第12_19届北京市大学生数学竞赛全部试题解答
- 格式:pdf
- 大小:1.17 MB
- 文档页数:62
19华杯赛试题及答案据悉,第19届华杯赛已经圆满结束。
作为一项备受关注的全国性竞赛活动,华杯赛不仅是对优秀学子们的综合能力的一次全面考验,也是各个学科领域创新能力的一次独特展示。
在这篇文章中,我们将为大家呈现出19华杯赛的试题及答案,让读者们可以更好地了解本次比赛的内容与水平。
一、数学试题及答案试题一:设函数f(x)满足f(2x-1)=x^2+x+1,求f(3)的值。
解答:将函数f(x)中的x替换为(2x-1),则有f(1)=x^2+x+1,将x替换为3,则有f(3)=3^2+3+1=13。
试题二:在平面直角坐标系中,点A(3,5)和B(7,9)分别是函数y=kx 的图像上的两个点,且A、B两点被直线y=2x-1所截,求k的值。
解答:直线y=2x-1与函数y=kx相交,可得到方程2x-1=kx,解得k=3。
二、物理试题及答案试题一:如图,一块质量为m的小物块以v的速度水平入射到一个静止的质量为M的大物块上,两物块发生碰撞,假设碰撞时间极短,碰撞过程中不考虑外力,求碰撞过程中两物块的速度。
解答:由动量守恒定律可知,小物块碰撞后的速度为v',大物块碰撞后的速度为V',则有mv=M(V'-v')。
解得V'=(m/M)v,即大物块继续保持原速度,小物块的速度发生反向改变。
试题二:一根长为L的均匀杆质量为M,杆的一端用一个支点固定在墙上,杆的另一端有一质量为m的物块。
现在将这根杆从静止的位置释放,求物块离开支点后,与支点形成的夹角的最大值。
解答:根据机械能守恒定律,物块转化的势能等于杆动能的最大值。
设物块离开支点后与支点形成的夹角为θ,由此可以得到(M+m)gL(1-cosθ)=1/2(m+m)(L^2)θ^2。
经过一系列的推导和计算,可以解得θ的最大值为arccos(1/3)。
三、化学试题及答案试题一:按照下列反应方程式,计算下列反应的生成焓△H:2H2S (g)+ Cl2(g)→ 2HCl(g)+ S2Cl2(g)解答:根据平均键能法,可以计算每一种键的能量,然后通过求和计算出反应的生成焓。
全国高校生数学竞赛预赛试卷〔非数学类〕2021年 第一届全国高校生数学竞赛预赛试卷〔非数学类〕 一、填空题〔每题5分,共20分〕1.计算()ln(1)d yx y x y ++=⎰⎰,其中区域D 由直线1=+y x 及两坐标轴所围成三角形区域.2.设)(x f 是连续函数,且满意22()3()d 2f x x f x x =--⎰,那么()f x =.3.曲面2222x z y =+-平行平面022=-+z y x 的切平面方程是.4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,那么=22d d xy.二、〔5分〕求极限x enx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数. 三、〔15分〕设函数)(xf 连续,10()()g x f xt dt =⎰,且A x x f x =→)(lim 0,A 为常数,求()g x '并探讨)(x g '在0=x 处的连续性.四、〔15分〕平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:〔1〕⎰⎰-=---Lx y Lx y x ye y xe x ye y xe d d d d sin sin sin sin ;〔2〕2sin sin 25d d π⎰≥--Ly y x ye y xe .五、〔10分〕x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程. 六、〔10分〕设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又该抛物线及x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积V 最小. 七、〔15分〕)(x u n 满意1()()1,2,n xnnu x u x xe n -'=+=,且ne u n =)1(,求函数项级数∑∞=1)(n n x u 之和.八、〔10分〕求-→1x 时,及∑∞=02n n x 等价的无穷大量.2021年 第二届全国高校生数学竞赛预赛试卷〔非数学类〕 一、〔25分,每题5分〕〔1〕设22(1)(1)(1)nn x a a a =+++,其中||1,a <求lim .n n x →∞〔2〕求21lim 1x x x e x -→∞⎛⎫+ ⎪⎝⎭. 〔3〕设0s >,求0(1,2,)sx n n I e x dx n ∞-==⎰.