牛顿定律中的临界问题
- 格式:docx
- 大小:57.73 KB
- 文档页数:4
动力学中的临界和极值问题一、动力学中的临界极值问题1.“四种”典型临界条件(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是弹力F N=0。
(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是静摩擦力达到最大值。
(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛与拉紧的临界条件是F T=0。
(4)速度达到最值的临界条件:加速度为0。
2. 解题指导(1)直接接触的连接体存在“要分离还没分”的临界状态,其动力学特征:“貌合神离”,即a相同、F N=0.(2)靠静摩擦力连接(带动)的连接体,静摩擦力达到最大静摩擦力时是“要滑还没滑”的临界状态.(3)极限分析法:把题中条件推向极大或极小,找到临界状态,分析临界状态的受力特点,列出方程(4)数学分析法:将物理过程用数学表达式表示,由数学方法(如二次函数、不等式、三角函数等)求极值.3.解题基本思路(1)认真审题,详细分析问题中变化的过程(包括分析整个过程中有几个阶段);(2)寻找过程中变化的物理量;(3)探索物理量的变化规律;(4)确定临界状态,分析临界条件,找出临界关系.4. 解题方法二、针对练习1、(多选)如图所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间的动摩擦因数为4μ,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g .现对物块施加一水平向右的拉力,则木板加速度a 大小可能是( )A .0a =B .4ga μ=C .3g a μ=D .23ga μ=2、(多选)如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上.A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ.最大静摩擦力等于滑动摩擦力,重力加速度为g .现对A 施加一水平拉力F ,则( ) A .当F <2μmg 时,A 、B 都相对地面静止 B .当F =52μmg 时,A 的加速度为13μgC .当F >3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过12μg3、如图所示,木块A 、B 静止叠放在光滑水平面上,A 的质量为m ,B 的质量为2m 。
牛顿第二定律十大题型分类汇总(带详解)一、牛顿第二定律与斜面结合1.如图所示,一足够长的固定在水平面上的斜面,倾角37θ= ,斜面BC 与水平面AB 平滑连接,质量2kg m =的物体静止于水平面上的M 点,M 点与B 点之间的距离9m L =,物体与水平面和斜面间的动摩擦因数均为0.5μ=,现物体受到一水平向右的恒力14N F =作用,运动至B 点时撤去该力,B 点有一小圆弧,使得物体经过B 点时只有速度方向发生改变,速度大小不变,重力加速度210m/s g =,则:(1)物体到达B 点时的速度大小;(2)物体沿斜面向上滑行的最远距离。
(3)物体从开始运动到最后停止运动的总时间。
解得212m/s a =由M 到B 有212B v a L=解得6m/sB v =(2)沿斜面上滑时,根据牛顿第二定律得2sin37cos37mg mg ma μ︒+︒=解得2210m/s a =沿斜面运动的最远距离为(3)从M 点运动到B 点的时间为从B点运动到斜面最高点的时间为沿斜面下滑时的加速度为3sin37cos37mg mg ma μ︒-︒=解得232m/s a =沿斜面下滑的时间为解得下滑到B点时的速度为在水平面上运动的加速度大小为4mg ma μ=解得245m/s a =从B点到静止的时间为物体从开始运动到最后停止运动的总时间为1234t t t t t =+++解得2.一质量m =2kg 小物块从斜面上A 点由静止开始滑下,滑到斜面底端B 点后沿水平面再滑行一段距离停下来。
若物块与斜面、水平面间的动摩擦因数均为μ=0.25。
斜面A、B 两点之间的距离s =18m,斜面倾角θ=37°(sin37°=0.6;cos37°=0.8)斜面与水平面间平滑连接,不计空气阻力,g =10m/s 2。
