高考物理二轮复习专题二相互作用
- 格式:pptx
- 大小:4.62 MB
- 文档页数:12
(二轮复习 名师经验)03相互作用-2021高考备考绝密题型专项突破题集1.如图所示,在竖直放置的穹形光滑支架上(上部为半圆形, 左右竖直)一根不可伸长的轻绳通过光滑的轻质滑轮悬挂一重物G 。
现将轻绳的一端固定于支架上的A 点,另一端从B 点(B 点是穹形支架的最高点)沿支架缓慢地向C 点(C 点与A 点等高)靠近。
则绳中拉力大小变化的情况是( )A .先变小后变大B .先不变后变大C .先不变后变小D .先变大后不变【答案】:D【解析】:当轻绳的右端从 B 点缓慢移到直杆最上端时,设两绳的夹角为2θ。
以滑轮为研究对象,受力分析,根据平衡条件得2cos F mg θ=得到绳子的拉力2cos mgF θ=所以在轻绳的右端从 B 点移到直杆最上端的过程中, θ最大,cos θ减小,则 F 变大。
当轻绳的右端从直杆最上端移到 C 点时,设两绳的夹角为2α,绳子总长为 L ,两直杆间的距离为 s ,由数学知识得到sin sLα=L s 、不变,则 α保持不变。
再根据平衡条件可知,两绳的拉力 F 保持不变,所以绳中拉力大小变化的情况是先变大后不变,故选项D 正确;ABC 错误,故选D 。
原创精品资源学科网独家享有版权,侵权必究!22.一名同学把箱子从圆弧形的坡底缓慢地推到坡顶,该同学作用在箱子上的推力方向和箱子的运动方向始终相同.箱子可视为质点,且箱子和坡面之间的动摩擦因数不变,该同学在推动箱子的过程中,下列说法正确的是( )A .推力一直减小B .推力一直增大C .坡对箱子的作用力一直减小D .坡对箱子的作用力一直在增大【答案】:D【解析】:AB .对箱子受力分析,箱子受到重力、支持力、推力和摩擦力,如图所示,因为箱子移动缓慢,所以受力平衡,有sin cos F mg mg θμθ=+令tan =ϕμ根据数学知识可得()F θϕ=+当箱子向上移动时,箱子所处位置的切线方向与水平方向的夹角θ不断减小,当θ减小时,()sin θϕ+有可能不断减小,也有可能先增大后减小,故AB 错误;CD .坡对箱子的作用力'cos F mg ==箱子所处位置的切线方向与水平方向的夹角θ不断减小,当θ减小时,cos θ增大,故坡对箱子的作用力一直在增大,故D 正确,C 错误,故选D 。
备战2022届高考物理:相互作用二轮题附答案一、选择题。
1、物块m位于斜面上,受到平行于斜面的水平力F的作用处于静止状态.如图所示,若将外力F撤去,则()A.物块可能会沿斜面下滑B.物块受到的摩擦力变小C.物块受到的摩擦力大小不变D.物块对斜面的压力变小2、如图所示,倾角为30°的斜面固定在水平地面上,两根相同的光滑细钉(大小不计)垂直斜面对称固定在斜面底边中垂线OO′的两侧,相距l,将一遵循胡克定律、劲度系数为k的轻质弹性绳套套在两个细钉上时,弹性绳恰好处于自然伸长状态。
现将一物块通过光滑轻质挂钩挂在绳上并置于斜面上的A位置,物块在沿斜面向下的外力作用下才能缓慢沿OO′向下移动。
当物块运动至B位置时撤去外力,物块处于静止状态。
