在图像识别等领域有着广泛的应用,这部分将详细介绍CNN的原理和实现。
人工智能课程大纲一、课程简介人工智能作为一门前沿的学科,其应用范围广泛,影响深远。
本课程旨在引导学生全面了解人工智能的基本概念、方法和应用领域,培养学生运用人工智能技术解决实际问题的能力。
二、课程目标1. 理解人工智能的基本概念和原理;2. 熟悉人工智能的核心技术和算法;3. 掌握人工智能在各个领域的应用案例和发展趋势;4. 培养学生运用人工智能技术解决实际问题的能力;5. 培养学生的团队协作和创新能力。
三、教学内容1. 人工智能概述- 人工智能的定义与发展历程- 人工智能的应用领域和挑战2. 机器学习与数据挖掘- 监督学习、无监督学习和强化学习的基本概念- 常用的机器学习算法和数据挖掘技术- 数据预处理和特征工程3. 深度学习与神经网络- 神经网络的基本原理与结构- 深度学习算法及其应用场景- 深度学习框架的使用和模型优化方法4. 自然语言处理与人机对话- 语言模型与文本分类技术- 机器翻译和文本生成- 人机对话系统的设计与实现5. 计算机视觉与图像处理- 图像特征提取与图像分类- 目标检测和图像分割- 图像生成与风格转换6. 智能推荐与个性化推荐- 推荐系统的原理与算法- 协同过滤与内容推荐- 个性化推荐系统的构建与优化7. 人工智能伦理与社会影响- 人工智能的伦理问题与挑战- 人工智能在社会中的应用与风险- 人工智能的未来发展与应对策略四、教学方法与评价方式1. 教学方法- 讲授理论知识,结合案例分析和实例讲解 - 引导学生自主学习和独立思考- 设计实践项目,培养实际操作能力- 进行小组讨论和课堂展示2. 评价方式- 课堂参与和讨论表现- 作业和实践项目的完成情况- 期末考核和论文撰写成果五、参考书目1.《机器学习》- 周志华2.《深度学习》- 邱锡鹏3.《自然语言处理综论》- 陆海英4.《计算机视觉:算法与应用》- Richard Szeliski5.《推荐系统实践》- 王喆六、备注事项1. 课程期限为一学期,每周两次课程,每次两小时;2. 学生需要具备基本的数学和编程基础;3. 课程设置了实验室实践环节,学生需进行相关实验和项目设计。
《人工智能》课程大纲人工智能课程大纲一、引言A. 课程背景与目的B. 课程结构概述二、人工智能基础知识A. 人工智能概述1. 人工智能定义与发展历史2. 人工智能的应用领域3. 人工智能的挑战和前景B. 机器学习1. 机器学习的定义和原理2. 监督学习、无监督学习与强化学习3. 机器学习算法与实践案例C. 自然语言处理1. 自然语言处理的概念和挑战2. 语音识别与文本处理技术3. 自然语言生成与机器翻译三、人工智能技术与应用A. 图像与视觉处理1. 图像处理基础2. 特征提取和图像分类算法3. 计算机视觉的应用案例B. 智能决策与规划1. 搜索算法与规划方法2. 强化学习与决策树算法3. 智能系统在自动驾驶等领域的应用C. 人机交互与智能系统设计1. 人机界面设计原则2. 聊天机器人与语音助手开发3. 智能系统的用户体验与评估四、人工智能的伦理与社会影响A. 人工智能的道德与伦理问题1. 个人隐私与数据安全2. 人工智能的道德准则与规范3. 机器人与人类社会的互动关系B. 人工智能对社会经济的影响1. 自动化对就业市场的改变2. 人工智能在医疗、金融等行业的应用3. 人工智能与可持续发展的关系五、课程实践与项目A. 人工智能编程与实践1. 基于Python的机器学习实践2. TensorFlow与深度学习编程B. 人工智能应用设计与实现1. 智能推荐系统开发2. 人工智能在游戏开发中的应用六、评估方式与学习资源A. 课程作业与考核方式B. 推荐教材与学习资源C. 学习支持与讨论平台七、总结与展望A. 课程回顾与学习成果B. 人工智能领域的未来发展方向本课程旨在帮助学生深入了解人工智能的基本概念、技术和应用,培养学生人工智能思维和创新能力。