〔4〕设函数()f t 有二阶连续导数,1(,)r g x y f r ⎛⎫== ⎪⎝⎭,求2222g gx y∂∂+∂∂. 〔5〕求直线10:0x y l z -=⎧⎨=⎩及直线2213:421x y z l ---==--的间隔 .二、〔15分〕设函数()f x 在(,)-∞+∞上具有二阶导数,并且()0f x ''>,lim ()0x f x α→+∞'=>,lim ()0x f x β→-∞'=<,且存在一点0x ,使得0()0f x <. 证明:方程()0f x =在(,)-∞+∞恰有两个实根.三、〔15分〕设函数()y f x =由参数方程22(1)()x t t t y t ψ⎧=+>-⎨=⎩所确定,且22d 3d 4(1)y x t =+, 其中()t ψ具有二阶导数,曲线()y t ψ=及22132t u y e du e-=+⎰在1t =出相切,求函数()t ψ.四、〔15分〕设10,nn n k k a S a =>=∑,证明:〔1〕当1α>时,级数1n n na S α+∞=∑收敛;〔2〕当1α≤且()n s n →∞→∞时,级数1n n na S α+∞=∑发散.五、〔15分〕设l 是过原点、方向为(,,)αβγ,〔其中2221)αβγ++=的直线,匀称椭球2222221x y z a b c++≤〔其中0c b a <<<,密度为1〕绕l 旋转.〔1〕求其转动惯量;〔2〕求其转动惯量关于方向(,,)αβγ的最大值和最小值. 六、(15分)设函数()x ϕ具有连续的导数,在围绕原点的随意光滑的简洁闭曲线C 上,曲线积分422d ()d 0Lxy x x yx yϕ+=+⎰的值为常数. 〔1〕设L 为正向闭曲线22(2)1x y -+=,证明422d ()d 0L xy x x yx y ϕ+=+⎰;〔2〕求函数()x ϕ;〔3〕设C 是围绕原点的光滑简洁正向闭曲线,求422d ()d Cxy x x yx y ϕ++⎰.2021年 第三届全国高校生数学竞赛预赛试卷〔非数学类〕 一、计算以下各题〔此题共3小题,每题各5分,共15分〕〔1〕求11cos 0sin lim xx x x -→⎛⎫⎪⎝⎭;〔2〕.求111lim (12)n n n n n →∞⎛⎫+++ ⎪+++⎝⎭; 〔3〕()2ln 1arctan ttx e y t e⎧=+⎪⎨=-⎪⎩,求22d d yx.二、〔此题10分〕求方程()()24d 1d 0x y x x y y +-++-=的通解. 三、〔此题15分〕设函数()f x 在0x =的某邻域内具有二阶连续导数,且()()()0,0,0f f f '''均不为0,证明:存在唯一一组实数123,,k k k ,使得 四、〔此题17分〕设2221222:1x y z a b c∑++=,其中0a b c >>>,2222:z x y ∑=+,Γ为1∑及2∑的交线,求椭球面1∑在Γ上各点的切平面到原点间隔的最大值和最小值. 五、〔此题16分〕S 是空间曲线2231x y z ⎧+=⎨=⎩绕y 轴旋转形成的椭球面的上半部分〔0z ≥〕〔取上侧〕,∏是S 在(,,)P x y z 点处的切平面,(,,)x y z ρ是原点到切平面∏的间隔 ,,,λμν表示S 的正法向的方向余弦. 计算: 〔1〕()d ,,SzS x y z ρ⎰⎰;〔2〕()3d Sz x y z S λμν++⎰⎰ 六、〔此题12分〕设()f x 是在(,)-∞+∞内的可微函数,且()()f x mf x '<,其中01m <<,任取实数0a ,定义1ln (),1,2,...n n a f a n -==,证明:11()n n n a a ∞-=-∑肯定收敛.七、〔此题15分〕是否存在区间[]0,2上的连续可微函数()f x ,满意(0)(2)1f f ==,()1f x '≤,2()d 1f x x ≤⎰请说明理由.2021年 第四届全国高校生数学竞赛预赛试卷〔非数学类〕 一、〔本大题共5小题,每题6分,共30分〕解答以下各题〔要求写出重要步骤〕. 〔1〕求极限21lim(!)n n n →∞. 〔2〕求通过直线2320:55430x y z l x y z +-+=⎧⎨+-+=⎩的两个相互垂直的平面1π和2π,使其中一个平面过点(4,3,1)-. 〔3〕函数(,)ax byz u x y e+=,且20ux y∂=∂∂. 确定常数a 和b ,使函数(,)z z x y =满意方程20z z zz x y x y∂∂∂--+=∂∂∂∂. 〔4〕设函数()u u x =连续可微,(2)1u =,且3(2)d ()d L x y u x x u u y +++⎰在右半平面及途径无关,求(,)u x y .〔5〕求极限1limx x x t +. 二、〔此题10分〕计算20sin d x e x x +∞-⎰.