初中数学常见几何模型全解析
- 格式:docx
- 大小:1.84 MB
- 文档页数:11
初中几何48个模型及题型讲解一、直线和角1. 平行线和垂直线的性质平行线的性质包括对应角相等、内错角相等、同旁内角相等,垂直线的性质包括互补角相等、邻补角相等等等。
2. 直线的夹角与邻角两条直线之间的夹角等于它的补角,夹角的补角叫相邻角。
3. 同位角与对顶角同位角相等、对顶角相等。
4. 角的大小关系锐角、直角、钝角的大小关系。
5. 角和角度角的性质包括平分角等。
6. 角的运算法则相等角相加还是相等角;补角与角补加为90°。
7. 顶角和底角的性质同位角相等、顶底角相等。
二、等腰三角形、等边三角形1. 等腰三角形的性质两底角相等,两底边相等等。
2. 等边三角形的性质三边相等、三角也相等等等三、全等三角形1. 全等三角形的基本判定条件AAA、SAS、SSS、ASA四种判定条件。
2. 全等三角形的性质全等三角形的对应边和对应角相等等等。
四、相似三角形1. 相似三角形的基本判定条件AA、SAS、SSS、AAS四种判定条件。
2. 相似三角形的性质相似三角形的对应边成比例,对应角相等等等。
五、直角三角形1. 直角三角形的性质勾股定理、边角关系、三边关系等。
2. 解直角三角形的基本方法利用三角函数解决实际问题等。
六、三角形的面积1. 三角形的面积计算公式面积公式S=1/2×底×高等。
2. 多边形的面积计算公式正多边形、梯形、平行四边形、菱形等多边形的面积公式。
七、四边形1. 平行四边形的性质对角线互相平分等。
2. 矩形的性质对角相等、对边相等等。
3. 菱形的性质对角相等、对边相等、对角平分等。
4. 正方形的性质矩形和菱形的结合。
五、圆1. 圆的基本概念圆心、圆周、半径、直径等。
2. 圆的周长和面积周长C=2πr,面积S=πr^2等。
3. 圆中角和弧的关系圆心角、圆周角、同弧对应角等。
4. 切线与切点切线与圆相切于一个点等。
六、坐标系1. 直角坐标系和平面直角坐标系横坐标和纵坐标等。
初中几何48种数学模型系统讲解初中几何是数学中非常重要的一个分支,涉及到许多基础知识和技能。
在初中几何学习中,数学模型是非常重要的一环,它能够帮助学生更好地理解和掌握几何知识,并提高解题的能力。
下面我们就来介绍一下初中几何中常见的48种数学模型系统。
1. 平面几何模型:平面几何模型是研究平面上的图形和变换的数学模型,例如平移、旋转、对称等。
2. 立体几何模型:立体几何模型是研究空间中的图形和变换的数学模型,例如立体的投影、旋转、平移等。
3. 直线模型:直线模型是用来表示直线的数学模型,例如在平面几何中,可以使用坐标系来表示一条直线。
4. 线段模型:线段模型是用来表示线段的数学模型,例如在平面几何中,可以使用坐标系来表示一条线段。
5. 角度模型:角度模型是用来表示角度的数学模型,例如在平面几何中,可以使用角度制和弧度制来表示角度。
6. 相交模型:相交模型是用来表示图形相交的数学模型,例如在平面几何中,可以使用交点来表示两条直线相交的情况。
7. 平行模型:平行模型是用来表示平行线的数学模型,例如在平面几何中,可以使用平行线的定义来表示两条直线平行的情况。
8. 垂直模型:垂直模型是用来表示垂直线的数学模型,例如在平面几何中,可以使用垂直线的定义来表示两条直线垂直的情况。
9. 对称模型:对称模型是用来表示对称图形的数学模型,例如在平面几何中,可以使用对称轴来表示对称图形的情况。
10. 相似模型:相似模型是用来表示相似图形的数学模型,例如在平面几何中,可以使用相似比例来表示两个相似图形之间的关系。
11. 等比模型:等比模型是用来表示等比数列的数学模型,例如在几何中,可以使用等比数列来表示一些几何问题。
12. 等分模型:等分模型是用来表示等分线段的数学模型,例如在几何中,可以使用等分线段来表示将一个线段分成若干等分的情况。
13. 圆模型:圆模型是用来表示圆形的数学模型,例如在平面几何中,可以使用圆心、半径来表示一个圆。
初中常见数学模型几何和证明方法初中数学中的几何和证明方法是学习数学的重要内容之一。
通过几何学习,学生可以掌握基本的几何概念、性质和定理,进而培养逻辑思维、分析问题和解决问题的能力。
而证明方法则是通过推理和论证的方式验证和证明数学命题的正确性。
下面将对初中常见的几何模型和证明方法进行介绍。
一、几何模型1. 点、线、面:几何学的基本要素是点、线和面。
点是没有大小和形状的,用来表示位置;线是由无数个点组成的,它没有宽度和厚度;面是由无数个线组成的,它有宽度和厚度。
