数与形教学设计
- 格式:docx
- 大小:14.69 KB
- 文档页数:5
人教版数学六年级上册数与形教案范文(精选3篇)〖人教版数学六年级上册数与形教案范文第【1】篇〗教学内容:人教版小学数学教材六年级上册第107页例1及相关练习。
教材分析:《数与形》是人教版六年级数学上册教材第八单元《数学广角》的内容。
它是教材新增的内容,其意图是让学生通过数与形的对照,探究发现图形中隐藏的数的规律,进一步体会数与形之间的内在联系,感受用形来解决数的有关问题的直观性与简捷性。
并能把数形结合的思想迁移到解决其他一些实际问题,帮助学生积累经验。
教学目标:知识与技能:让学生自主探究体会数与形的联系,寻找规律,发现规律,并会应用规律。
过程与方法:在学生经历利用图形探究数的规律的过程,使学生加深对数形结合思想方法的认识,充分感受数形结合在小学数学学习中的应用。
情感态度价值观:在解决数学问题的过程中,通过以形想数的直观生动性,体会和掌握数形结合基本的数学思想,感受数学的趣味性与魅力。
教学重点:感受数与形可以互相转化,树立数与形的结合是数学解题重要的思想方法。
教学难点:寻找和发现数与形相互转化的途径与方法。
通过数与形的转化,认识到数形结合可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维。
教学学具准备:电子白板、课件。
教学过程:一、谈话导入,引入新课1、出示课件复习题1、复习题2,引导学生回忆旧知,知道图形与数字有紧密的联系。
2小结:在学习中借助图形可以使问题形象化,今天这节课我们就用数形结合的方法来找出数的规律──数与形(板书)。
二、以形助数,探究规律1、出示例1(1)课件出示例题。
(2)数一数各有几个正方形?怎样用加法算式表示正方形的个数?2、数形结合,总结规律(1)、用正方形怎样表示1+3呢?(边说边出示课件)这个图除了用1+3来算还可怎么算?(2×2)说一说2×2在哪里?(每行有2个有2行,就是2个2,即2×2,也就是22)。
(2)、小组合作,师巡视指导1+3+5又该怎么拼?请大家动手画一画。
《数与形》教学设计黄娟娟教学内容:人教版教材六年级数学上册第107页例1学习目标:1.使学生通过自主探究发现图形中隐藏着的数的规律,并会应用所发现的规律。
2.体会数与形的联系,进一步积累数形结合解决问题的活动经验,培养学生数形结合的数学思想意识。
3.体验数形结合方法的价值,激发学生用数形结合的方法去解决问题,感受数学的魅力。
教学重点:体会数与形的联系,培养学生数形结合的数学思想意识。
教学难点:借助数形之间的联系发现解决问题的方法。
教、学工具:多媒体课件,彩色正方形磁贴和倒L形磁贴教具若干,彩色正方形卡片和倒L形卡片学具若干。
教学过程:一、引入新课,数中有形课件出示课题。
这节课我们要学习什么?数与形有什么关系呢?这节课就让我们一起走进数与形的王国。
板书课题。
1、板书22。
2、学生活动一:看到22你想到了什么?请在练习本上画一画。
(设计意图:让学生初步感知数与形的关系。
感悟数中有形。
)我们就以边长为2的正方形为例子。
教师出示一个边长为2、两行两列的蓝色正方形教具,然后贴在22上方。
那这个22可以表示这个正方形的什么?二、探究新知,形中藏数(一)、发现规律——猜想1、板书12和32。
那看到12和32你会想到什么图形?2、学生快速思考并回答。
教师先后出示一个边长为1的蓝色正方形教具和一个边长为3、三行三列的蓝色正方形教具,分别贴在12和32的上方。
3、学生活动二:仔细观察黑板上的三个图形并思考:在这三个图形中隐藏着什么变化规律?请你利用学具袋里的学具摆一摆,并在练习本上用数或式表示你的发现。
4、请学生在黑板上用教具操作演示一遍,并作讲解。
5、按照这样的规律,图形4应该是什么样的?算式呢?6、请学生上台操作演示,并板書算式(拼接上绿色的倒L形状的磁贴教具,形成一个边长为4的正方形,板书1+3+5+7= 42。
)7、学生活动三:仔细观察黑板上的图形与等式,你发现了什么?把你的发现与小组内的同学说一说。
9、展示并反馈通过交流与讨论,发现从1开始,几个连续奇数相加,和就是几的平方。
《数与形》教学设计教学目标:1.认识数与形的关系,培养学生对数与形之间相互转化的能力;2.培养学生观察、分析、运算和推理的能力;3.培养学生的逻辑思维和创造力。
知识点:1.数与形的相互关系;2.通过几何图形中的边数和角数来解读数的含义;3.利用数的变化来构造不同的几何图形。
教学准备:1.板书:数与形的相互关系;2.教师准备一些图形卡片。
教学过程:一、导入新课(10分钟)教师出示几个图形卡片,让学生观察图形的特点,然后提问:“你们观察到了什么?”学生可以回答图形的边数、角数等。