求:(1)物块在斜面上下滑过程中的加速度大小;(2)物块滑到B 点时的速度大小;(3)物块在水平面上滑行的时间。
牛顿运动定律的临界值问题例1、在水平向右运动的小车上,有一倾角θ=370的光滑斜面,质量为m的小球被平行于斜面的细绳系住而静止于斜面上。
〔1〕使小车从静止开场向右做加速度逐渐增大的加速运动,如图1所示。
分析绳子拉力和斜面对小球的支持力随加速度增大如何变化?要使小球对斜面无压力,求小车加速度的范围。
〔2〕使小车从静止开场向左做加速度,加速度在什么范围内时小球相对斜面静止不动。
1.如下图,质量为m的球置于斜面上,被一个固定在斜面上的竖直挡板挡住.现用一个力F拉斜面,使斜面在水平面上做加速度为a的匀加速直线运动,忽略一切摩擦,以下说法中正确的选项是A.假设加速度足够小,竖直挡板对球的弹力可能为零B.假设加速度足够大,斜面对球的弹力可能为零C.斜面和挡板对球的弹力的合力等于maD.斜面对球的弹力不仅有,而且是一个定值2.如下图,质量分别为2kg、3kg的劈形物体A、B,静止在水平面上,劈面倾角为37º,水平推力F作用于A上,假设所有接触面都是光滑的,为使A、B间不发生相对运动,问F的最大值为多少?3.小车在水平路面上加速向右运动,一质量为m的小球用一条水平线和一条斜线〔与竖直方向成300角〕把小球系于车上,求以下情况下,两绳的拉力:〔1〕加速度a1=g/3〔2〕加速度a2=2g/34. 质量为m=1kg的物体,放在=37°的斜面上如以下图所示,物体与斜面的动摩擦因数,要是物体与斜面体一起沿水平方向向左加速运动,那么其加速度多大?例2.一根劲度系数为k、质量不计的轻弹簧,上端固定,下端系一质量为m的物体,有一水平的板将物体托住,并使弹簧处于自然长度,如下图,现让木板由静止开场以加速度a(a<g)匀加速向下移动,求经过多长时间木板与物体别离。
1、如下图,质量为M的框架放在水平地面上,一轻弹簧上端固定在框架上,下端固定一个质量为m的小球。
小球上下振动时,框架始终没有跳起,当框架对地面压力为零瞬间,小球的加速度大小为2、一个弹簧秤放在水平地面上,Q为与轻弹簧上端连在一起的秤盘,P为一重物,P的质最M=l,Q的质量m=,弹簧的质量不计,劲度系数k=800N/m,系统处于静止,如以下图所示,现给P施加一个方向竖直向上的力F,使它从静止开场向上做匀加速运动,在前0.2s时间内,F为变力,0.2s以后,F为恒力.求力F的最大值与最小值.(取g=10m/s2).。
牛顿运动定律的应用-牛顿运动定律的应用之临界极值问题接触的物体是否会发生分离等等,这类问题就是临界问题。
在应用牛顿运动定律解决临界问题中,当物体运动的加速度不同时,物体有可能处于不同的状态,特别是题目中出现“最大”、“最小”、“刚好”等词语时,往往会有临界现象,此时要采用假设法或极限分析法,看物体以不同的加速度运动时,会有哪些现象发生,尽快找出临界点,求出临界条件。
2. 若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应临界状态;3. 若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点;4. 若题目要求“最终加速度”、“稳定加速度”等,即是求收尾加速度或收尾速度。
F N=0。
2. 相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值。
3. 绳子断裂与松弛的临界条件:绳子所能承受的张力是有限的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是:F T=0。
4. 加速度最大与速度最大的临界条件:当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度。
当出现速度有最大值或最小值的临界条件时,物体处于临界状态,所对应的加速度为零或最大。
题设中若出现“最大”“最小”“刚好”等这类词语时,一般就隐含着临界问题,解决这类问题时,常常是把物理问题(或物理过程)引向极端,进而使临界条件或临界点暴露出来,达到快速解决有关问题的目的。
2. 假设法:有些物理问题在变化过程中可能会出现临界问题,也可能不出现临界问题,解答这类题,一般要用假设法。
假设法是解物理问题的一种重要方法。
用假设法解题,一般依题意从某一假设入手,然后运用物理规律得出结果,再进行适当讨论,从而找出正确答案。