2. 直线和线段:直线是由无数个点组成的,它没有起点和终点;线段是直线的一部分,有起点和终点。
3. 角:角是由两条射线共同起点组成的,可以用度数来表示。
4. 三角形:三角形是由三条线段组成的,它有三个顶点、三条边和三个角。
5. 直角三角形:直角三角形是一个角为90度的三角形,其中的两条边相互垂直。
6. 平行四边形:平行四边形是四边形的一种,它的对边是平行的。
7. 圆:圆是由一个固定点到平面上所有到该点距离相等的点组成的图形。
以上是初中常见的几何模型,通过对这些模型的学习,可以帮助学生理解几何概念和性质,为后续的学习打下基础。
二、证明方法1. 直接证明法:直接证明法是通过一系列逻辑推理,从已知条件出发,推导出结论的过程。
这种证明方法通常可以通过图形、等式等形式来进行。
2. 反证法:反证法是通过假设所要证明的命题不成立,然后通过逻辑推理,推导出一个与已知条件矛盾的结论,从而证明原命题的正确性。
3. 数学归纳法:数学归纳法是通过证明当命题对于某个特定的数成立时,对于下一个数也成立,进而可以推导出对于所有数都成立的结论。
这种证明方法常用于证明与自然数相关的命题。
4. 反证法:反证法是通过假设所要证明的命题不成立,然后通过逻辑推理,推导出一个与已知条件矛盾的结论,从而证明原命题的正确性。
5. 用反证法证明:用反证法证明是指通过假设所要证明的命题不成立,然后推导出一个与已知条件矛盾的结论,从而证明原命题的正确性。
初中数学9大几何模型(证明结论及推导)一、手拉手模型----旋转型全等(1)等边三角形【条件】:△OAB 和△OCD 均为等边三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形【条件】:△OAB 和△OCD 均为等腰直角三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AEDOABC DE图 1OABC D E图 2OABCDE图 1OACDE图 2OABC DEOABCD E图 1图 2二、模型二:手拉手模型----旋转型相似 (1)一般情况【条件】:CD ∥AB , 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况【条件】:CD∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; ③===OAOBOC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有2222CD AB B C AD +=+;⑥BD AC 21S △BCD ⨯=三、模型三、对角互补模型 (1)全等型-90°【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 21S S S =+= 证明提示:①作垂直,如图2,证明△CDM ≌△CEN②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21S S =-OB CDO ABCDEOB CDEOA C DAO BCDE图 1A OBCDE M N 图 2A OBCDEF图 3A O BCDEMN 图 4(2)全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 43S S S =+=证明提示:①可参考“全等型-90°”证法一;②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。
重要的几何模型之12345模型初中几何,直角三角形具有举足轻重的地位,贯彻初中数学的始终,无论是一次函数、平行四边形、特殊平行四边形、反比例函数、二次函数、相似、圆,都离不开直角三角形。
今天我们要重点介绍的“12345”模型就是中考(选填题)解题神器,需要我们反复断钻研、领悟。
现在带领大家领略一下,“12345”模型的独特魅力。
【模型解读】模型1、12345模型及其衍生模型【模型来源】2019年北京市中考如图所示的网格是正方形网格,则∠PAB+∠PBA=( )°(点A,B,P是网格交点).该类问题解法很多,这里我们就根据现有的方格纸来构造一个等腰直角三角形。
如图,即:∠PAB+∠PBA=∠BPQ=45°。
上面的∠PAB和∠PBA便是今天要说的特殊角,除了它们的和为45°之外,用三角函数的观点来看:tan∠PAB=12,tan∠PBA=13,对于这里的数据,为了便于记忆,总结为“12345”模型。