通过课程的学习,学生将能够掌握人工智能基础知识,了解机器学习、自然语言处理、图像与视觉处理等核心技术。
同时,课程将注重伦理与社会影响的讨论,帮助学生思考人工智能的科技伦理问题和社会责任。
人工智能课程教学大纲课程名称:人工智能教学大纲课程目标:本课程旨在帮助学生了解人工智能的基本概念、原理和技术,并培养学生在人工智能领域的批判性思维和问题解决能力。
通过学习本课程,学生将能够理解人工智能的背景、应用和发展趋势,并能够独立设计和实现简单的人工智能系统。
课程内容:1. 人工智能概述- 人工智能的定义与应用领域- 人工智能的历史与发展- 人工智能与机器学习的关系2. 机器学习基础- 监督学习、无监督学习和强化学习的基本概念- 常用机器学习算法及其原理- 机器学习的评估方法和误差分析3. 深度学习- 神经网络的基本原理与结构- 卷积神经网络与循环神经网络的应用- 深度学习的训练与优化方法4. 自然语言处理- 语言的表示与处理方法- 文本分类、语义分析和机器翻译的基本原理- 自然语言生成与对话系统的应用5. 计算机视觉- 图像处理与特征提取- 目标检测、图像分类和图像生成的基本原理- 视觉感知与智能交互的应用6. 人工智能伦理与社会影响- 人工智能的道德与伦理问题- 人工智能在社会中的挑战与机遇- 人工智能的未来发展趋势课程教学方法:本课程采用讲授、案例分析和实践项目结合的教学方法。
通过理论讲解、实例分析和实践操作,帮助学生理解和应用人工智能的基本原理和技术。
学生将完成实践项目,设计和实现一个简单的人工智能系统,并对其性能进行评估和优化。
课程评估方式:- 平时作业和课堂表现:占总成绩的30%- 实践项目报告:占总成绩的40%- 期末考试:占总成绩的30%参考教材:- Ian Goodfellow, Yoshua Bengio, Aaron Courville. Deep Learning [M]. MIT Press, 2016.- Sebastian Raschka, Vahid Mirjalili. Python Machine Learning [M]. Packt Publishing, 2017.- Dan Jurafsky, James H. Martin. Speech and Language Processing [M]. Pearson, 2019.备注:该人工智能课程教学大纲仅作参考,实际课程内容和安排可能会根据教师和学校要求进行调整。
人工智能》教学大纲2.掌握Prolog语言的基本语法和常用操作;3.能够编写简单的Prolog程序,并能够运行和调试;4.了解Prolog语言在人工智能中的应用。
第三章搜索算法基本内容和要求:1.掌握深度优先搜索、广度优先搜索、启发式搜索等搜索算法的基本思想和实现方法;2.能够应用搜索算法解决一些典型问题;3.了解搜索算法在人工智能中的应用。
第四章知识表示与推理基本内容和要求:1.掌握命题逻辑、一阶逻辑等知识表示方法;2.了解基于规则、框架、语义网络等知识表示方法;3.掌握归结方法、前向推理、后向推理等推理方法;4.能够应用知识表示与推理解决一些典型问题。
第五章不确定性推理基本内容和要求:1.了解不确定性推理的基本概念和方法;2.掌握贝叶斯定理及其应用;3.掌握条件概率、独立性、条件独立性等概念;4.能够应用不确定性推理解决一些典型问题,如垃圾邮件过滤等。
五、教材和参考书目1)主教材:Stuart Russell。
Peter Norvig。
Artificial Intelligence: A Modern Approach。
3rd n。
Prentice Hall。
2009.2)参考书目:___。
机器研究。