三、〔此题10分〕求方程21sin 2501x x x=-的近似解,精确到0.001.四、〔此题12分〕设函数()y f x =二阶可导,且()0f x ''>,(0)0f =,(0)0f '=,求330()lim ()sin x x f u f x u→,其中u 是曲线()y f x =上点(,())P x f x 处的切线在x 轴上的截距.五、〔此题12分〕求最小实数C ,使得满意10()d 1f x x =⎰的连续函数()f x 都有10f dx C ≤⎰.六、〔此题12分〕设()f x 为连续函数,0t >. 区域Ω是由抛物面22z x y =+和球面 2222x y z t ++=(0)z >所围起来的部分. 定义三重积分222()()d F t f x y z v Ω=++⎰⎰⎰,求()F t 的导数()F t ''.七、〔此题14分〕设1n n a ∞=∑及1n n b ∞=∑为正项级数,证明:〔1〕假设()111lim 0n n n n n a a b b →∞++->,那么级数1n n a ∞=∑收敛; 〔2〕假设()111lim 0n n n n n a a b b →∞++-<,且级数1n n b ∞=∑发散,那么级数1n n a ∞=∑发散. 2021年 第五届全国高校生数学竞赛预赛试卷〔非数学类〕 一、解答以下各题〔每题6分,共24分,要求写出重要步骤〕sin d xx x+∞⎰不是肯定收敛的. ()y y x =由323322x x y y +-=确定,求()y x 的极值.0)y x =≥上的点A 作切线,使该切线及曲线及x 轴所围成的平面图形的面积为34,求点A 的坐标.二、〔总分值12分〕计算定积分2sin arctan d 1cos xx x e I x xππ-⋅=+⎰. 三、〔总分值12分〕设()f x 在0x =处存在二阶导数(0)f '',且()lim 0x f x x→=.证明:级数11n f n ∞=⎛⎫⎪⎝⎭∑收敛.四、〔总分值12分〕设(),()0()f x f x m a x b π'≤≥>≤≤,证明2sin ()d baf x x m≤⎰. 五、〔总分值14分〕设∑()()()333d d 2d d 3d d I xx y z y y z x z z x y ∑=-+-+-⎰⎰.试确定曲面∑,使积分I 的值最小,并求该最小值.六、〔总分值14分〕设22d d ()()a aC y x x y I r x y -=+⎰,其中a 为常数,曲线C 为椭圆222x xy y r ++=lim ()a r I r →+∞. 七、〔总分值14分〕推断级数()()1111212n n n n ∞=+++++∑的敛散性,假设收敛,求其和.一、填空题〔共有5小题,每题6分,共30分〕1x y e =和1x y xe =是齐次二阶常系数线性微分方程的解,那么该方程是 .22:2S z x y =+和平面022:=++z y x L . 那么及L 平行的S 的切平面方程是 .()y y x =由方程21sin d 4y x t x tπ-⎛⎫= ⎪⎝⎭⎰0d d x y x== .1(1)!nn k kx k ==+∑,那么=∞→n n x lim . 130()lim 1x x f x x e x →⎛⎫++= ⎪⎝⎭,那么=→20)(lim x x f x . 二、〔此题12分〕设n 为正整数,计算21d 1cos ln d d n eI x x x π-⎛⎫= ⎪⎝⎭⎰. 三、〔此题14分〕设函数()f x 在]1,0[上有二阶导数,且有正常数,A B 使得()f x A ≤,|"()|f x B ≤. 证明:对随意]1,0[∈x ,有22|)('|BA x f +≤. 四、〔此题14分〕〔1〕设一球缺高为h ,所在球半径为R . 证明该球缺体积为2)3(3h h R -π,球冠面积为Rh π2;〔2〕设球体12)1()1()1(222≤-+-+-z y x 被平面6:=++z y x P 所截的小球缺为Ω,记球缺上的球冠为∑,方向指向球外,求第二型曲面积分 五、〔此题15分〕设f 在],[b a 上非负连续,严格单增,且存在],[b a x n ∈,使得⎰-=b a nn n dx x f ab x f )]([1)]([.求n n x ∞→lim . 六、〔此题15分〕设2222212n n n n A n n n n =++++++,求⎪⎭⎫ ⎝⎛-∞→n n A n 4lim π.一、填空题〔每题6分,共5小题,总分值30分〕〔1〕极限2222sin sin sin lim 12n n n n n n n n πππ→∞⎛⎫⎪+++= ⎪+++ ⎪⎝⎭. 〔2〕设函数(),z z x y =由方程,0z z F x y yx ⎛⎫++= ⎪⎝⎭所确定,其中(),F u v 具有连续偏导数,且0u v xF yF +≠那么z z x y xy∂∂+=∂∂ .