【常见模型】下面模型中12,13,2,3,43,34均为对应角的正切值。
∠α+∠β=45°;∠α+45°=∠GAF;∠DAF+45°=∠EAH;∠α+∠β=135°;∠α+∠β=90°;∠ADB+∠DBA=∠BAC;∠ADB+∠DBA=∠BAC;切记:做题不光要知道题目告诉我什么,还要根据已知的信息,思考这里需要什么,而“12345”模型用来解决相关的选填题非常方便。
下面所列举的个别题,利用“12345”解题也许未必是最简,最巧妙的,但至少可以成为一种通性通法,可以在短时间内快速破题。
毕竟在考试的时候时间非常宝贵的。
1(2022·四川乐山·中考真题)如图,在Rt△ABC中,∠C=90°,BC=5,点D是AC上一点,连接BD.若tan∠A=12,tan∠ABD=13,则CD的长为()A.25B.3C.5D.2【答案】C 【分析】法1:先根据tan ∠A =12,tan ∠ABD =13,再由12345模型知:∠BDC =45°,从而可求出CD .法2:先根据锐角三角函数值求出AC =25,再由勾股定理求出AB =5,过点D 作DE ⊥AB 于点E ,依据三角函数值可得DE =12AE ,DE =13BE ,从而得BE =32AE ,再由AE +BE =5得AE =2,DE =1,由勾股定理得AD =5,从而可求出CD .【详解】解法1:∵tan ∠A =12,tan ∠ABD =13,∴根据12345模型知:∠BDC =45°,∵∠C =90°,∴三角形BCD 为等腰直角三角形,∵BC =5,∴CD =BC =5解法2(常规解法):在Rt △ABC 中,∠C =90°,BC =5,∴tan ∠A =BC AC=12∴AC =2BC =25, 由勾股定理得,AB =AC 2+BC 2=(25)2+(5)2=5过点D 作DE ⊥AB 于点E ,如图,∵tan ∠A =12,tan ∠ABD =13,∴DE AE =12,DE BE =13, ∴DE =12AE ,DE =13BE , ∴12AE =13BE ∴BE =32AE ∵AE +BE =5, ∴AE +32AE =5∴AE =2, ∴DE =1,在Rt ΔADE 中,AD 2=AE 2+DE 2∴AD =AE 2+DE 2=22+12=5∵AD +CD =AC =25, ∴CD =AC -AD =25-5=5,故选:C【点睛】本题主要考查了勾股定理,由锐角正切值求边长,正确作辅助线求出DE 的长是解答本题的关键.2(2023.成都市中考模拟)如图,正方形ABCD ,AB =2,点E 为AD 上一动点,将三角形ABE 沿BE 折叠,点A 落在点F 处,连接DF 并延长,与边AB 交于点G ,若点G 为AB 中点,则AE =.【答案】23【详解】解法1:延长EF 至H ,易证△BFH ≌△BCH (HL ),则∠EBH =45°,又因为HF =HC =HD ,所以∠CFD =90°,则∠CBH =∠FBH =∠FCD =∠ADG ,因为tan α=12,根据“12345”模型,易知故tan ∠ABF =13⇒AE =23解法2(常规解法):如图,过点F 作AB 的平行线,分别交AD ,BC 于点M ,N ,∵四边形ABCD 是正方形,AB =2,∴AD =2,∠A =90°,四边形ABNM 是矩形,∴MN =AB =2,AM =BN ,∠BNF =∠FME =90°,∵点G 为AB 中点,∴AG =12AB =1,∵MN ∥AB ,∴△MDF ∼△ADG ,∴MF DM =AG AD=12,即DM =2MF ,设MF =x ,则DM =2x ,NF =2-x ,∴BN =AM =AD -DM =2-2x ,由折叠的性质得:BF =AB =2,EF =AE ,∠BFE =∠A =90°,∴∠EFM +∠BFN =90°,又∵∠BNF =90°,∴∠FBN +∠BFN =90°,∴∠EFM =∠FBN ,在△EFM 和△FBN 中,∠FME =∠BNF =90°∠EFM =∠FBN,∴△EFM ∼△FBN ,∴EF BF =FM BN =EM FN,即EF 2=x 2-2x =EM 2-x ,解得EF =x 1-x ,EM =x 2-x 2-2x ,∴AE =x 1-x ,又∵AE +EM =AM ,∴x 1-x +x 2-x 2-2x =2-2x ,解得x =25或x =2,经检验,x =25是所列方程的解,x =2不是所列方程的解,∴AE =251-25=233(2023.湖北黄冈.中考真题)如图,矩形ABCD 中,AB =3,BC =4,以点B 为圆心,适当长为半径画弧,分别交BC ,BD 于点E ,F ,再分别以点E ,F 为圆心,大于12EF 长为半径画弧交于点P ,作射线BP ,过点C 作BP 的垂线分别交BD ,AD 于点M ,N ,则CN 的长为()A.10B.11C.23D.4【答案】A 【详解】解法1:因为AB =3,BC =4,所以tan ∠DBC =34,如图,根据“12345”模型,易知tan α=13,故CN =10ND =103CD =10。