图1—1 牛顿运动定律运用中的临界问题在应用牛顿定律解题时常遇到临界问题,它包括:1. 平衡物体(a=0)的平衡状态即将被打破而还没有被打破的瞬间;2. 动态物体(a ≠0)的状态即将发生突变而还没有变化的瞬间。
临界状态也可归纳为加速度即将发生突变的状态。
加速度发生突变的本质原因是物体的外力发生了突变,物体处于临界状态,必然隐含着某些力(如弹力、摩擦力等)的突变。
抓住这些力突变的条件,是我们解题的关键。
对于此类问题的解法一般有以下三种方法:一.极限法在题目中如果出现“最大”、“最小”、“刚好”等关键词时,一般隐藏着临界问题,处理这类问题时,常常把物理问题或过程推向极端,从而将临界状态及临界条件显露出来,达到尽快求解的目的。
例1.如图1—1所示,质量为m 的物体放在水平地面上,物体与地面间的动摩擦因数为μ,对物体施加一个与水平方向成θ角的力F ,试求: (1)物体在水平面上运动时力F 的值; (2)物体在水平面上运动所获得的最大加速度。
例2.(和静摩擦力相联系的临界情况)如图,质量为m=1Kg 的物块放在倾角为θ的斜面上,斜面体质量为M=2Kg ,斜面与物块间的动摩擦因数μ=0.2,地面光滑,θ=370,现对斜面体施一水平推力F ,要使物体m 相对斜面静止,力F 应为多大?(设物体与斜面间的最大静摩擦力等于滑动摩擦力,g 取10m/s 2)例3.(和弹力相联系的临界条件)如图2—1所示,质量均为M 的两个木块A 、B 在水平力F 的作用下,一起沿光滑的水平面运动,A 与B 的接触面光滑,且与水平面的夹角为60° ,求使A 与B 一起运动时的水平力F 的范围。
图2—1例4 如图所示,光滑小球恰好放在木块的圆弧槽中,它左边的接触点为A ,槽的半径为R ,且OA 与水平线成α角,通过实验知道,当木块的加速度过大时,小球可以从槽中滚出来,圆球的质量为m ,木块的质量为M ,各种摩擦及绳和滑轮的质量不计,则木块向右的加速度最小为多大时,小球恰好能滚出圆弧槽。
牛顿运动定律中的临界问题在应用牛顿定律解题时常遇到临界问题,它包括:平衡物体(a=0)的平衡状态即将被打破而还没有被打破的瞬间;动态物体(a≠0)的状态即将发生突变而还没有变化的瞬间。
临界状态也可归纳为加速度即将发生突变的状态。
加速度发生突变的本质原因是物体的外力发生了突变,物体处于临界状态,必然隐含着某些力(如弹力、摩擦力等)的突变。
抓住这些力突变的条件,是我们解题的关键。
一、和绳子拉力相联系的临界情况例1. 小车在水平路面上加速向右运动,一质量为m的小球用一条水平线和一条斜线(与竖直方向成30°角)把小球系于车上,求下列情况下,两绳的拉力:(1)加速度;(2)加速度。
解析:小车处于平衡态(a=0)对小球受力分析如下图所示。
当加速度a由0逐渐增大的过程中,开始阶段,因m在竖直方向的加速度为0,角不变,不变,那么,加速度增大(即合外力增大),OA绳承受的拉力必减小。
当时,m存在一个加速度,物体所受的合外力是的水平分力。
当时,a增大,(OA绳处于松弛状态),在竖直方向的分量不变,而其水平方向的分量必增加(因合外力增大),角一定增大,设为a。
当时,。
当,有:(1)(2)解得当,有:。
点评:1. 通过受力分析和对运动过程的分析找到本题中弹力发生突变的临界状态是绳子OA拉力恰好为零;2. 弹力是被动力,其大小和方向应由物体的状态和物体所受的其他力来确定。
二、和静摩擦力相联系的临界情况例2. 质量为m=1kg的物体,放在=37°的斜面上如下图所示,物体与斜面的动摩擦因数,要是物体与斜面体一起沿水平方向向左加速运动,则其加速度多大?解析:当物体恰不向下滑时,受力分析如下图所示,解得当物体恰不向上滑时,受力分析如下图所示,解得因此加速度的取值范围为:。
点评:本题讨论涉及静摩擦力的临界问题的一般方法是:1. 抓住静摩擦力方向的可能性。
2. 最大静摩擦力是物体即将由相对静止变为相对滑动的临界条件。
牛顿运动定律中的临界和极值问题牛顿运动定律中的临界和极值问题动力学中的典型临界问题包括接触与脱离的临界条件、相对静止或相对滑动的临界条件、绳子断裂与松弛的临界条件以及速度最大的临界条件。
对于接触与脱离的临界条件,当两物体相接触或脱离时,接触面间弹力FN等于0.对于相对静止或相对滑动的临界条件,当两物体相接触且处于相对静止时,常存在着静摩擦力,此时相对静止或相对滑动的临界条件是静摩擦力达到最大值。
对于绳子断裂与松弛的临界条件,绳子断与不断的临界条件是绳子张力等于它所能承受的最大张力,绳子松弛的临界条件是FT等于0.对于速度最大的临界条件,在变加速运动中,当加速度减小为零时,速度达到最大值。