已知OB=l,轻绳始终与斜面平行,设最大静摩擦力等于滑动摩擦力,则下列说法中正确的是( )A.在移动物块的过程中,斜面对物块的支持力保持不变B.物块到达B位置时,弹性绳的张力大小为k lC.撤去外力后,物块在B位置受到的摩擦力可能大于D.物块从A位置到达B位置的过程中,物块与弹性绳系统机械能守恒*3、如图所示,一根绳子一端固定于竖直墙上的A点,另一端绕过动滑轮P悬挂一重物B,其中绳子的PA段处于水平状态,另一根绳子一端与动滑轮P的轴相连,在绕过光滑的定滑轮Q后在其端点O施加一水平向左的外力F,使整个系统处于平衡状态,滑轮均光滑、轻质,且均可看作质点,现拉动绳子的端点O使其向左缓慢移动一小段距离后达到新的平衡状态,则该平衡状态与原平衡状态相比较( )A.拉力F增大B.拉力F减小C.角θ不变D.角θ减小4、浙江乌镇一带的农民每到清明时节举办民俗活动,在一个巨型石臼上插入一根硕大的毛竹,表演者爬上竹梢表演各种惊险动作。
如图所示,下列说法正确的是()A.在任何位置表演者静止时只受重力和弹力作用B.在任何位置竹竿对表演者的作用力必定与竹竿垂直C.表演者静止时,竹竿对其作用力必定竖直向上D.表演者越靠近竹竿底部所受的摩擦力就越小5、如图所示,矩形物块A和楔形物块B、C叠放在水平地面上,B物块上表面水平.水平向左的力F作用在B物块上,整个系统处于静止状态,则以下说法正确的是()A.物块A的受力个数为4个B.物块B的受力个数为4个C.地面对物块C的支持力小于三者重力之和D.地面对物块C的摩擦力大小等于F,方向水平向右6、(双选)如图所示,甲、乙、丙三个物体质量相同,与地面间的动摩擦因数相同,受到三个大小相同的作用力F,当它们滑动时,下列说法正确的是()A.甲、乙、丙所受摩擦力相同B.甲受到的摩擦力最小C.乙受到的摩擦力最大D.丙受到的摩擦力最大7、重力为G的体操运动员在进行自由体操比赛时,有如图所示的比赛动作,当运动员竖直倒立保持静止状态时,两手臂对称支撑,夹角为θ,则()A.θ=60°时,运动员单手对地的正压力大小为G 2B.θ=120°时,运动员单手对地面的压力大小为GC.θ不同时,运动员受到的合力不同D.θ不同时,地面对运动员的合力不同8、(双选)如图所示(俯视图),水平地面上处于伸直状态的轻绳一端拴在质量为m的物块上,另一端拴在固定于B点的木桩上.用弹簧测力计的光滑挂钩缓慢拉绳,弹簧测力计始终与地面平行,物块在水平拉力作用下缓慢滑动,当物块滑动至A位置,∠AOB=120°时,弹簧测力计的示数为F,则()A.物块与地面间的动摩擦因数为F mgB.木桩受到绳的拉力始终大于FC.弹簧测力计的拉力保持不变D.弹簧测力计的拉力一直增大9、(多选)两个力F1和F2间的夹角为θ,两力的合力为F.以下说法正确的是() A.若F1和F2大小不变,θ角越小,合力F就越大B.合力F总比分力F1和F2中的任何一个力都大C.如果夹角θ不变,F1大小不变,只要F2增大,合力F就必然增大D.合力F的作用效果与两个分力F1和F2共同产生的作用效果是相同的10、(双选)宁波诺丁汉大学的四名学生设计的“户外水杯”获得了设计界“奥斯卡”之称的红点设计大奖.户外水杯的杯子下方有一个盛了塑料球的复合材料罩,球和杯底直接接触,这个塑料球和罩子的重量非常轻,几乎可以忽略不计,但是作用却很大,在不是水平的接触面上可以自动调整,使水杯处于水平状态,如图所示.设此水杯放置于某一倾角的斜面上,则以下说法正确的是()A.上部分的杯子受到两个力:重力、球施加的支持力B.整个户外杯子受到三个力:重力、摩擦力、支持力C.塑料球受到的合力不一定为零D.因为重力不计,所以塑料球只受弹力,不受摩擦力11、(双选)如图所示,将长为l的橡皮筋上端O固定在竖直放置的木板上,另一端M通过细线悬挂重物.