〔3〕曲面221z x y =++在点()1,1,3M -的切平面及曲面所围区域的体积是 . 〔4〕函数()[)[)3,5,00,0,5x f x x ⎧∈-⎪=⎨∈⎪⎩在(]5,5-的傅立叶级数在0x =收敛的是 .〔5〕设区间()0,+∞上的函数()u x 定义域为()20xt u x e dt +∞-=⎰,那么()u x 的初等函数表达式是 .二、〔12分〕设M 是以三个正半轴为母线的半圆锥面,求其方程. 三、〔12分〕设()f x 在(),a b 内二次可导,且存在常数,αβ,使得对于(),x a b ∀∈,有()()()f x f x f x αβ'=+,那么()f x 在(),a b 内无穷次可导. 四、〔14分〕求幂级数()()30211!nn n x n ∞=+-+∑的收敛域及其和函数.五、〔16分〕设函数()f x 在[]0,1上连续,且()()11000,1f x dx xf x dx ==⎰⎰.试证:〔1〕[]00,1x ∃∈使()04f x >; 〔2〕[]10,1x ∃∈使()14f x =.五、〔16分〕设(),f x y 在221x y +≤上有连续的二阶偏导数,且2222xx xy yy f f f M ++≤. 假设()()()0,00,0,00,00x y f f f ===,证明:()221,x y f x y dxdy +≤≤⎰⎰.2021年 第八届全国高校生数学竞赛预赛试卷〔非数学类〕 一、填空题〔每题5分,总分值30分〕 1、假设()f x 在点x a =可导,且()0f a ≠,那么()1lim nn f a n f a →∞⎛⎫⎛⎫+ ⎪ ⎪⎝⎭ ⎪= ⎪⎪⎝⎭. 2、假设()10f =,()1f '存在,求极限()()220sin cos tan3lim1sin x x f x x xI ex→+=-.3、设()f x 有连续导数,且()12f =,记()2x z f e y =,假设z z x∂=∂,求()f x 在0x >的表达式. 4、设()sin 2xf x ex =,求02n a π<<,()()40f .5、求曲面22 2x z y =+平行于平面220x y z +-=的切平面方程.二、〔14分〕设()f x 在[]0,1上可导,()00f =,且当()0,1x ∈,()01f x '<<,试证当()0,1a ∈,()()()2300d d aaf x xf x x >⎰⎰.三、〔14分〕某物体所在的空间区域为222:22x y z x y z Ω++≤++,密度函数为222x y z ++,求质量()222d d d M xy z x y z Ω=++⎰⎰⎰.四、〔14分〕设函数()f x 在闭区间[]0,1上具有连续导数,()00f =,()11f =,证明:()10111lim 2n n k k n f x dx f n n →∞=⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭∑⎰.五、〔14分〕设函数()f x 在闭区间[]0,1上连续,且()10d 0I f x x =≠⎰,证明:在()0,1内存在不同的两点12,x x ,使得()()12112f x f x I+=. 六、〔14分〕设()f x 在(),-∞+∞可导,且()()(2f x f x f x =+=.用级数理论证明()f x 为常数.2021年 第九届全国高校生数学竞赛预赛试卷〔非数学类〕 一、1. 可导函数f (x )满意⎰+=+xx tdt t f x xf 01sin )(2)(cos ,那么()f x .2. 求⎪⎭⎫ ⎝⎛+∞→n n n 22sin lim π.3. 设(,)w f u v =具有二阶连续偏导数,且==+u x cy v x cy -,,其中c为非零常数. 那么21xx yy w w c -. 4. 设()f x 有二阶导数连续,且(0)'(0)0,"(0)6f f f ===,那么240(sin )lim x f x x→. 5. 不定积分sin 2sin 2(1sin )x e xI dx x -=-⎰. 6. 记曲面222z x y =+和z =围成空间区域为V ,那么三重积分Vzdxdydz ⎰⎰⎰.二、〔此题总分值14分) 设二元函数(,)f x y 在平面上有连续的二阶偏导数. 对任何角度α,定义一元函数假设对任何α都有(0)0dg dtα=且22(0)0d g dt α>. 证明)0,0(f 是(,)f x y 的微小值.三、(此题总分值14分) 设曲线Γ为在上从(1,0,0)A 到(0,0,1)B 的一段. 求曲线积分⎰Γ++=xdz zdy ydx I .四、(此题总分值15分) 设函数()0f x >且在实轴上连续,假设对随意实数t ,有||()1t x e f x dx +∞---∞≤⎰,那么,()a b a b ∀<,2()2b a b a f x dx -+≤⎰. 五、(此题总分值15分) 设{}n a 为一个数列,p 为固定的正整数。