初中数学四十八个几何模型1. 直线与角直线是任意两点之间的最短路径。
角是由两条射线共享一个端点而形成的图形。
直线与角是几何学的基本概念。
线段是直线上两个点之间的部分。
线段具有长度,可以进行比较。
射线是由一个端点和延伸的直线组成的。
射线有起点,但没有终点,可以无限延伸。
4. 平面与平行线平面是一个没有边界的二维图形。
平行线是在同一个平面上,永远不会相交的直线。
三角形是由三条线段连接而成的图形。
三角形的内角和为180度。
6. 等腰三角形等腰三角形是具有两条边长度相等的三角形。
等腰三角形的底角也相等。
7. 直角三角形直角三角形是具有一个内角为90度的三角形。
直角三角形的斜边是其他两条边的平方和的开方。
8. 锐角三角形锐角三角形是所有内角都小于90度的三角形。
9. 钝角三角形钝角三角形是具有一个内角大于90度的三角形。
10. 正方形正方形是四条边相等且四个角都是直角的四边形。
11. 长方形长方形是具有两对相等且每一对内角都是直角的四边形。
12. 平行四边形平行四边形是具有两对平行边的四边形。
梯形是具有一对平行边的四边形。
梯形的非平行边也可以不等长。
菱形是具有四个边相等且对角线相等的四边形。
圆是具有相同半径的所有点的集合。
圆上任意两点与圆心构成的线段称为弦。
16. 圆心角圆心角是以圆心为顶点的角。
弧是圆上两个点之间的部分。
弦是圆上任意两点之间的线段。
切线是与圆只有一个交点的直线。
弧长是圆上一部分的长度。
扇形是以圆心为顶点的角所对应的圆上的区域。
22. 对称与相似对称是指一个图形通过某条线、点或平面进行折叠后与自身完全重合。
相似是指两个图形的形状相同但大小不同。
23. 二维几何体二维几何体包括平面图形。
24. 立体几何体立体几何体是具有实体和体积的图形。
25. 正方体正方体是六个面都是正方形的立体几何体。
26. 长方体长方体是六个面都是矩形的立体几何体。
27. 正圆柱体正圆柱体是圆和矩形结合形成的立体几何体。
专题31圆中的重要模型之四点共圆模型四点共圆是初中数学的常考知识点,近年来,特别是四点共圆判定的题目出现频率较高。
相对四点共圆性质的应用,四点共圆的判定往往难度较大,往往是填空题或选择题的压轴题,而计算题或选择中四点共圆模型的应用(特别是最值问题),通常能简化运算或证明的步骤,使问题变得简单。
本文主要介绍四点共圆的四种重要模型。
四点共圆:若在同一平面内,有四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。
模型1、定点定长共圆模型(圆的定义)【模型解读】若四个点到一定点的距离相等,则这四个点共圆。
这也是圆的基本定义,到定点的距离等于定长点的集合。
条件:如图,平面内有五个点O、A、B、C、D,使得OA=OB=OC=OD,结论:A、B、C、D四点共圆(其中圆心为O)。
【答案】2【分析】首先连接OE,由角器上对应的读数.【详解】解:连接OE,A .13B .52∵在ABC 中,90BAC【答案】30【分析】连接AC 与BD 又易知在Rt ACD △中,【详解】解:连接AC 与∵四边形形ABCD 是矩形,12OA OB OC OD AC又∵DE BF 于E ,即是直角三角形,∴12OE BD ,∴OA OC OD OE ,∴点A B 、、,由旋转的性质可知:AF AB ,【答案】122【分析】(1)根据条件,证明AOD COD△△△△,代入推断即可.(2)通过AOG ABC证明ODF CBF△△,代入推断即可.又∵∵CE CF∴CEF CFE模型2、定边对双直角共圆模型C同侧型异侧型1)定边对双直角模型(同侧型)条件:若平面上A、B、C、D四个点满足90ABD ACD,结论:A、B、C、D四点共圆,其中AD为直径。
2)定边对双直角模型(异侧型)条件:若平面上A、B、C、D四个点满足90ABC ADC,结论:A、B、C、D四点共圆,其中AC为直径。