教师引导学生思考:边数和角数和我们平时学习的数有什么关系呢?二、呈现新知(20分钟)1.教师出示一个正方形的图形卡片,然后问学生:“这个正方形有几条边?有几个角?”学生回答后,教师在黑板上写下正方形的边数和角数。
2.教师再出示一个三角形的图形卡片,问学生同样的问题,并在黑板上写下三角形的边数和角数。
3.教师引导学生总结:正方形有4条边,有4个角;三角形有3条边,有3个角。
可以看出,边数和角数之间有一定的关系。
4.教师出示其他形状的图形卡片,让学生观察边数和角数的规律。
三、拓展活动(30分钟)1.学生分组,每个小组分发一些图形卡片。
2.学生尝试设计一些没有给定的图形,然后画出来,并写出边数和角数。
3.学生在小组中互相交流,讨论图形的边数和角数的规律。
4.学生选择一种较为复杂的图形,尝试构造不同的边数和角数。
例如,正多边形的边数和角数不同,学生可以通过改变边数和角数来构造不同的正多边形。
四、归纳总结(15分钟)1.学生回到教室,教师组织学生展示他们设计的图形。
2.教师引导学生总结图形的边数和角数之间的关系。
五、练习巩固(15分钟)1.学生完成课堂练习册中与数与形相关的练习题。
2.学生进行小组比赛,比赛内容为通过给定的边数和角数来构造图形。
六、课堂小结(5分钟)教师对今天的课堂进行总结,强调数与形的相互关系,并鼓励学生在课后继续观察与思考。
人教版六年级上册数学公开课《数与形》教案、教案及教学反思一. 教材分析《数与形》是人教版六年级上册数学的一节课,本节课主要让学生通过探究图形中的规律,培养学生的观察能力、操作能力、推理能力及语言表达能力。
教材中提供了丰富的素材,让学生在探究中发现规律,感受数形结合的思想。
二. 学情分析六年级的学生已经具备了一定的数学基础,对于图形的认识和操作已经较为熟练。
但是,对于将数学问题转化为图形问题,以及通过观察图形来解决数学问题的能力还需提高。
因此,在教学过程中,要注重引导学生主动探究,发现规律,感受数形结合的魅力。
三. 教学目标1.让学生通过观察、操作、推理等过程,发现图形中的规律,体会数形结合的思想。
2.培养学生的观察能力、操作能力、推理能力及语言表达能力。
3.让学生在探究过程中,感受数学的趣味性和魅力,激发学生学习数学的兴趣。
四. 教学重难点1.教学重点:让学生通过观察、操作、推理等过程,发现图形中的规律。
2.教学难点:让学生体会数形结合的思想,并能运用到实际问题中。
五. 教学方法1.引导探究法:引导学生通过观察、操作、推理等方法,自主发现图形中的规律。
2.讨论交流法:在小组内进行讨论交流,分享各自的发现和思考,培养学生的合作意识和沟通能力。
3.案例分析法:通过具体的案例,让学生体会数形结合的思想,并运用到实际问题中。
六. 教学准备1.准备相关图形素材,如正方形、长方形等。
2.准备计时器,用于记录每个环节的时间。
3.准备黑板,用于板书重要内容和步骤。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的图形,如建筑、车辆等,引导学生关注图形,激发学生学习兴趣。
2.呈现(10分钟)呈现一组图形,让学生观察并找出其中的规律。
学生独立观察后,进行小组讨论,分享各自的发现。
教师引导学生用数学语言来描述规律,培养学生的语言表达能力。
3.操练(10分钟)根据呈现的规律,让学生动手操作,尝试找出其他图形中的规律。
数与形教学教学设计一、教学目标1. 理解数与形之间的关系,提高学生对数和形的认知能力;2. 培养学生观察分析、思辨推理与解决问题的能力;3. 培养学生团队合作与沟通交流的能力;4. 营造积极进取的学习氛围,培养学生的数学兴趣和自主学习能力。
二、教学内容1. 数与形的基本概念:数字、形状、几何图形等;2. 数与形的关系:数字和形状之间的联系和互动;3. 数学运算中的数与形:加减乘除等运算中的数和形的应用;4. 数与形的实际应用:数与形在日常生活中的应用。
三、教学方法1. 启发式教学:通过提问、引导、讨论等方式激发学生的思考和学习兴趣;2. 观察与实践教学:引导学生观察、实践,通过具体的实物、模型和实验,让学生亲自体验数与形的关系和应用;3. 课堂合作学习:组织学生进行小组讨论、合作解决问题,促进学生之间的互动和合作;4. 情景教学:结合具体情境,让学生在实际生活中感受数与形的应用,增强学习的实用性和趣味性。
四、教学步骤1. 导入环节通过一个生活场景的插曲,引起学生对数与形的注意和思考。
例如,一个小朋友要画一条长为5个单位的线段,让学生思考如何在纸上画出一条符合条件的线段。
2. 数与形的基本概念讲解通过图示和实物展示,介绍数字、形状、几何图形等基本概念,引导学生认识和理解。
3. 数与形的关系展示在黑板上画出数个几何图形,并标注相应的数字。