___。
2016.___。
统计研究方法。
___。
2012.___。
___。
2017.六、教学进度安排第一周人工智能概述第二周逻辑程序设计语言Prolog第三周搜索算法第四周知识表示与推理第五周不确定性推理第六周期中考试第七周至第十周课程实验第十一周至第十三周课程实验第十四周课程总结与复第十五周期末考试一实验(实训)内容产生式系统实验学时分配4目的与要求:熟悉和掌握产生式系统的运行机制,掌握基于规则推理的基本方法。
实验(实训)内容:主要包括产生式系统的正、反向推理、基于逻辑的搜索等10余个相关演示性、验证性和开发性设计实验。
二实验(实训)内容搜索策略实验学时分配4目的与要求:熟悉和掌握启发式搜索的定义、估价函数和算法过程,并利用A*算法求解N数码难题,理解求解流程和搜索顺序。
《人工智能》课程教学大纲《人工智能》课程教学大纲一、课程基本信息开课单位课程名称开课对象学时/学分先修课程课程简介:人工智能是计算机科学的重要分支,是研究如何利用计算机来模拟人脑所从事的感知、XXX人工智能课程类别课程编码开课学期个性拓展GT第4或6学期网络工程专业、计算机科学与技术专业36学时/2学分(理论课:28学时/1.5学分;实验课:8学时/0.5学分)离散数学、数据结构、程序设计推理、研究、思考、规划等人类智能活动,来解决需要用人类智能才能解决的问题,以延伸人们智能的科学。
该课程主要讲述人工智能的基本概念及原理、知识与知识表示、机器推理、搜索策略、神经网络、机器研究、遗传算法等方面内容。
二、课程教学目标《人工智能》是计算机科学与技术专业的一门专业拓展课,通过本课程的研究使本科生对人工智能的基本内容、基本原理和基本方法有一个比较初步的认识,掌握人工智能的基本概念、基本原理、知识的表示、推理机制和智能问题求解技术。
启发学生开发软件的思路,培养学生对相关的智能问题的分析能力,提高学生开发应用软件的能力和水平。
三、教学学时分配《人工智能》课程理论教学学时分派表章次第一章第二章第三章第四章第五章第六章首要内容人工智能概述智能程序设计言语图搜索技术基于谓词逻辑的机器推理呆板进修与专家系统智能计算与问题求解合计学时分配35464628教学方法或手段讲授法、多媒体讲授法、多媒体探究式、多媒体讲授法、多媒体概述法、多媒体开导式、多媒体《人工智能》课程实验内容设置与教学要求一览表实学尝试序项目号名称配1)了解PROLOG语言中常1) Prolog运转环境;量、变量的表示方法;实分支2)使用PROLOG举行事实验与循实库、规则库的编写;库、规则库的编写方法;环程3)分支程序设计;一序设4)循环程序设计;一计5)输入出程序设计。
5)掌握PROLOG输入输出程序设计;1)了解PROLOG中的谓词1)谓词asserta和递归实与表实处理验程序二设计4)掌握PROLOG表处理程4)综合应用程序设计。
人工智能课程标准大纲第一章: 课程简介1.1 课程概述本章介绍人工智能课程的目标、背景和重要性。
1.2 学习目标本节阐明学生应该在课程结束时所具备的知识和技能。
1.3 课程内容本节详细介绍课程涵盖的主题和具体内容。
1.4 教学方法本节探讨了教学方法和学习资源,以帮助学生获得最佳学习效果。
第二章: 人工智能基础知识2.1 人工智能简史本节回顾了人工智能的起源和发展,以及其中的重要里程碑。
2.2 人工智能的定义和范畴本节对人工智能的定义进行了详细解释,并介绍了主要的人工智能研究领域。
2.3 机器学习与人工智能本节介绍了机器学习的基本概念和原理,并探讨了其在人工智能中的应用。
2.4 人工智能的伦理和社会影响本节讨论了人工智能技术所引发的伦理和社会问题,并探索了解决方案。
第三章: 人工智能核心技术3.1 数据处理与分析本节介绍了人工智能中常用的数据处理和分析方法,包括数据清洗、特征提取和数据可视化等。