【点睛】本题考查了圆的直径所对的圆周角为【点睛】此题主要考查圆内接四边形,直角三角形斜边上的中线等于斜边的一半和等腰三角形的性质等知识点,解答此题的关键是添加辅助线构造特殊三角形,求出线段.模型3、定边对定角共圆模型条件:如图1,平面上A 、B 、C 、D 四个点满足ADB ACB ,结论:A 、B 、C 、D 四点共圆.条件:如图2,AC 、BD 交于H ,AH CH BH DH ,结论:A B C D 、、、四点共圆.例1.(2023·江苏·九年级假期作业)如图,在Rt ABC 中,∠BAC =90°,∠ABC =40°,将 ABC 绕A 点顺时针旋转得到 ADE ,使D 点落在BC 边上.(1)求∠BAD 的度数;(2)求证:A 、D 、B 、E 四点共圆.【答案】(1)10°;(2)见解析【分析】(1)由三角形内角和定理和已知条件求得∠C 的度数,由旋转的性质得出AC =AD ,即可得出∠ADC =∠C ,最后由外角定理求得∠BAD 的度数;(2)由旋转的性质得到∠ABC =∠AED ,由四点共圆的判定得出结论.【详解】解:(1)∵在Rt ABC 中,∠BAC =90°,∠ABC =40°,∴∠C =50°,∵将 ABC 绕A 点顺时针旋转得到 ADE ,使D 点落在BC 边上,∴AC =AD ,∴∠ADC =∠C =50°,∴∠ADC =∠ABC +∠BAD =50°,∴∠BAD =50°-40°=10°证明(2)∵将 ABC 绕A 点顺时针旋转得到 ADE ,∴∠ABC =∠AED ,∴A 、D 、B 、E 四点共圆.【点睛】本题考查了旋转的性质、等腰三角形的性质、外角定理以及四点共圆的判定,解题的关键是理解旋转后的图形与原图形对应边相等,对应角相等.例3.(2022·江苏无锡·中考真题)△ABC是边长为5的等边三角形,△DCE是边长为3的等边三角形,直线BD与直线AE交于点F.如图,若点D在△ABC内,∠DBC=20°,则∠BAF=________°;现将△DCE 绕点C旋转1周,在这个旋转过程中,线段AF长度的最小值是________.【答案】804##4【分析】利用SAS 证明△BDC ≌△AEC ,得到∠DBC =∠EAC =20°,据此可求得∠BAF 的度数;利用全等三角形的性质可求得∠AFB =60°,推出A 、B 、C 、F 四个点在同一个圆上,当BF 是圆C 的切线时,即当CD ⊥BF 时,∠FBC 最大,则∠FBA 最小,此时线段AF 长度有最小值,据此求解即可.【详解】解:∵△ABC 和△DCE 都是等边三角形,∴AC =BC ,DC =EC ,∠BAC =∠ACB =∠DCE =60°,∴∠DCB +∠ACD =∠ECA +∠ACD =60°,即∠DCB =∠ECA ,在△BCD 和△ACE 中,CD CE BCD ACE BC AC,∴△ACE ≌△BCD (SAS ),∴∠EAC =∠DBC ,∵∠DBC =20°,∴∠EAC =20°,∴∠BAF =∠BAC +∠EAC =80°;设BF 与AC 相交于点H,如图:∵△ACE ≌△BCD ∴AE =BD ,∠EAC =∠DBC ,且∠AHF =∠BHC ,∴∠AFB =∠ACB =60°,∴A 、B 、C 、F 四个点在同一个圆上,∵点D 在以C 为圆心,3为半径的圆上,当BF 是圆C 的切线时,即当CD ⊥BF 时,∠FBC 最大,则∠FBA 最小,∴此时线段AF 长度有最小值,在Rt △BCD 中,BC =5,CD =3,∴BD 4,即AE =4,∴∠FDE =180°-90°-60°=30°,∵∠AFB =60°,∴∠FDE =∠FED =30°,∴FD =FE ,过点F 作FG ⊥DE 于点G ,∴DG =GE =32,∴FE =DF =cos 30DG∴AF =AE -FE 80;【点睛】本题考查了旋转的性质,等边三角形的性质,圆周角定理,切线的性质,解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件.例4.(2022·贵州遵义·统考中考真题)探究与实践:“善思”小组开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.该小组继续利用上述结论进行探究.提出问题:如图1,在线段AC 同侧有两点B ,D ,连接AD ,AB ,BC ,CD ,如果B D ,那么A ,B ,C ,D 四点在同一个圆上.探究展示:如图2,作经过点A ,C ,D 的O ,在劣弧AC 上取一点E (不与A ,C 重合),连接AE ,CE 则180AEC D (依据1)B D ∵180AEC B点A ,B ,C ,E 四点在同一个圆上(对角互补的四边形四个顶点共圆)点B ,D 在点A ,C ,E 所确定的O 上(依据2)点A ,B ,C ,E 四点在同一个圆上(1)反思归纳:上述探究过程中的“依据1”、“依据2”分别是指什么?