让学生观察并尝试找出图形与数字之间的规律和关系。
4. 数与形的操作练习给学生发放一些具有不同形状的卡片,让他们按照给定的数字要求,找出符合条件的卡片进行操作练习,如:找出一个三角形,并给它加上2个正方形。
5. 数与形的实际应用举例以日常生活中的场景为例,让学生找到数字和形状的应用,如:贴照片时要按照相框的形状剪裁照片,收集水果时要按照数量摆放等。
6. 总结与讨论针对本节课的学习内容,进行全班或小组讨论,让学生总结所学知识,并提出自己的思考和问题。
7. 拓展延伸提供一些拓展练习和活动,让学生在课后继续探索数与形之间的关系,如:设计一个有趣的游戏,让学生通过游戏中的任务来发现数与形的联系。
数与形》教学设计及设计说明教学内容:六年级上册P107例1,练习二十二。
教材分析:《数与形》是本册教材第八单元《数学广角》的内容。
它是教材新增的内容,按照传统的教学是供学有余力的学生学习的,而对普通学生来说要求偏高。
现在教材作为例题编写,其意图是让学生通过数与形的对照,探究发现图形中隐藏的数的规律,进一步体会数与形之间的内在联系,感受用形来解决数的有关问题的直观性与简捷性,并能把数形结合的思想迁移到解决其他一些实际问题,帮助学生积累经验。
设计理念:数形结合是一种非常重要的数学思想,把数与形结合起来解决问题,可使复杂的问题变得更简单,使抽象的问题变得更直观。
教学中学生通过想一想、摆一摆、算一算、议一议,发现图形中隐藏的数的规律,并且能用发现的规律来解决一些有关数的问题,在解决数学问题的过程中,体会和掌握数形结合、归纳推理的数学思想,培养学生分析问题、解决问题的意识和能力。
在练习中,学生利用数形对照,观察图的变化规律,并探究数的变化规律,体验数与形的对应关系,互相印证结果,感受数学的魅力。
教学设计思路:1.引导学生数形结合相互印证形的问题中包含着数的规律,数的问题也可以用形来帮助解决,教学时,让学生通过解决问题体会到数与形的完美结合,通过数与形的对应关系,相互印证结果,发现“和”都是“平方数”,再通过图形的规律理解“平方数”(即正方形数)的含义,并让学生大胆说出自己发现的其他规律,从不同角度寻找规律,例如从第一个图到第三个图,每次增加多少个小正方形,用加法怎样列式,加数都是连续奇数,这些奇数在图中什么地方,从而对规律形式更直观的认识。
2.借助“数”“形”之间的关系,解决相关问题。
在教学中,从数的特点开始开始,找到得数规律,再借助计算解决几何图形的相关问题,使学生在初步了解、运用“数形结合”思想方法的同时,体验到学习数学的乐趣。
3.精选学习材料,适度处理和拓展教材内容数与形》教学设计教学目标:1.让学生经历观察、操作、归纳等活动,帮助学生借助“形”来直观感受“数”,并能将数转化为形,体会数形结合思想,能借助数形结合思想解决一些简单的数的问题。
《数与形》教学设计这是一篇由网络搜集整理的关于《数与形》优秀教学设计范文的文档,希望对你能有帮助。
《数与形》优秀教学设计范文篇1教学目标:1、体会数与形的联系,进一步积累数形结合数学活动经验,培养学生数形结合的数学思想意识。
2、体验数形结合的数学思想方法价值,激发学生用数形结合思想方法解决问题的兴趣,感受数学的魅力。
3、在解决数学问题的过程中,体会和掌握数形结合、归纳推理等基本的数学思想。
教学重点、难点:积累数形结合数学活动经验,体验数学思想方法的价值,激发兴趣。
教学准备:课件,不同颜色的小正方形。
学具准备:不同颜色的小正方形,吸铁板,作业纸。
教学过程:一、谈话导入,出示课题教师:最近老师发现,我有一项非常神奇的本领。
什么本领呢?我发现只要从1开始的连续奇数相加,比如,1+3,1+3+5……像这样的算式,我都算得特别快。
你们信吗?教师:不信也没关系,我们现场来比一比。
师生比赛,看谁算得快。
教师:这个方法快吗?你们想不想也像老师一样算得快呢?教师:老师给你们一点点提示,我是借助图形发现这个方法的,今天这节课我们就来研究──数与形(板书)。
【设计意图】从谈话导入,通过设置悬念,激发学生学习兴趣,从而顺理成章地引出课题。
二、动手实践,以形解数1、教师:我先根据算式中的加数拿出若干个图形。
比如,1+3,我就先拿一个小正方形,再拿三个小正方形(贴在黑板上),我发现这些数量的小正方形刚好可以拼成一个大正方形,那我就把它们拼成一个大的正方形。
教师:接着,我观察图形和算式之间的关系,就发现了可以快速算得结果的方法,你们想不想自己试试看?教师:先来两个加数的,再来三个加数的。
请同学们在小组内先完成第一步,再完成第二步,看看哪个小组最先发现老师的方法。
2、小组动手操作,教师巡视。
3、学生汇报,全班交流分析。
先讨论1+3,再讨论1+3+5。
教师:根据同学们的汇报,大家认为1+3=22,1+3+5=32。