某同学用水平力F在M处拉住橡皮筋,缓慢拉动M 至A点处,松开后,再次用水平力拉M,缓慢将橡皮筋也拉至OA直线上,此时M位于图中的B点处.则下列判断正确的是()A.当M被拉至A点处时,橡皮筋长度OA可能小于lB.当M被分别拉到A、B两点处时,橡皮筋的弹力F TA=F TBC.当M被分别拉到A、B两点处时,所用水平拉力F A<F BD.上述过程中此橡皮筋的弹力不遵循胡克定律12、假期里,一位同学在厨房里帮助妈妈做菜,对菜刀产生了兴趣.他发现菜刀的刀刃前部和后部的厚薄不一样,刀刃前部的顶角小,后部的顶角大,如图所示,他先后做出过几个猜想,其中合理的是()A.刀刃前部和后部厚薄不匀,仅是为了打造方便,外形美观,跟使用功能无关B.在刀背上加上同样的压力时,分开其他物体的力跟刀刃厚薄无关C.在刀背上加上同样的压力时,顶角越大,分开其他物体的力越大D.在刀背上加上同样的压力时,顶角越小,分开其他物体的力越大二、填空含实验题。
2021届高考物理二轮复习易错题型专项练习(2)相互作用一.选择题1.(2020•浙江模拟)木块甲、乙质量分别为5kg和6kg,它们与水平地面之间的动摩擦因数均为0.2,夹在甲、乙之间的轻弹簧被压缩了2cm,弹簧的劲度系数为400N/m。
系统置于水平地面上静止不动。
现用F =1N的水平拉力作用在木块乙上,如图所示。
力F作用后木块所受摩擦力情况是()A.木块甲所受摩擦力大小是10NB.木块甲所受摩擦力大小是0NC.木块乙所受摩擦力大小是9ND.木块乙所受摩擦力大小是7N【答案】C【解答】根据题意可知甲和水平面之间的最大静摩擦力的大小为:f1=μm甲g=0.2×5×9.8N=9.8N 乙和水平面之间的最大静摩擦力的大小为:f2=μm乙g=0.2×6×9.8N=11.76N根据胡克定律可知,弹簧的力大小为:F1=kx=400×2×10﹣2 N=8N当水平拉力作用于乙物体时,水平外力和弹簧对乙物体的作用力同向,因为F+F1<f2,所以乙物体静止不动,根据平衡条件可知乙物体受到的静摩擦力为:f乙=F+F1=9N对甲物体,因为F1<f1,所以甲物体也静止不动,甲物体受到静摩擦力大小为:f甲=F1=8N,故ABD错误,C正确。
2.(2020•浙江模拟)如图所示为一同学从t=0时刻起逐渐增加水平推力推动箱子过程中三个时刻(t1、t2、t3)的漫画图。
假设t1时刻同学对箱子的推力为5N,t2时刻推力为10N,t3时刻推力为15N,下列说法正确的是()A.箱子对地面的压力就是箱子的重力B.t1时刻,箱子所受地面的摩擦力大于5NC.t2时刻,箱子所受合外力与t1时刻相同D.箱子与地面的滑动摩擦力一定为15N【答案】C【解答】A、箱子对桌面的压力属于弹力,不是箱子的重力,两者本质不同,故A错误;B、t1时刻,箱子没有被推动,物体处于平衡状态,即摩擦力等于推力,大小为5N,故B错误;C、t2时刻,箱子推不动,是因为箱子受到地面对它的静摩擦力作用,且静摩擦力和推力是平衡力,静摩擦力的大小等于推力大小,由于推力的增大,则摩擦力也变大,但合力仍为零,与t1时刻相同,故C正确;D、t3时刻,箱子推动了,做加速运动,则箱子与地面间的最大静摩擦力小于15N,那么箱子与地面的滑动摩擦力也一定小于15N,故D错误。