依据1:__________;依据2:__________.(2)图3,在四边形ABCD 中,12 ,345 ,则4 的度数为__________.(3)拓展探究:如图4,已知ABC 是等腰三角形,AB AC ,点D 在BC 上(不与BC 的中点重合),连接AD .作点C 关于AD 的对称点E ,连接EB 并延长交AD 的延长线于F ,连接AE ,DE .①求证:A ,D ,B ,E与判定,掌握以上知识是解题的关键.模型4、对角互补共圆模型P条件:如图1,平面上A、B、C、D四个点满足ABC ADC,结论:A、B、C、D四点共圆.条件:如图2,BA、CD的延长线交于P,PA PB PD PC,结论:A、B、C、D四点共圆.A.2B.22【答案】A【分析】先根据等腰三角形的性质可得,,,A B E D四点共圆,在以BE为直径的圆上,连接【答案】43/113【分析】过点B作BH AM交F,点A,M,B,C四点共圆,得法求解,12AMBS AM DE△【详解】解析:过点B作BH 于点,如图所示:【答案】52 2【分析】连接BD并延长,利用四点共圆的判定定理得到的性质和圆周角定理得到DBF性质解答即可得出结论.(1)求证:A ,E ,B ,D 四点共圆;(2)如图2,当AD CD 时,O 是四边形AEBD O 的切线;(3)已知1206BC ,,点M 是边BC 的中点,此时P 是四边形出圆心P 与点M 距离的最小值.【答案】(1)证明见解析(2)证明见解析(3)32(3)解:如图所示,作线段AB 的垂直平分线,分别交∵120AB AC BAC ,,∴B课后专项训练1.(2023秋·河北张家口·九年级校考期末)如图①,若BC是Rt△ABC和Rt△DBC的公共斜边,则A、B、C、D在以BC为直径的圆上,则叫它们“四点共圆”.如图②,△ABC的三条高AD、BE、CF相交于点H,则图②中“四点共圆”的组数为()A.2B.3C.4D.6【答案】D【分析】根据两个直角三角形公共斜边时,四个顶点共圆,结合图形求解可得.【详解】解:如图,以AH为斜边的两个直角三角形,四个顶点共圆(A、F、H、E),以BH为斜边的两个直角三角形,四个顶点共圆(B、F、H、D),以CH为斜边的两个直角三角形,四个顶点共圆(C、D、H、E),以AB为斜边的两个直角三角形,四个顶点共圆(A、E、D、B),以BC为斜边的两个直角三角形,四个顶点共圆(B、F、E、C),以AC为斜边的两个直角三角形,四个顶点共圆(A、F、D、C),共6组.故选D.【点睛】本题考查四点共圆的判断方法.解题的关键是明确有公共斜边的两个直角三角形的四个顶点共圆.,.下2.(2023·安徽合肥·校考一模)如图,O是AB的中点,点B,C,D到点O的距离相等,连接AC BD列结论不一定成立的是()A .12B .3=4C .180ABC ADCD .AC 平分BAD【答案】D 【分析】以点O 为圆心,OA 长为半径作圆.再根据圆内接四边形的性质,圆周角定理逐项判断即可.【详解】如图,以点O 为圆心,OA 长为半径作圆.由题意可知:OA OB OC OD .即点A 、B 、C 、D 都在圆O 上.A .∵ AB AB ,∴12 ,故A 不符合题意;B .∵ BCBC ,∴3=4 ,故B 不符合题意;C .∵四边形ABCD 是O 的内接四边形,∴180ABC ADC ,故C 不符合题意;D .∵ BC 和CD不一定相等,∴BAC 和DAC 不一定相等,∴AC 不一定平分BAD ,故D 符合题意.故选:D .【点睛】本题考查圆周角定理及其推论,充分理解圆周角定理是解答本题的关键.3.(2023·江苏宿迁·九年级校考期末)如图,在Rt ABC △中,90ACB ,3BC ,4AC ,点P 为平面内一点,且CPB A ,过C 作CQ CP 交PB 的延长线于点Q ,则CQ 的最大值为()【点睛】本题考查相似三角形的判定和性质以及四点共圆,掌握同圆或等圆中,同弧所对的圆周角相等确定四点共圆,利用相似三角形性质得到线段间等量关系是解题关键.4.(2023·北京海淀·九年级校考期中)如图,点接AC,BD.请写出图中任意一组互补的角为【答案】DAB【分析】首先判断出点【答案】130【分析】根据题意得到四边形【详解】解:由题意得到∴四边形ABCD为圆∵∠ABC=50°,∴∠【点睛】此题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解本题的关键.6.