解决临界极值问题常用方法有极限法、假设法和数学法。
极限法可以把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,以达到正确解决问题的目的。
假设法常用于临界问题存在多种可能时,特别是非此即彼两种可能时,或变化过程中可能出现临界条件,也可能不出现临界条件时。
数学法则将物理过程转化为数学公式,根据数学表达式解出临界条件。
举例来说,对于接触与脱离类的临界问题,可以考虑以下几个例子:例1:在劲度系数为k的弹簧下端挂一质量为m的物体,物体下有一托盘,用托盘托着物体使弹簧恰好处于原长,然后使托盘以加速度a竖直向下做匀速直线运动(a<g),试求托盘向下运动多长时间能与物体脱离?例2:竖直固定的轻弹簧,其劲度系数为k=800N/m,上端与质量为3.0kg的物块B相连接。
另一个质量为1.0 ___的物块A放在B上。
先用竖直向下的力F=120N压A,使弹簧被压缩一定量后系统静止,突然撤去力F,A、B共同向上运动一段距离后将分离,分离后A上升最大高度为0.2m,取g=10m/s,求刚撤去F时弹簧的弹性势能?例3:质量均为m的A、B两物体叠放在竖直轻质弹簧上并保持静止,用大小等于mg的恒力F向上拉A,当运动距离为h时A与B分离。
牛顿运动定律临界问题(一)临界问题1.临界状态:在物体的运动状态变化的过程中,相关的一些物理量也随之发生变化。
当物体的运动变化到某个特定状态时,有关的物理量将发生突变,该物理量的值叫临界值,这个特定状态称之为临界状态。
临界状态是发生量变和质变的转折点。
2.关键词语:在动力学问题中出现的“最大”、“最小”、“刚好”、“恰能”等词语,一般都暗示了临界状态的出现,隐含了相应的临界条件。
3.解题关键:解决此类问题的关键是对物体运动情况的正确描述,对临界状态的判断与分析。
4.常见类型:动力学中的常见临界问题主要有两类:一是弹力发生突变时接触物体间的脱离与不脱离、绳子的绷紧与松弛问题;一是摩擦力发生突变的滑动与不滑动问题。
(二)、解决临界值问题的两种基本方法1.以物理定理、规律为依据,首先找出所研究问题的一般规律和一般解,然后分析和讨论其特殊规律和特殊解。
2.直接分析、讨论临界状态和相应的临界值,找出相应的物理规律和物理值弹簧类【例1】一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图7所示。
现让木板由静止开始以加速度a(a<g)匀加速向下移动。
求经过多长时间木板开始与物体分离。
【例2】如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P处于静止,P的质量m=12kg,弹簧的劲度系数k=300N/m。
现在给P施加一个竖直向上的力F,使P从静止开始向上做匀加速直线运动,已知在t=0.2s内F是变力,在0.2s以后F是恒力,g=10m/s2,则F的最小值是,F的最大值是。
图7图8【例3】一弹簧秤的秤盘质量m 1=1.5kg ,盘内放一质量为m 2=10.5kg 的物体P ,弹簧质量不计,其劲度系数为k=800N/m ,系统处于静止状态,如图9所示。
现给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在最初0.2s 内F 是变化的,在0.2s 后是恒定的,求F 的最大值和最小值各是多少?(g=10m/s 2)接触类【例4】如图10,在光滑水平面上放着紧靠在一起的AB两物体,B的质量是A的2倍,B受到向右的恒力FB =2N ,A受到的水平力FA =(9-2t)N ,(t 的单位是s)。
专题五牛顿运动定律的应用——临界和极值问题一、概念(1)临界问题:某种物理现象(或物理状态)刚好要发生或刚好不发生的转折状态。
(2)极值问题:在满足一定的条件下,某物理量出现极大值或极小值的情况。
二、关键词语在动力学问题中出现的“最大”、“最小”、“刚好”、“恰能”等词语,一般都暗示了临界状态的出现,隐含了相应的临界条件。
有些物理过程中没有明显出现临界问题的线索,但在变化过程中可能出现临界问题,也可能不出现临界问题,解答这类问题一般用假设法。
三、常见类型动力学中的常见临界问题主要有三类:一是弹力发生突变时接触物体间的脱离与不脱离的问题;二是绳子的绷紧与松弛问题;三是摩擦力发生突变的滑动与不滑动问题。
四、解题关键解决此类问题的关键是对物体运动情况的正确描述,对临界状态的判断与分析,找出处于临界状态时存在的独特的物理关系,即临界条件。