除了这两组同学的汇报,你们还有其他发现吗?学生:算式中加数的个数是几,和就等于几的平方。
《数与形》教学设计教学目标:知识与技能:能在观察活动中发现图形中隐含的规律,体会“图形与数”的关系。
过程与方法:能正确地观察和分析图形的变化规律,并能根据规律画出所缺的图形。
情感态度与价值观:感受数形结合的思想。
教学重点:在生活中发现图形中隐含的规律,体会数形结合的思想。
教学难点:学会分析数与形之间的变化规律。
教学准备:多媒体课件。
课时划分:1课时教学过程:一、激情导入同学们,你们见过阅兵式吗?(出示阅兵式录像)这些解放军战士的队伍排得多么整齐啊!如果我们用一个小方格表示一个士兵,那么由战士组成的兵阵就变成了我们今天要学习的方格阵。
(板书课题:数与形(1))二、探求规律课件出示教材第107页例1的方格阵图。
1.一探师:图中有几个方格阵?每个方格阵各有几个方格?有窍门吗?这时学生可能会说:“我是用算式算出来的。
”教师根据学生的回答,板书第一组算式:第 1 个1×1=1=12第 2 个2×2=4=22第 3 个3×3=9=32第 4 个4×4=16=42(一个“算”字,使学生的思维顺利地实现了由形到数的第一次转换。
)师:这种数法真是又快又方便!照这样下去,第5个方格阵有多少个方格呢?第6个呢?第7个呢?第100个呢?……师:好像很有规律哦?谁发现了?师:那第n个方格阵呢?(通过画方格阵的过程,体现由数到形的转换,培养学生主动进行数形转换的意识。
)师:能不能换个角度观察?2.二探斜着看又可以得到什么样的算式呢?请同学们独立思考,写出算式,然后汇报。
教师板书:第 1 个1=12第 2 个1+2+1=4=22第 3 个1+2+3+2+1=9=32第 4 个1+2+3+4+3+2+1=16=42师:谁发现了什么规律呢?(如“第2个方格阵就从1加到 2再加回来,第3 个方格阵就从1加到 3再加回来,第4个方格阵就是 1加到4再加回来”。
“第几个方格阵就从 1 连续加到几,再反过来加回到 1”这个规律。
小学数学数与形教案6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!小学数学数与形教案6篇我们在编写教案时尽可能地将理论与实际相结合,我们要根据教案中的指引进行教学活动,以下是本店铺精心为您推荐的小学数学数与形教案6篇,供大家参考。
第1篇一、教学内容人教版六年级上册数学第八单元数学广角——数与形(107页例1)二、教材分析数形结合是一种非常重要的数学思想,把数与形结合起来解决问题,可使复杂的问题变得更简单,使抽象的问题变得更直观,数与形密不可分,可用数来解决形的问题,也可用形来解决数的问题。
本课时是使学生通过数形的对照,利用图形直观形象的特点探索出从1开始的连续奇数之和与正方形数的关系,表示出数的规律。
在教学过程中,让学生通过解决问题体会到数与形的完美结合。
三、学情分析小学六年级的学生已具备初步的逻辑思维能力,但仍以形象思维为主,教材在小学中年级的数学教学中,已经逐渐借助推理与知识迁移来完成,并结合教材挖掘、创造条件开始渗透数形结合思想。
进入中高年级后,学生逻辑思维能力已有一定发展,为了使学生更直观的理解知识,同时又满足学生逻辑思维能力的发展,因此本节教材在编排上体现了先数后形的顺序,把形象真正放在支撑地位,从而为培养学生的逻辑能力而服务。
四、教学目标1、知识技能:使学生通过自主探究发现图形中隐藏着的数的规律,并会应用所发现的规律;使学生会利用图形来解决一些有关数的问题;2、数学思考:让学生经历观察、猜想、验证、思考、归纳、合作等活动,发现图形中隐含着数的规律,培养学生数形结合的思想意识,体会和掌握数形结合、归纳推理等基本的数学思想;3、问题解决:使学生能够借助形解决一些与数有关的问题,使学生建立通过数形结合方法解决数学问题的意识,掌握数形结合解决简单问题的方法;4、情感态度:培养学生通过数形结合来分析思考问题,从而感悟数形结合思想,体验数形结合的数学思想方法价值,激发学生用数形结合思想方法解决问题的兴趣,感受数学的魅力,提高解决问题的能力。
五、教学重点、难点教学重点:借助“形”感受与“数”之间的关系,引导学生探索、发现规律,培养学生用“数形结合”的思想解决问题。
教学难点:在探究过程中积累基本的活动经验,感悟数形结合、归纳推理的数学思想。
数与形公开课教案教学设计课件一、教学目标1. 让学生理解数与形的概念,掌握数与形的相互转化方法。
2. 培养学生观察、分析、解决问题的能力,提高学生的逻辑思维能力。
3. 培养学生合作学习、积极探究的学习态度,激发学生对数学的兴趣。
二、教学内容1. 数与形的定义及关系2. 数与形的相互转化方法3. 数形结合在实际问题中的应用三、教学重点与难点1. 教学重点:数与形的概念、数与形的相互转化方法。