(2023·浙江金华·A.3B.1∵PE AB 于点E ,PD AC 于点,∴90AEP ADP ,∴180AEP ADP ,∴A 、E 、D 四点共圆,PA 是直径,在Rt PDC 中,45C ,∴△是等腰直角三角形,45APD ∴APD △也是等腰直角三角形,45PAD ,∴PED PAD ∴45AED ,∴AED C ,∵EAD CAB ,∴AED ∽设2AD x ,则2PD DC x ,22x ,如图2,取AP 的中点O 则2AO OE OP x ,∵604515EAP BAC PAD ,过E 作EM AP 于M ,则EM x,cos30OM OE ,∴36222OM x x ,∴6226222AM x x x ,由勾股定理得: 222226222AE AM EM x x +【答案】3632 /323 【分析】数形结合,根据动点的运动情况判断点【详解】解:如图旋转,连接以BC 为直径作O ,以AE 为半径作在ABD △和ACE △中AB AC AD AE BAD CAEPBC PBA ACB PBC 90BAC BPC EAD ∵,122AB ∵,A 的半径为62∴又∵90BAC EAD ,CAD,∵33BC ,OP BC∵MQ,MC与圆O相切,1QOM COM COP 【答案】(1)见详解(2)证明:如下图所示由题意可知AC 逆时针旋转90得到边AE ,90E ACB ,则90ACB ∵,AE BF ∥,90 ∵,90EFC ,,F ,E 四点共圆..∵四边形ABCD是菱形,AC,且 GOC GCO90==∵, 点90DHC DOC=BDF OCH=,且BF OM ∵, 点==90AED AOD尝试应用如图2,点D 为等腰Rt ABC △外一点,AB AC ,BD CD ,过点A 的直线分别交DB 的延长线和CD 的延长线于点N ,M ,求证:12ABN ACM S S AN AM △△.问题拓展如图3,ABC 中,AB AC ,点D ,E 分别在边AC ,BC 上,60BDA BEA ,AE ,BD ,直接写出BE 的长度(用含a ,b 的式子)∵ABC 为等腰直角三角形,∴AB AC , 又∵BD CD ,即:=90BDC ,∴A 、B 在ABN 与ACE △中,AB AC ABN ACE BN CE,∴∴BAN BAE CAE BAE BAC ∴1122AME AMC S AE AM AN AM S S △△∴60AFB BAF ABF ,AB AF AC ,∵60BDA BEA ,∴A 、D 、E 、B 、F 五点共圆,则:13 ,24 ,60BEF AEB ,【答案】问题情境:见解析;问题解决:(1)102;(2)13522【分析】[问题情境]连结AC ,取AC 的中点O ,连结OB 、OD ,根据直角三角形斜边上的中线等于斜边的一半,可得OD OA OC OB ,以此即可证明;[问题解决](1)根据题意可得225AE AD DE ,由[问题情境]结论可知A 、D 、E 、据圆周角定理以及正方形的性质可得45PDE PAE ,则PAE △为等腰直角三角形,设AP 长为a ,根据勾股定理列出方程,求解即可;(2)由[问题情境]结论可知A 、D 、E 、P 四点共圆,过点O 作OG AD 于点G ,作OH 接OB 交O 于点P ,连接PB ,根据题意可得四边形MBNP 为矩形,则要求MN 的最小值,即求值,根据平行线的性质和中点的定义可得OG 为ADE V 的中位线,得1AG ,12OG ,同理可证四边形1【翻折】(1)如图1,将DEF 沿线段AB 翻折,连接CF ,下列对所得四边形ACBF 的说法正确的是平分CBF 、CAF ,②AB 、CF 互相平分,③12ACBF S AB CF 四边形,④A 、C 、B 、F 四点共圆.AB 垂直平分CF ,故②ABC ABF ACBF S S S 四边形1122AB AB FG 12AB CG 取AB 的中点O ,连接CO FO ,ABC ABF △、△均为直角三角形,∴OB OC OA OF ,∴A 、B 、F 四点共圆,故()沿线段向左平移,∴AB CF ,CF BE 的中点,∴BE BD BF特殊情况分析:(1)如图1,正方形ABCD 中,点P 为对角线时针旋转ADC 的度数,交直线BC 于点Q .小明的思考如下:连接DQ ,∵AD CQ ∥,90ADC DCQ ,∴ACQ DAC ∵90DPQ ,∴180DPQ DCQ ,∴点D P Q 、、PDQ PCQ DQP PCD∵在菱形ABCD 中BC AD ∥,180ADC DCQ ,DPQ ADC ,∵180DPQ DCQ ,∴点P C Q 、、、共圆,∴DQP ACD ,ACB PDQ ,∵AC 为菱形ABCD 的对角线,ACB ACD ,∴PDQ DQP ,∴ DP PQ ;(3)解:3PQ 或3.由于点P 为对角线AC 上一个动点,分两类情况讨论如下:所示:180302ADC ACD,。