常见的三类临界问题的临界条:1、相互接触的两个物体将脱离的临界条件是:相互作用的弹力为零。
2、绳子松弛的临界条件是:绳子的拉力为零。
3、存在静摩擦的系统,相对滑动与相对静止的临界条件是:静摩擦力达到最大值。
五、例题解析【例题1】质量为0.2kg的小球用细线吊在倾角为θ=60°的斜面体的顶端,斜面体静止时,小球紧靠在斜面上,线与斜面平行,如图所示,不计摩擦,求在下列三种情况下,细线对小球的拉力(取g=10 m/s2)(1) 斜面体以23m/s2的加速度向右加速运动;(2) 斜面体以43m/s2,的加速度向右加速运动;【例题2】如图所示,轻绳AB与竖直方向的夹角θ=37°,绳BC水平,小球质量m=0.4 kg,取g=10m/s2。
试求:(1)小车以a1=2.5m/s2的加速度向右做匀加速运动时,绳AB的张力是多少?(2)小车以a2=8m/s2的加速度向右做匀加速运动时,绳AB的张力是多少?【例题3】如图所示,质量为2kg 的m1和质量为1kg 的m2两个物体叠放在一起,放在水平面,m1与m2、m1与水平面间的动摩擦因数都是0.3,现用水平拉力F拉m1,使m 1 和m 2一起沿水平面运动,要使m 1 和m 2之间没有相对滑动,水平拉力F 最大为多大?六、巩固练习【练习1】一个质量为m=0.1kg 的小球,用细线吊在倾角a =37°的斜面顶端,如图所示。
牛顿运动定律中的临界问题临界条件:(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是弹力F N=0.(2)相对滑动的临界条件:两物体相接触且相对静止时,常存在着静摩擦力,则相对滑动的临界条件是静摩擦力达到最大值.(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是张力T=0.(4)加速度变化时,速度达到最值的临界条件:加速度变为0.1.(多选)如图所示,在光滑水平面上放着紧靠在一起的AB两物体,B的质量是A的2倍,B受到向右的恒力FB=2N,A受到的水平力FA=(9-2t)N,(t的单位是s)。
从t=0开始计时,则A.A物体在3s末时刻的加速度是初始时刻的5/11倍B.t>4s后,B物体做匀加速直线运动C.t=4.5s时,A物体的速度为零D.t>4.5s后,A、B的加速度方向相反2.如图所示,质量均为m=3kg的物块A、B紧挨着放置在粗糙的水平地面上,物块A的左侧连接一劲度系数为k=l00N/m的轻质弹簧,弹簧另一端固定在竖直墙壁上。
开始时两物块压紧弹簧并恰好处于静止状态,现使物块B在水平外力F⁄的匀加速直线运动直至与A分离,已知作用下向右做a= 2m s2⁄。
求:两物块与地面的动摩擦因数均为μ=0.5,g=l0m s2(1)物块A、B分离时,所加外力F的大小;(2)物块A、B由静止开始运动到分离所用的时间3.(多选)如图所示,水平地面上两滑块A、B的质量分别为1kg、2kg,A、B与地面间动摩擦因数均为0.2。
弹簧左端固定在墙壁上,右端固定在A上。
A、B紧靠在一起(不粘连)压紧劲度系数为50N/m的弹簧,此时弹簧的压缩量为10cm 且A、B均静止。
现施加一水平向右的拉力F,F恒为10N。
最大静摩擦力等于滑动摩擦力,重力加速度g=10m/s2。
则下列说法正确的是()A.施加拉力之前B受到3N的摩擦力B.AB分离的瞬间B的加速度大小为3m/s2C.滑块A的速度最大时,其位移大小为4cmD.从施加拉力开始计时,3秒末滑块B的速度为9m/s4.如图所示,质量都为m的A.B两物体叠放在竖直弹簧上并保持静止,用大小等于mg的恒力F向上拉B,运动距离h时B与A分离。
1、如图5所示,在劲度系数为k=800N/m 的弹簧下端挂有质量为m=2kg 的物体,开始用托盘托住物体,使弹簧保持原长,然后托盘以加速度a=5m/s 2匀加速下降(g=10m/s 2),求经过多长时间托盘与物体分离。
23、如图,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一物体P 处于静止状态。
P 的质量m=12kg ,弹簧的劲度系数k=800N/m 。
现在给P 施加一个竖直向上的拉力F ,使P 从静止开始向上做匀加速直线运动。
已知在开始0.2s 内F 是变力,在0.2s 后F 是恒力。
g=10m/s 2,则F的最小值是?N ,最大值是?N 。
如果弹簧台秤的秤盘质量为4kg ,其它条件不变,则F 的最小值又是?N ,最大值又是?N 。