动量和能量的综合应用[建体系·知关联][析考情·明策略]考情分析近几年高考对动量及动量守恒的考查多为简单的选择题形式;而动量和能量的综合性问题则以计算题形式命题,难度较大,常与曲线运动,带电粒子在电磁场中运动和导体棒切割磁感线相联系。
素养呈现1。
动量、冲量、动量定理2。
动量守恒的条件及动量守恒定律3.动力学、能量和动量守恒定律的应用素养落实1。
掌握与动量相关的概念及规律2.灵活应用解决碰撞类问题的方法3。
熟悉“三大观点”在力学中的应用技巧考点1| 动量定理和动量守恒定律冲量和动量定理(1)恒力的冲量可应用I=Ft直接求解,变力的冲量优先考虑应用动量定理求解,合外力的冲量可利用I=F合·t或I合=Δp求解。
(2)动量定理的表达式是矢量式,在一维情况下,各个矢量必须选取统一的正方向.[典例1](2020·武汉二中阶段测试)运动员在水上做飞行运动表演,如图所示,他操控喷射式悬浮飞行器将竖直送上来的水反转180°后向下喷出,令自己悬停在空中。
已知运动员与装备的总质量为90 kg,两个喷嘴的直径均为10 cm,重力加速度大小g=10 m/s2,水的密度ρ=1。
0×103kg/m3,则喷嘴处喷水的速度大约为( )A.2.7 m/s B.5.4 m/sC.7。
6 m/s D.10。
8 m/s[题眼点拨] ①“悬停在空中”表明水向上的冲击力等于运动员与装备的总重力。
②“水反转180°”水速度变化量大小为2v。
B [两个喷嘴的横截面积均为S=错误!πd2,根据平衡条件可知每个喷嘴对水的作用力为F=错误!mg,取质量为Δm=ρSvΔt的水为研究对象,根据动量定理得FΔt=2Δmv,解得v=错误!≈5。
4 m/s,选项B正确.]动量和动量守恒定律(1)判断动量是否守恒时,要注意所选取的系统,注意区别系统内力与外力。
系统不受外力或所受合外力为零时,系统动量守恒。
能量守恒定律综合计算专题复习1.如图,光滑水平面上静止一质量m1=1.0kg、长L=0.3m的木板,木板右端有质量m2=1.0kg的小滑块,在滑块正上方的O点用长r=0.4m的轻质细绳悬挂质量m=0.5kg的小球。
将小球向右上方拉至细绳与竖直方向成θ=60°的位置由静止释放,小球摆到最低点与滑块发生正碰并被反弹,碰撞时间极短,碰撞前后瞬间细绳对小球的拉力减小了4.8N,最终小滑块恰好不会从木板上滑下。
不计空气阻力,滑块、小球均可视为质点,重力加速度g取10m/s2。
求:(1)小球碰前瞬间的速度大小;(2)小球碰后瞬间的速度大小;(3)小滑块与木板之间的动摩擦因数。
2.如图所示,ABCD为固定在竖直平面内的轨道,其中ABC为光滑半圆形轨道,半径为R,CD为水平粗糙轨道,一质量为m的小滑块(可视为质点)从圆轨道中点B由静止释放,滑至D点恰好静止,CD 间距为4R。
已知重力加速度为g。
(1)求小滑块与水平面间的动摩擦因数(2)求小滑块到达C点时,小滑块对圆轨道压力的大小(3)现使小滑块在D点获得一初动能,使它向左运动冲上圆轨道,恰好能通过最高点A,求小滑块在D点获得的初动能3.如图甲,倾角α=37︒的光滑斜面有一轻质弹簧下端固定在O点,上端可自由伸长到A点。
在A点放一个物体,在力F的作用下向下缓慢压缩弹簧到B点(图中未画出),该过程中力F随压缩距离x的变化如图乙所示。
重力加速度g取10m/s2,sin37︒=0.6,cos37︒=0.8,求:(1)物体的质量m;(2)弹簧的最大弹性势能;(3)在B点撤去力F,物体被弹回到A点时的速度。