中国教育学会中学数学教学专业委员会《数学周报》杯” 2013年全国初中数学竞赛试题参考答案题号-一一 _ 二 _ 三总分1〜56〜1011121314得分评卷人复查人答题时注意:1用圆珠笔或钢笔作答2•解答书写时不要超过装订线. 3.草稿纸不上交.一、选择题(共5小题,每小题6分,满分30分.以下每道小题均给出了代号为 A , B , C , D 的四个选项,其中有且只有一个选项是正确的 .请将正确选项的代号填入题后的括号 里.不填、多填或错填都得0分)1.已知实数x , y 满足 刍二=3, y 4 - y^3,则-44 y 4的值为().XXx(A ) 7 (B )(C ) 7 "3(D )52 2【答】(A ) 解:因为x 20,y 2 > 0,由已知条件得-1,13244 y 4 乡 3 3-y 2£ -y 2 6 =7.X XX程为t 2 +t-3=0,所以(一W )+ y 2 =-1, (―寸=-3X X2.把一枚六个面编号分别为1, 2, 3, 4, 5, 6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为 m , n ,则二次函数y = x 2 • mx • n 的图象与X 轴 有两个不同交点的概率是().(D)所以另解:由已知得: 2 2 2」(一P )2+(—P )—3=0 X X Q 2) + y 2-3 = 0显然 2 2 2 2 2 -y 2,以- 2 ,y 2为根的一元二次方 XX42故 4y 4 二[(- 2)y 2]2 -2XX2 2 22)y =(T) -2 (-3)=7 X12.4 4 4 3[答]( C )解:基本事件总数有60 = 36,即可以得到36个二次函数.由题意知;_ =_4n >0,即卩 m 2 >4n .通过枚举知,满足条件的 m, n 有 17 对.363.有两个同心圆,大圆周上有 4个不同的点,小圆周上有 可以确定的不同直线最少有().2个不同的点,则这6个点 (A ) 6条 (B ) 8 条(C ) 10 条(D ) 12 条【答](B )解:如图,大圆周上有4个不同的点A ,B ,C ,D ,两两连线 可以确定6条不同的直线;小圆周上的两个点 E ,F 中,至少有一 个不是四边形ABCD 的对角线AC 与BD 的交点,则它与A ,B ,C , D 的连线中,至少有两条不同于 A ,B ,C ,D 的两两连线.从而这 6个点可以确定的直线不少于 8条.当这6个点如图所示放置时,恰好可以确定 8条直线. 所以,满足条件的6个点可以确定的直线最少有8条.4 .已知AB 是半径为1的圆O 的一条弦,且 AB 二a :::1 .以AB 为一边在圆O 内作正△ ABC ,点D 为圆O 上不同于点A 的一点,且DB 二AB 二a , AE 的长为().(B) 1(C )乎【答](B )解:女口图,连接 OE ,OA ,OB .设.D =:,贝UECA=120- EAC .11又因为 ABO ABD 60180 -2:-120 -:22所以△ ACE 也△ ABO ,于是AE = OA = 1 .另解:如图,作直径EF ,连结AF ,以点B 为圆心,AB 为半径 作。
2019年北京卷 理科数学真题(解析版)一、选择题:每小题5分,共40分。
1.已知复数z =2+i ,则z z ⋅=( ) A.3B.5C. 3D. 5【答案】D 【详解】∵z 2i,z z (2i)(2i)5=+⋅=+-= 故选D.2.执行如图所示的程序框图,输出的s 值为( )A. 1B. 2C. 3D. 4【答案】B【详解】运行第一次, =1k ,2212312s ⨯==⨯- ,运行第二次,2k = ,2222322s ⨯==⨯- ,运行第三次,3k = ,2222322s ⨯==⨯- ,结束循环,输出=2s ,故选B .3.已知直线l 的参数方程为13,24x t y t =+⎧⎨=+⎩(t 为参数),则点(1,0)到直线l 的距离是( )A.15B.25C.45D.65【答案】D【详解】直线l 的普通方程为()()41320x y ---=,即4320x y -+=,点()1,0到直线l 的距离226543d ==+,故选D.4.已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则( )A. a 2=2b 2B. 3a 2=4b 2C. a =2bD. 3a =4b【答案】B 【详解】椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =,故选B.5.