2. 教学难点:数形结合在实际问题中的应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究数与形的相互关系。
2. 利用多媒体课件,直观展示数与形的转化过程。
3. 组织小组讨论,培养学生合作学习的能力。
五、教学过程1. 导入新课:通过生活中的实例,引导学生认识数与形的关系。
2. 讲解数与形的定义及关系:详细讲解数与形的概念,阐述它们之间的相互转化关系。
3. 示例演示:利用多媒体课件,展示数与形相互转化的过程。
4. 练习巩固:发放练习题,让学生独立完成,检测学生对知识点的掌握情况。
5. 小组讨论:组织学生分组讨论,分享各自在练习中遇到的问题及解决方法。
7. 课后作业:布置课后作业,巩固所学知识点。
8. 课堂反馈:课后收集学生反馈,了解学生对本节课的教学效果评价,为下一步教学提供参考。
六、教学评估1. 课堂表现评估:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习兴趣和积极性。
2. 练习题完成情况评估:检查学生练习题的完成质量,评估学生对知识点的掌握程度。
3. 小组讨论评估:评价学生在小组讨论中的表现,包括合作意识、交流能力和问题解决能力。
七、教学反思1. 反思教学内容:评估数与形概念的讲解是否清晰,转化方法的示例是否恰当。
2. 反思教学方法:思考问题驱动法和多媒体演示是否有效,小组讨论的组织是否高效。
3. 反思教学效果:根据学生反馈和评估结果,分析教学目标的达成情况,找出改进空间。
八、拓展活动1. 开展数学游戏:设计有关数与形的数学游戏,让学生在游戏中运用所学知识,提高学生的实践能力。
小学六年级上册数学《8 数学广角——数与形》教学设计一、教学目标核心素养:1.知识与技能:1.理解和掌握数与形之间的关系,能通过观察图形理解数的含义。
2.能够运用数与形的结合解决实际问题。
2.过程与方法:1.经历数与形相互转化的过程,培养学生的观察能力和抽象思维能力。
2.引导学生通过小组合作、讨论交流,培养学生的合作精神和探究精神。
3.情感、态度与价值观:1.激发学生对数与形关系的兴趣,培养数学学习的积极情感。
2.培养学生运用数学知识解决实际问题的意识和能力,体会数学在生活中的价值。
二、教学重点•数与形的关系及其在实际问题中的应用。
三、教学难点•理解数与形之间的转化过程,并灵活运用解决实际问题。
四、教学资源•教科书•多媒体课件(含数与形关系示例、练习题)•练习册•图形工具(如直尺、圆规等)•白板及白板笔五、教学方法•讲授法:介绍数与形的基本概念及其关系。
•直观演示法:通过多媒体课件展示数与形的转化过程。
•小组合作法:引导学生分组讨论,共同解决问题。
•练习法:通过练习题巩固所学知识。
六、教学过程1.导入•创设情境:通过展示一些有趣的图形和数字,引发学生对数与形关系的思考。
•提出问题:引导学生思考数与形之间有何关系,它们如何相互转化。
2.知识讲解•数与形的基本概念:介绍数字的基本含义和图形的基本特征。
•数与形的关系:通过实例(如正方形面积与其边长的关系、圆的周长与半径的关系等),展示数与形之间的紧密联系。
•数与形的转化方法:讲解如何将数转化为图形(如用图形表示数的大小关系),以及如何将图形转化为数(如计算图形的面积、周长等)。
•示例讲解:通过具体例题,演示如何运用数与形的关系解决实际问题。
3.巩固练习•提供练习题,让学生独立完成,巩固所学知识。
•教师巡视指导,及时纠正错误,并引导学生深入思考。
4.小组讨论•学生分组讨论练习题中的难点和易错点。
•分享解题思路和方法,相互学习、共同进步。
•教师参与讨论,引导学生深入理解数与形的关系及其在实际问题中的应用。
人教版六年级上册第八单元《数与形》教学设计含反思【教学内容】人教版部编教材小学数学六年级上册第八单元《数与形》第107页的例1。
【教材分析】教材以“1+3+5+7+…+(2n-1)=n²为例,通过数与形的对照,利用正方形图直观形象的特点来表示数的规律,引导学生在正方形图的拼摆中,直观理解“正方形数”或“平方数”的特点,让学生充分认识和利用数与形的结合,解决一些有趣的数学问题,同时为后续的学习积累基本的活动经验。
【教学目标】1.让学生经历观察、操作、归纳等活动,帮助学生借助“形”来直观感受与“数”之间的关系。
2.体会有时“形”与“数”能互相解释,并能借助“形”解决一些与“数”有关的问题。
3.培养学生通过数与形结合来分析思考问题,从而感悟数形结合的思想,提高解决问题的能力。
在解决实际问题的过程中,体会数与形之间的密切联系,感受数学知识的奥妙,激发学习数学的兴趣。
【教学重、难点】重点:让学生经历观察、操作、归纳等活动,帮助学生借助“形”来直观感受与“数”之间的关系,结合具体实例理解数形结合的思想方法。