24、如图6所示,光滑水平面上放置紧靠在一起的A 、B 两个物体,m A =3kg ,m B =6kg ,推力F A 作用于A 上,拉力F B 作用于B 上,F A 、F B 大小均随时间而变化,其规律分别为F A =(9-2t)N,F B =(2+2t)N ,,问从t=0开始,到A 、B 相互脱离为止,A 、B 的共同位移是多少?25、如图,a 木块和弹簧相连,m a =4kg ;p 木块放在a 上,m p =2kg ;用一个竖直向下的力F 压木块p ,当两物体静止时,突然撤去F ,假如a 、p 都沿竖直方向运动,弹簧的劲度系数为200N/m ;当F 多大时,两物块在向上运动时不分离?aP FA BF AF BBAθF21、如图,物块质量为m=2kg ,光滑斜面倾角为θ=30°问: (1):加速度a 多大时物块将离开光滑斜面?(2):当斜面以a 2=20m/s 2向右运动时绳的拉力、斜面对物块的弹力分别多大?(T 2=?)(3):当斜面以a 1=2m/s 2向右运动时绳的拉力多大?(T 1=?)22、如图1所示,木块A 、B 的质量分别为12kg 、18kg ,紧挨着并排放在光滑的水平面上,A 与B 的接触面垂直于图中纸面且与水平面成θ=37°角,A 与B 间的接触面光滑。
2021届高考物理核心知识点拨与典例剖析:牛顿定律中的临界问题★重点归纳★【例1】如图所示,质量为m的木块在质量为M的长木板上向右滑行,木块受到向右的拉力F 的作用,长木板处于静止状态,已知木块与长木板间的动摩擦因数为μ1,长木板与地面间的动摩擦因数为μ2,则()A.长木板受到地面的摩擦力的大小一定是μ1mgB.长木板受到地面的摩擦力的大小一定是μ2(m+M)gC.当F>μ2(m+M)g时,长木板便会开始运动D.无论怎样改变F的大小,长木板都不可能运动【练习1】有一质量M=4kg的小车置于光滑水平桌面上,在小车上放一质量m=6kg的物块,动摩擦因素µ=0.2,现对物块施加F=25N的水平拉力,如图所示,求小车的加速度?(设车与物块之间的最大静摩擦力等于滑动摩擦力且g取10m/s2)【练习2】如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等.现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2.下列反映a1和a2变化的图线中正确的是()【例2】如图所示,光滑的水平面上静置质量为M =8kg 的平板小车,在小车左端加一个由零逐渐增大的水平推力F ,一个大小不计、质量为m =2 kg 的小物块放在小车右端上面,小物块与小车间的动摩擦因数μ=0.2,小车足够长.重力加速度g 取10 m/s 2,设最大静摩擦力等于滑动摩擦力,下列说法中正确的是( )A .当F 增加到4 N 时,m 相对M 开始运动B .当F 增加到20 N 时,m 相对M 开始运动C .当F =10 N 时,m 对M 有向左的2 N 的摩擦力D .当F =10 N 时,m 对M 有向右的4 N 的摩擦力【练习3】如图所示,光滑水平面上放置质量分别为m 和2m 的四个木块,其中两个质量为m 的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是μmg .现用水平拉力F 拉其中一个质量为2m 的木块,使四个木块以同一加速度运动,则轻绳对m 的最大拉力为( )A .53μmgB .43μmgC .23μmg D .3μmg 【例3】如图所示,物体A 与斜面B 保持相对静止并一起沿水平面向右做匀加速运动,当加速度a 增大时,下列说法可能正确的是( )A .B 对A 的弹力不变,B 对A 的摩擦力可能减小B .B 对A 的弹力增大,B 对A 的摩擦力大小可能不变C .B 对A 的弹力增大,B 对A 的摩擦力一定增大D .B 对A 的弹力增大,B 对A 的摩擦力可能减小。
牛顿定律的临界问题
1.一个物体沿动摩擦因数一定的斜面加速下滑,下列图像,哪一个比较准确的描述了加速度a与斜面倾角θ的关系( )
2.如图3—46,在光滑水平面上放着紧靠在一起的A、B 两物体,B的质量是A的2倍,
B受到水平向右的恒力F B=2N,
A受到的水平力F A=(9-2t)N(t的单位是s) .从t=0开始计时,则:()
A.A物体在3s末时刻的加速度是初始时刻的5/11倍;
B.t>4s后,B物体做匀加速直线运动;
C.t=4.5s时,A物体的速度为零;
D.t>4.5s后,A、B的加速度方向相反.