若x ,y 满足|1|x y ≤-,且y ≥−1,则3x+y 的最大值为( ) A. −7 B. 1C. 5D. 7【答案】C 【详解】由题意1,11yy x y-≤⎧⎨-≤≤-⎩作出可行域如图阴影部分所示.设3,3z x y y z x =+=-,当直线0:3l y z x =-经过点()2,1-时,z 取最大值5.故选C.6.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为( ) A. 1010.1 B. 10.1C. lg10.1D. 10–10.1【答案】D【详解】两颗星的星等与亮度满足12125lg 2E m m E -= , 令2 1.45m =- ,126.7m =- ,()1212221g( 1.4526.7)10.155E m m E =-=-+=,10.110.112211010E EE E -=⋅= , 故选D.7.设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】C【详解】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AB -AC |⇔|AB +AC |2>|AB -AC |2AB ⇔•AC >0AB ⇔与AC的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件,故选C.8.数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C 2; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( ) A. ① B. ②C. ①②D. ①②③【答案】C详解】由221x y x y +=+得,221y x y x -=-,2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭, 所以x 可为的整数有0,-1,1,从而曲线22:1C x y x y +=+恰好经过(0,1),(0,-1),(1,0),(1,1), (-1,0),(-1,1)六个整点,结论①正确.由221x y x y +=+得,222212x y x y +++,解得222x y +≤,所以曲线C 上任意一点到原点的距离都不2结论②正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -,四边形ABCD 的面积13111122ABCD S =⨯⨯+⨯=,很明显“心形”区域的面积大于2ABCD S ,即“心形”区域的面积大于3,说法③错误.故选C.二、填空题共6小题,每小题5分,共30分。
全国大学生竞赛历年试题名师精讲(非数学类)(2009——2013)第五届全国大学生数学竞赛预赛试卷(非数学类)一、 解答下列各题(每小题6分共24分,要求写出重要步骤)1.求极限(lim 1sin nn →∞+.解因为()sin sin 2sinn π==……(2分);原式lim 1exp lim ln 1nn n n →∞→∞⎡⎤⎛⎫⎛⎫=+=+⎢⎥ ⎢⎥⎝⎝⎣⎦=2.证明广义积分0sin xdx x ⎰不是绝对收敛的解 记()1sin n n nx a dx xππ+=⎰,只要证明0n n a ∞=∑发散即可。
……………………(2分)因为()()()()10112sin sin 111n n n a x dx xdx n n n ππππππ+≥==+++⎰⎰。
…………(2分) 而()021n n π∞=+∑发散,故由比较判别法0n n a ∞=∑发散。
……………………………………(2分)3.设函数()y y x =由323322x x y y +-=确定,求()y x 的极值。
解 方程两边对x 求导,得22236360x xy x y y y ''++-= ………………(1分)故()2222x x y y y x+'=-,令0y '=,得()200x x y x +=⇒=或2x y =-………(2分) 将2x y =-代入所给方程得2,1x y =-=,将0x =代入所给方程得0,1x y ==-,…………………………………(2分)又()()()()()2222222222422x xy y y x x x y yy x y y x ''++--+-''=-()()()0,1,02,1,0200220010,1020x y y x y y y y ''====-==+---''''==-<=>-, 故()01y =-为极大值,()21y -=为极小值。