难点:体会有时“形”与“数”能互相解释,并能借助“形”解决一些与“数”有关的问题。
【教学过程】一、游戏导入(1)师:同学们,在上这节新课之前我们先来一场比赛,看看哪个同学计算能力强,举手速度快。
答对题目的同学有小礼品奖励。
(顿时全体学生目不转睛盯着老师的课件,等待老师出题)。
课件出示1+3=生:4师:哈哈,虽然这道题简单,但是你的速度是最快的。
(赠送小礼品)其他没有抢到答题机会的同学别灰心,后面还有,我们继续!课件出示1+3+5=生:9(赠送小礼品,由于刚开始的题目简单,同学们都不想错失机会,课堂气氛活跃。
)师:我们继续!(还未出示题目,已有几个学生举手了。
)你是怎么知道老师的题目?莫非你偷看了我的课件?(微笑着说)生:第一题是1+3=,第二题是1+3+5=,我想第三题可能是1+3+5+7=,上一个同学已经算出1+3+5=9,我在9的基础上再加上7就等于16师:非常好,能站在巨人的肩膀上,成功得更快。
六年级上册数学广角《数与形》教学设计一、教学目标本课程设计旨在帮助学生掌握数与形的基本概念,培养他们的数学思维和空间想象能力,提高他们的数学素养和解决问题的能力。
二、教学内容本教学设计主要涉及数学广角教材《数与形》第一单元到第四单元的内容,包括数的认识与掌握、形的认识与掌握等方面的内容。
三、教学重点和难点1.重点:通过实例引导学生从日常生活中认识数与形的联系,巩固数与形的基本概念。
2.难点:启发学生思考数与形之间的关联,培养其空间想象能力。
四、教学方法本课程将采用启发式教学法、案例分析法、实验探究法等多种教学方法,以激发学生的学习兴趣和提高他们的学习效果。
五、教学过程1.第一节课:数的认识与掌握–利用实物教具进行数学广角活动,帮助学生认识数字的实际意义。
–通过游戏等方式激发学生的学习兴趣,培养其数学思维。
2.第二节课:形的认识与掌握–以形状图形为基础,引导学生认识不同形状的特点和分类。
–进行形状种类的比较,让学生通过观察、操作等方式深入理解不同形状的性质。
3.第三节课:数与形的关联–通过数学模型和图形相结合的方式,让学生掌握数与形之间的联系。
–引导学生应用数学知识解决实际问题,培养其数学思维和解决问题的能力。
六、教学反思本次教学设计在教学内容选择和教学方法上都做了充分的准备和考虑,但在实施过程中发现部分学生对数与形的关联理解较困难,下一次教学需要针对这一点加强教学环节,增加更多互动性和引导性的活动。
七、说课稿本节课的设计旨在帮助学生全面认识数与形的基本概念,引导他们从实际生活中认识数与形的联系,培养其空间想象力和数学思维。
通过多种教学方法和形式的展示,让学生在轻松愉快的氛围中掌握知识,提高其学习兴趣和学习效果。
八、评课稿本节课的教学设计能够有效引导学生掌握数与形的基本概念,培养其数学思维和空间想象能力。
教学方法多样化,教学过程生动有趣,激发了学生的学习兴趣和参与度。
但在教学过程中部分学生对数与形的关联理解较困难,下一次教学需要加强相关环节的指导和引导,提高教学效果。
数与形教学设计1. 教学目标•学生能够理解数与形的关系,掌握数与形的相互转化方法;•学生能够运用数与形的知识解决实际问题;•学生能够培养观察力、思维逻辑和创造力。
2. 教学方法2.1 情境导入法通过一个有趣的情境引入数与形的概念,激发学生的兴趣和好奇心。
例如,讲述一个小动物从一条直线上跳下来后变成了一个圆圈,引出数与形之间的联系。
2.2 实践操作法通过让学生亲自动手进行实践操作,加深对数与形之间关系的理解。
例如,让学生用棍子拼出不同数量的直线段,并观察这些直线段组成不同形状。
2.3 讨论交流法鼓励学生积极参与课堂讨论,分享自己对数与形关系的理解和经验。
通过师生互动、小组合作等方式促进思维碰撞和知识共享。
2.4 游戏竞赛法设计一些有趣的数与形相关的游戏和竞赛,激发学生的学习兴趣和主动性。
例如,让学生参加一个拼图比赛,要求他们根据给定的数量和形状拼出完整的图案。
3. 教学内容3.1 数与形之间的转化关系•数转化为形:通过给定数量,在纸上画出相应数量的线段,并组成不同的图形。
•形转化为数:观察给定图形的线段数量,并用数字表示。
3.2 数与形在实际问题中的应用•学生能够根据给定条件画出符合要求的图形,并计算其中线段的数量。
•学生能够根据给定图形计算其中线段的数量,并解决相关问题。
4. 教学过程第一课时:数与形之间的转化关系导入(10分钟)通过一个有趣的故事引入数与形之间的转化关系。
探索实践(20分钟)让学生用棍子拼出不同数量和长度的直线段,并观察这些直线段组成不同形状。
引导学生发现数与形之间的关系。
讨论交流(15分钟)鼓励学生分享自己观察到的规律和经验,并引导他们总结数与形之间的转化关系。