3.如图所示,带倾角为θ的斜面的小车,车上放一个均匀球,不计摩擦。
当小车向右匀加速运动时,要保证小球的位置相对小车没变化,小车加速度a不得超过多大?
4.质量为0.2kg的小球用细线吊在倾角为θ=60°的斜面体的顶端,斜面体静止时,小球紧靠在斜面上,线与斜面平行,如图所示,不计摩擦,求在下列两种情况下,细线对小球的拉力(取g=10 m/s2)
(1) 斜面体以23m/s2的加速度向右加速运动;
(2) 斜面体以43m/s2,的加速度向右加速运动;5.如图3—51所示,把长方体切成质量分别为m和M 的两部分,切面与底面的夹角为θ
长方体置于光滑的水平地面,设切
面亦光滑,问至少用多大的水平力
推m,m才相对M滑动?
6.如图所示,质量为M =5 kg 的光滑圆槽放置在光滑的水平面上,圆槽的圆弧所对圆心角为θ=120°。
圆槽内放一质量为m =l kg 的小球,今用一水平恒力F 作用在圆槽上,并使小球相对圆槽静止随圆槽一起运动。
取
g =l0m/s 2则:
(1)当F =60N ,小球与圆槽相对静止时,求槽对小球的支持力[14.14N]
(2)要使小球不离开槽而能和槽相对静止一起运动,F 不能超过多少?[603N]
7.如图3-47,质量,m =lkg 的物块放在倾角为θ的斜面上,斜面体质量M=2kg ,斜面与物块的动摩擦因数μ=0.2,地面光滑,θ=37°,现对斜面体施一水平推力F ,要使物体m 相对斜面静止,力F 应为多大?(设物体与斜面的最大静摩擦力等于滑动摩擦力,g 取10m /s 2)
8.如图3—53,斜面倾角为θ,劈形物P 上表面与m 的动摩擦因数为μ,P 上表面水平,为使m 随P 一起运动,当P 以加速度a 沿斜面向上运动时,则μ不应小于多少?当P 在光滑斜面上自由下滑时,μ不应小于多少?
9.将劲度系数为k 的轻质弹簧上端固定,下端挂一质量为m 的物体,物体m 下面用一质量为M 的水平托板托着物体,使弹簧恰维持原长L 。
,如图所示,
如果使托板
由静止开始竖直向下做加速度为a (a <g )的匀加速运动,求托板M 与物体m 脱离所经历的时间为多少。
[ka a g m t /)(2-=
]
10.一个弹簧秤放在水平地面上,Q 为与轻弹簧上端连在一起的秤盘,P 为一重物,已知P 的质最M=l0.5kg ,Q
的质量m=1.5kg ,弹簧的质量不计,劲度系数k=800N /m ,系统处于静止,如下图所示,现给P 施加一个方向竖直向上的力F ,使它从静止开始向上做匀加速运动,已知在前0.2s 时间内,F 为变力,0.2s 以后,F 为恒力.求力F 的最大值与最小值.(取g=10m /s 2).
1.D
2.ABD。