3.2 自然语言处理本节讲解了自然语言处理的基本原理和常用技术,如文本分类、情感分析和机器翻译等。
3.3 图像与视觉识别本节介绍了图像处理和计算机视觉的基础知识,包括图像识别、目标检测和图像生成等。
3.4 机器学习算法本节系统地介绍了常见的机器学习算法,包括监督学习、无监督学习和强化学习等。
第四章: 人工智能应用领域4.1 人工智能在医疗领域的应用本节探讨了人工智能在医学影像分析、疾病诊断和辅助决策等方面的应用。
4.2 人工智能在金融领域的应用本节介绍了人工智能在金融风控、交易预测和智能客服等方面的应用案例。
4.3 人工智能在交通领域的应用本节讨论了人工智能在交通流量优化、自动驾驶和智慧交通管理等方面的应用。
4.4 人工智能在智能家居领域的应用本节介绍了人工智能在智能家居控制、动态调度和人机交互等方面的应用案例。
第五章: 人工智能发展趋势与展望5.1 当前人工智能技术的瓶颈本节分析了当前人工智能技术发展中所面临的挑战和限制。
《人工智能》教学大纲人工智能教学大纲一、引言人工智能(Artificial Intelligence, AI)是现代科技发展的热点领域,其在各个行业中的应用不断深入。
AI教育的重要性与日俱增,为了适应时代的发展潮流,我们设计了本教学大纲,旨在引导学生系统地学习人工智能的基本概念、原理和应用,培养学生的AI思维和技术能力。
二、课程目标本课程旨在使学生掌握以下知识和技能:1. 理解人工智能的基本概念和发展历程;2. 掌握人工智能的核心算法和模型,如机器学习、深度学习等;3. 理解人工智能在各个领域的应用,并能够灵活运用相关技术解决实际问题;4. 培养学生的创新思维和团队合作能力,在人工智能领域具备综合素质。
三、教学内容与进度安排1. 第一阶段:人工智能概述(2周)- 人工智能的定义与分类- 人工智能在社会与经济中的地位与作用- 人工智能的发展历程及国内外研究进展2. 第二阶段:机器学习基础(4周)- 机器学习的基本概念与算法- 监督学习、无监督学习和半监督学习- 常见机器学习算法的原理与应用- 机器学习在图像处理、自然语言处理等领域的应用案例3. 第三阶段:深度学习与神经网络(5周)- 深度学习的基本原理与核心概念- 深度神经网络的结构与训练方法- 常见深度学习网络,如卷积神经网络、循环神经网络等 - 深度学习在计算机视觉、语音识别等领域的应用案例4. 第四阶段:人工智能应用与伦理(3周)- 人工智能在医疗、金融、智能交通等领域的应用案例 - 人工智能伦理与社会影响的讨论- 人工智能发展趋势与未来展望5. 第五阶段:实践项目与实验(4周)- 结合实际问题,进行人工智能算法的实践应用- 利用开源框架进行人工智能模型的训练与调优- 团队合作,完成人工智能项目的设计与实施四、教学方法与评价方式1. 教学方法- 授课结合案例分析,通过实例让学生更好地理解与应用知识;- 布置作业与小组讨论,培养学生的独立思考和合作能力;- 项目实践与实验,提升学生的动手能力与创新思维。
人工智能课程大纲人工智能课程大纲一、课程介绍人工智能是现代科技领域的热点之一,本课程旨在介绍人工智能的基本理论、应用领域以及相关技术。
通过本课程的学习,学生将了解人工智能的概念、发展历程以及未来发展趋势,掌握人工智能的基本原理和各种算法模型,并学会应用人工智能技术解决实际问题。
二、课程目标1. 理解人工智能的基本概念和原理;2. 熟悉人工智能的发展历程和应用领域;3. 掌握人工智能算法和模型的基本原理;4. 学会使用常见的人工智能技术解决实际问题;5. 培养学生的创新思维和解决问题的能力。