游戏竞赛(15分钟)设计一个数与形相关的游戏,让学生根据给定的数量和形状拼出完整的图案。
并通过比赛的方式增加学生的参与度和积极性。
第二课时:数与形在实际问题中的应用导入(10分钟)回顾上节课学习的内容,引出数与形在实际问题中的应用。
六年级《数与形》教学设计六年级《数与形》教学设计教学目标(一)、知识与技能观察、寻找图形的特点,结合图形从不同角度观察得出数学规律。
(二)、过程与方法应用“数形结合”,训练和培养数学推理能力和解决问题能力。
(三)、情感态度价值观通过以形助数的直观生动性,体会数形结合,感受数学的趣味性。
教学重点借助数形结合来解决问题。
教学难点从不同角度观察得出数学规律,借助数形结合这个载体,灵活解决数学问题。
教学准备教师:三幅贴图、多媒体课件。
学生:三张题卡教学过程一、激趣揭题师:以同学们喜欢玩魔术激趣,请生说出从1开始的连续奇数相加的算式,师很快说出得数,这其中一定有奥秘。
通过今天的学习,就会知道这其中的奥秘。
今天我们一起来研究“数与形”,揭示课题并板书。
二、新授1、整体观察,初步感知。
师:这么多连续奇数相加,我们怎么样研究其中的规律呢?生答师引导学生从较小的数开始研究起。
师在黑板上出示三幅图。
师:仔细观察三幅图,分别说说每幅图是有几个小正方形组成的?后面的图形与前面的图形中小正方形的个数有什么样的关系?你能用一道加法和一道乘法算式表示每幅图中小正方形的个数吗?,师:小组合作交流。
小组汇报,说明理由。
生1:第二幅图比第一幅图多3个,第三幅图比第二幅图多5个。
生2:发现第一幅图有1个小正方形,第二幅图左边一个小正方形,和 3个小正方形正好拼成一个每行每列都是2的大正方形,加法算式是1+3是4,乘法算式是2乘2,也就是2的平方等于4,第三幅图,分别用1个、3个、5个小正方形正好能拼成每行每列都是3的大正方形,加法算式1+3+5等于9,乘法算式3乘3就是32等于9,所以1=12,1+3=22,1+3+5=32。
学生汇报的同时教师在相应的图下面板书加法和乘法算式。
师:同学们不仅能用一个数表示每幅图小正方形的个数,而且还能用加法和乘法算式来表示这组图的规律。
2、展开想象,发现规律师:想象一下,图4会是什么样子的?一共有几个小正方形?列出一道加法算式和一道乘法算式,请生在第一张题卡上画一画,算一算。
六年级上册数与形教案5篇六年级上册数与形教案篇1教学目标1、学会本课生字。
2、读懂课文内容,积累优美词句,感受乐曲《黄河大合唱》的磅礴气势和抗日军民的昂扬斗志。
3、能正确、流利、有感情地朗读课文,背诵课文的第六、七、八段。
教学准备教师:搜集《黄河大合唱》的词、曲,光未然、冼星海的相关资料,以及《黄河大合唱》的cd。
学生:搜集了解《黄河大合唱》和当时时代背景的相关资料。
教学设计一、揭示课题,导入新课1、板书课题:15.黄河大合唱。
2、师生交流课前搜集的《黄河大合唱》的词、曲以及有关光未然、冼星海的资料。
?黄河大合唱》是我国合唱音乐的一座光辉的里程碑,也是我国大型音乐作品的典范之作。
作品用感情饱满的笔墨,表现了中华民族的伟大精神和不可战胜的力量,歌颂了具有悠久历史的伟大祖国。
作品以中华民族的发源地——黄河为背景,热情地讴歌了中华儿女不屈不挠,保卫祖国的必胜信念。
3、下面我们先来欣赏一段《黄河大合唱》的cd,听了以后说说你的感受。
这篇文章的于1941年在太行山的一座核桃林中,第一次听到了这首歌,看到了抗日军民在紧张而沉着地准备投入战斗,心潮澎湃,无比振奋,于是,把自己当时的所见所闻和感受写了下来。
二、整体感知1、借助拼音,扫除生字词障碍。
2、请大家快速浏览课文,看课文写了哪些内容。
3、再读课文,看看哪些写的是演出的情景,哪些写的是抗日部队奔赴前线的场面。
三、欣赏演出1、读课文第4段,说说这是一支什么样的合唱队。
2、读课文第5段,为什么说这个乐队很奇特?你从中想到了什么?3、细读课文6~8段,分别找出写演出和的联想与想象的句子,反复品读,说说自己的独特感受。
4、指导读好6、7、8段,注意朗读力度的把握,气势的渲染,从而体会《黄河大合唱》的磅礴气势,感受课文语言文字的魅力,达到熟读成诵。
学习第7段,要引导学生注意几个细节描写,“举”、“捏”,凝聚了千钧之力,蓄势待发;一“劈”,便如洪水“冲出闸门”,气势磅礴,势不可挡。
数与形教学设计
教学目标:1、会利用图形寻找数中的规律,体会数形结合的优越性。
2、会利用规律解决简单的数学问题。
教学过程:课前小游戏:记忆大比拼
师:听说六年级的同学记忆力特别好,今天我们来玩个记忆大比拼,有三组数据,看谁最先记住。
记好的就举手!请看第一组:1至11的连续自然数。
三、二、一停!为什么记得这样快?都是从1开始的连续自然数;请看第二组:为什么也记得这样快?都是从1开始的连续奇数;第三组,记住了吗?这组怎么这么难?没有规律就不容易记住。