4.如图所示,长为L的轻质木板放在水平面上,左端用光滑的铰链固定,木板中央放着质量为m的小物块,物块与板间的动摩擦因数为μ.用力将木板右端抬起,直至物块刚好沿木板下滑.最大静摩擦力等于滑动摩擦力,重力加速度为g。
(1)若缓慢抬起木板,则木板与水平面间夹角θ的正切值为多大时物块开始下滑;(2)若将木板由静止开始迅速向上加速转动,短时间内角速度增大至ω后匀速转动,当木板转至与水平面间夹角为45°时,物块开始下滑,则ω应为多大;(3)在(2)的情况下,求木板转至45°的过程中拉力做的功W。
全册教案导学案说课稿试题高三物理二轮总复习全册教学案高三物理第二轮总复习目录第1专题力与运动 (1)第2专题动量和能量 (46)第3专题圆周运动、航天与星体问题 (76)第4专题带电粒子在电场和磁场中的运动 (94)第5专题电磁感应与电路的分析 (120)第6专题振动与波、光学、执掌、原子物理 (150)第7专题高考物理实验 (177)第8专题 (202)第9专题高中物理常见的物理模型 (221)第10专题计算题的答题规范与解析技巧 (240)第1专题 力与运动知识网络考点预测本专题复习三个模块的内容:运动的描述、受力分析与平衡、牛顿运动定律的运用.运动的描述与受力分析是两个相互独立的内容,它们通过牛顿运动定律才能连成一个有机的整体.虽然运动的描述、受力平衡在近几年都有独立的命题出现在高考中但由于理综考试题量的局限以及课改趋势,独立考查前两模块的命题在2013年高考中出现的概率很小,大部分高考卷中应该都会出现同时考查三个模块知识的试题,而且占不少分值.在综合复习这三个模块内容的时候,应该把握以下几点:1.运动的描述是物理学的重要基础,其理论体系为用数学函数或图象的方法来描述、推断质点的运动规律,公式和推论众多.其中,平抛运动、追及问题、实际运动的描述应为复习的重点和难点.2.无论是平衡问题,还是动力学问题,一般都需要进行受力分析,而正交分解法、隔离法与整体法相结合是最常用、最重要的思想方法,每年高考都会对其进行考查.3.牛顿运动定律的应用是高中物理的重要内容之一,与此有关的高考试题每年都有,题型有选择题、计算题等,趋向于运用牛顿运动定律解决生产、生活和科技中的实际问题.此外,它还经常与电场、磁场结合,构成难度较大的综合性试题.一、运动的描述 要点归纳(一)匀变速直线运动的几个重要推论和解题方法1.某段时间内的平均速度等于这段时间的中间时刻的瞬时速度,即v -t =v t 2. 2.在连续相等的时间间隔T 内的位移之差Δs 为恒量,且Δs =aT 2.3.在初速度为零的匀变速直线运动中,相等的时间T 内连续通过的位移之比为:s1∶s2∶s3∶…∶s n=1∶3∶5∶…∶(2n-1)通过连续相等的位移所用的时间之比为:t1∶t2∶t3∶…∶t n=1∶(2-1)∶(3-2)∶…∶(n-n-1).4.竖直上抛运动(1)对称性:上升阶段和下落阶段具有时间和速度等方面的对称性.(2)可逆性:上升过程做匀减速运动,可逆向看做初速度为零的匀加速运动来研究.(3)整体性:整个运动过程实质上是匀变速直线运动.5.解决匀变速直线运动问题的常用方法(1)公式法灵活运用匀变速直线运动的基本公式及一些有用的推导公式直接解决.(2)比例法在初速度为零的匀加速直线运动中,其速度、位移和时间都存在一定的比例关系,灵活利用这些关系可使解题过程简化.