三、主要内容1. 人工智能概述(1)人工智能的定义和发展历程(2)人工智能的研究领域和应用领域(3)人工智能的发展趋势和挑战2. 人工智能基础(1)机器学习基础(2)数据挖掘与分析(3)统计学习方法3. 人工智能算法(1)神经网络与深度学习(2)遗传算法与进化计算(3)模糊逻辑与模糊推理4. 自然语言处理与语音识别(1)自然语言处理基础(2)文本分析与情感识别(3)语音合成与语音识别5. 图像识别与计算机视觉(1)图像处理基础(2)目标检测与图像分类(3)计算机视觉应用研究6. 人工智能与实际问题(1)智能对话系统与机器人技术(2)智能医疗与健康管理(3)智能交通与无人驾驶技术四、教学方法1. 理论教学:通过课堂讲授,系统性地介绍人工智能的基本理论和关键技术。
2. 实践操作:通过实验和案例分析,学生实际操作人工智能工具和平台,解决实际问题。
3. 项目实践:设置人工智能项目实践,培养学生的团队协作和问题解决能力。
五、考核方式1. 平时成绩:包括课堂表现、作业完成情况和实验报告等。
2. 期末考试:考察学生对人工智能理论和应用的掌握程度。
3. 项目评估:参考学生项目成果和实践报告等。
六、参考教材1. 《人工智能导论》李聪著2. 《机器学习》周志华著3. 《深度学习》陈云著七、参考资源1. 机器学习工具:Python, TensorFlow, scikit-learn等。
课程名称:人工智能(Artificial Intelligence)
撰写人:年福忠审核人:张永李明
一、课程编号:305316
二、学时学分:32学时,2.0学分
三、先修课程:离散数学,程序设计
四、适合专业:计算机科学与技术
五、课程性质和任务
人工智能是一门综合性前沿学科,是计算机学科的重要分支。
通过对人工智能课程的学习,使学生掌握人工智能技术的基本原理;了解启发式搜索策略、与或图搜索问题、谓词逻辑与归结原理、知识表示、不确定性推理方法、机器学习和知识发现等目前人工智能的主要研究领域的原理、方法和技术;增强学生的逻辑思维与实验能力,为今后在各自领域开拓高水平的人工智能技术应用奠定基础。
六、主要教学内容
1、人工智能研究的发展和基本原则:人工智能的研究和应用;人工智能研究的发展;人工智能研究的成果;人工智能研究的基本原则;存在的问题和发展前景
2、一般图搜索:回溯策略、图搜索策略、无信息搜索过程、启发式图搜索过程、搜索算法讨论。
3、与或图搜索问题:与或图的搜索、与或图的启发式搜索算法AO*、博弈树的搜索。
4、谓词逻辑与归结原理:命题逻辑、谓词逻辑基础、谓词逻辑归结原理、HERBRAND定理。
5、知识表示:知识、知识表示、知识观、产生式表示方法、语义网络表示、框架表示以及其他表示方法。
6、不确定性推理方法:不确定性推理的基本问题、贝叶斯网络、主观贝叶斯方法、确定性方法、证据理论。
7、机器学习:机器学习概论、实例学习、基于解释的学习、决策树学习、神经网络学习、知识发现与数据挖掘。
8、高级搜索:基本概念、局部搜索算法、模拟退火算法、遗传算法等。
七、教学基本要求
根据课程在知识结构中的作用,教学要求分为掌握、熟悉、了解、选学四个层次,具体要求如下。
1.掌握部分:一般图搜索(回溯策略、图搜索策略、无信息搜索过程、启发式图搜索过程);与或图搜索问题包括与或图的启发式搜索算法AO*、博弈树的搜索;谓词逻辑与归结原理(谓词逻辑归结原理、HERBRAND定理);知识表示(产生式表示方法、语义网络表示、框架表示);不确定性推理方法(不确定性推理的基本问题、贝叶斯网络、主观贝叶斯方法、确定性方法)
2.熟悉部分:不确定性推理方法之证据理论;机器学习(机器学习概论、实例学习、基于解释的学习、决策树学习、神经网络学习)。
3.了解部分:人工智能研究的发展和基本原则;知识原则、知识表示的作用、功能、性能;自动规划技术的新进展,人工智能的最新进展和面临的挑战。
4.选学部分:高级搜索
八、参考学时分配:
本大纲依据兰州理工大学2006年本科指导性培养计划编写。