数学中有许多数字都藏着规律,有规律的数能记得很快。
很喜欢同学们刚才表现出的自信、勇于发言,期待同学们接下来的表现,好!开始上课了。
一、游戏激趣,引入课题
同学们喜欢玩游戏吧,老师也想和大家玩一玩。
这里有8个气球,每个气球后都藏着一个数学算式,看哪个同学比老师算得还快,你可以用计算器算,也可以口算。
这位同学坐得真端正,请你选一个?厉害吗,掌声在哪里,想不想像老师算得这样快,我也是从一个人那里学到的,认识吗?他是怎样利用图形寻找到数的规律的呢?今天咱们就沿着科学家的足迹,一起研究数与形,相信通过今天的学习,你们也能算得很快。
二、探索正方形数的规律
这是毕达哥拉斯当年研究的一组图形,请同学们用数学的眼光观察,这些小正方形都组成了一个(大正方形),每个图形分别是由多少个小正方形组成的。
一起说:1,4 ,9 ,16.请看第四个图形,可以用怎样的算式表示小正方形的个数?这个算式表示什么意思?那第3个图算式,第2 个呢?第1个呢?像1乘1可以简写1的平方,。
伟大的毕达哥拉斯看到这副图,他列出了这样的算式1+3,你知道他为什么会这样列式吗?他是这样想的,1在哪里?3在哪里?在数学上科学家给这种看法取了一个名字叫拐弯看,第三个图拐弯看又可以怎样列式?指一指这些数字在哪里?第四个图呢?算式:请看第二个图,4表示?1+3也表示。
2的平方也表示。
那1+3=2的平方。
像1、4,9,16这样能组成大正形的的数叫正方形数,可能写成几的平方,又叫做平方数,下一个正方形数是25,再下一个正方形数是36.
图形能解释数的运算,照这样排列下去,第5、6、7、8个图形又能不能像这样列式呢?让我们验证一下,请看活动表求。
请同学来汇报一下你的图形和算式。
通过同学们的验证,我们知道了一个正方形可以写成数字1,要想拼成一个更大的,就得拐3个小正方形,算式,想要拼成一个还要大的,得再拐5个,更更大的呢?拐7个,算式,更更更大的,拐9个,更更更大的,拐11个,再大的,拐13个,算式,通过图形列出的算式,你有什么发现?小组内交流一下。
(从1开始连续的几个奇数)
请看第二个算式,从1开始的2个连续奇数,就等于2的平方,。
你又有什么发现?那从1开始的N个连续奇数就等于N的平方。
现在知道老师为什么算得这样快了吧,一起算一算吧。
这种方法巧妙吗?这么巧妙的方法我们是通过什么找到的?
现在运用这个规律算一算,相信你们算得比计算器都快。
有一组更难的题,感接受挑战吗?读要求。
有什么要提醒其它同学们的。
你们不仅从1开始的连续奇数相加算得很快,变化一点也能很快的算出来。
数的运算可以借助图形,图形中会不会藏着数的规律呢?
三、探索三角形数的规律
这是毕达哥拉斯当年研究的另一组图形,这是一个圆,个数是1,这是几个?猜一猜下一个图形是怎么排列的?个数是几?(给你握握手,你和科学家想的一样),(他可不是这样想的),第4个图形是怎么排列的,个数是几?加在哪里?第5个图形不让你们猜了,在草稿本上画一画,并写出小圆个数。
说说你的画法和个数。
你们画的图像一个什么图形?像1,3,6,10,15这样能组成大三角形的数我们给他取个名字,三角形数,第6个三角形数是21,第7个呢,28,第10个呢?难着了吧,第15个呢?复杂的问题从简单开始,仔细观察黑板上的和你们自己画的图和数到底有什么规律,在小组内交流一下。
每次增加一行。
可以用算式表示,举例子,比如说,那第10个图的算式是多少,写一写,并算出得数,第15个呢?有什么感觉,有什么好办法总结一下?第几个就是从1开始的连续自然数加到几,第N个呢?就是(从1开始的连续自然数加到N)
特殊的图形藏着特殊的数和算式的规律,这个规律我们还是借助什么找到的?
研究到现在,大家的水平就和毕达哥拉斯的差不多了,接下来还不一个更难的,看同学们能不能超越他。
四、长方形规律
请读要求,个数都会数,一起说,和同桌的同学说一说蓝色和橙色小正方形个数都有什么规律。
蓝色的个数第几个就是几
橙色的个数是每次加2,那你能一口说出第10个图形橙色小正方形的个数吗?
找一找蓝色小正方形和橙色小正方形之间有什么规律?哪里不变,哪里变了?两边的6个不变,每增加1个蓝色的小正方形,橙色的个数就增加2个,为什么增加2个?要包围住,看来这个题用的是围战术。
不变的在哪里,不看不变的,橙色个数是蓝色个数的两倍,再加上不变的,比如说第2 个图,第3个图,用一句话概括。
我们运用这个规律来解决问题,一起说。
这个规律解决问题就容易吗?我们也是借助图形找到的。
看来数与形确实有着密切的联系,我国数学家华罗庚先生更好的解释了数与形的妙处:一起读一读。
同学们,这节课有什么收获呢?
我们都是借助什么找到的/?
这组数又怎样借助图形来研究,课后请同学们继续研究。
下课!。