初中数学九大几何模型一、手拉手模型----旋转型全等(1)等边三角形【条件】:△OAB 和△OCD 均为等边三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形【条件】:△OAB 和△OCD 均为等腰直角三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AEDOABC DE图 1OABC D E图 2OABCDE图 1OABCDE图 2OABC DEOABCD E图 1图 2二、模型二:手拉手模型----旋转型相似 (1)一般情况【条件】:CD ∥AB , 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况【条件】:CD ∥AB ,∠AOB=90°将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; ③===OAOBOC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有2222CD AB B C AD +=+;⑥BD AC 21S △BCD ⨯=三、模型三、对角互补模型 (1)全等型-90°【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 21S S S =+= 证明提示:①作垂直,如图2,证明△CDM ≌△CEN②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21S S =-OB CO ACDEOB CDEOA C DAO BCDE图 1A OBCDE M N 图 2A OBCDEF图 3A O BCDEMN 图 4(2)全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 43S S S =+=证明提示:①可参考“全等型-90°”证法一;②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。
初中数学的几何模型是学生学习数学时的重要内容之一,通过学习几何模型和解题,可以帮助学生对几何知识有更深层次的理解,提高数学解题能力。
本文将介绍初中数学中常见的48个几何模型及其相关题型,希望可以帮助学生系统地掌握几何知识。
一、直线和角1. 直线概念直线是由一点不停地延伸而成的。
在平面几何中,直线没有宽度和厚度,只有长度。
2. 角的概念两条相交直线之间的夹角叫做角。
角可以分为锐角、直角、钝角和平角。
3. 直线和角相关题型- 计算夹角的大小- 判断角的种类二、多边形1. 三角形三角形是最简单的多边形,其内角和为180度。
根据边的长度和角的大小,可以分为等腰三角形、等边三角形、直角三角形等不同种类。
2. 四边形四边形是具有四条边的几何图形,常见的四边形有矩形、正方形、平行四边形和菱形等。
3. 多边形相关题型- 计算多边形的内角和- 判断多边形的种类三、圆1. 圆的概念圆是由一个点到另一个点距离恒定的点的集合。
其中,点到圆心的距离为半径,圆上任意两点之间的距离称为弦。
2. 圆的性质圆的直径是圆的两个相对的端点,圆的周长和面积分别为2πr和πr²。
3. 圆相关题型- 计算圆的周长和面积- 判断圆的种类四、平面图形的平移、旋转和对称1. 平移平移是指将一个物体按照一定的规则移动到另一位置,移动前后的图形位置关系不变。
学生需要了解不同平移的规律和图形的位置关系。
2. 旋转旋转是指以某一点为中心,按一定角度将图形进行旋转。
学生需要掌握图形旋转的规律和性质。
3. 对称对称是指一个图形绕某条直线或点对称,对称轴可以分为水平对称轴、垂直对称轴和斜对称轴。
五、三视图和展开图1. 三视图三视图是指物体分别从正视图、侧视图和俯视图所得的图形。
学生需要根据给定的三视图还原出物体的整体图形。
2. 展开图展开图是将立体图形按一定规则展开成平面图形。
学生需要了解展开图的规律和方法。
六、空间图形1. 空间图形的概念空间图形是三维几何中的图形,包括圆柱、圆锥、球体、棱体等。