(3)逆向过程处理法逆向过程处理法是把运动过程的“末态”作为“初态”,将物体的运动过程倒过来进行研究的方法.(4)速度图象法速度图象法是力学中一种常见的重要方法,它能够将问题中的许多关系,特别是一些隐藏关系,在图象上明显地反映出来,从而得到正确、简捷的解题方法.(二)运动的合成与分解1.小船渡河设水流的速度为v1,船的航行速度为v2,河的宽度为d.(1)过河时间t仅由v2沿垂直于河岸方向的分量v⊥决定,即t=dv⊥,与v1无关,所以当v2垂直于河岸时,渡河所用的时间最短,最短时间t min=dv2.(2)渡河的路程由小船实际运动轨迹的方向决定.当v1<v2时,最短路程s min=d;当v1>v2时,最短路程s min=v1v2 d,如图1-1 所示.图1-12.轻绳、轻杆两末端速度的关系(1)分解法把绳子(包括连杆)两端的速度都沿绳子的方向和垂直于绳子的方向分解,沿绳子方向的分运动相等(垂直方向的分运动不相关),即v 1cos θ1=v 2cos_θ2.(2)功率法通过轻绳(轻杆)连接物体时,往往力拉轻绳(轻杆)做功的功率等于轻绳(轻杆)对物体做功的功率.3.平抛运动如图1-2所示,物体从O 处以水平初速度v 0抛出,经时间t 到达P 点.图1-2(1)加速度⎩⎪⎨⎪⎧ 水平方向:a x =0竖直方向:a y=g (2)速度⎩⎪⎨⎪⎧水平方向:v x =v 0竖直方向:v y =gt合速度的大小v =v 2x +v 2y =v 20+g 2t 2设合速度的方向与水平方向的夹角为θ,有:tan θ=v y v x =gt v 0,即θ=arctan gt v 0. (3)位移⎩⎪⎨⎪⎧ 水平方向:s x =v 0t 竖直方向:s y =12gt2 设合位移的大小s =s 2x +s 2y =(v 0t )2+(12gt 2)2 合位移的方向与水平方向的夹角为α,有: tan α=s y s x =12gt 2v 0t =gt 2v 0,即α=arctan gt 2v 0要注意合速度的方向与水平方向的夹角不是合位移的方向与水平方向的夹角的2倍,即θ≠2α,而是tan θ=2tan α.(4)时间:由s y =12gt 2得,t =2s y g,平抛物体在空中运动的时间t 只由物体抛出时离地的高度s y 决定,而与抛出时的初速度v 0无关.(5)速度变化:平抛运动是匀变速曲线运动,故在相等的时间内,速度的变化量(g =Δv Δt)相等,且必沿竖直方向,如图1-3所示.图1-3任意两时刻的速度与速度的变化量Δv 构成直角三角形,Δv 沿竖直方向.注意:平抛运动的速率随时间并不均匀变化,而速度随时间是均匀变化的.(6)带电粒子(只受电场力的作用)垂直进入匀强电场中的运动与平抛运动相似,出电场后做匀速直线运动,如图1-4所示.图1-4故有:y =(L ′+L 2)·tan α=(L ′+L 2)·qUL dm v 20. 热点、重点、难点(一)直线运动高考中对直线运动规律的考查一般以图象的应用或追及问题出现.这类题目侧重于考查学生应用数学知识处理物理问题的能力.对于追及问题,存在的困难在于选用哪些公式来列方程,作图求解,而熟记和运用好直线运动的重要推论往往是解决问题的捷径.●例1 如图1-5甲所示,A 、B 两辆汽车在笔直的公路上同向行驶.当B 车在A 车前s =84 m 处时,B 车的速度v B =4 m/s ,且正以a =2 m/s 2的加速度做匀加速运动;经过一段时间后,B 车的加速度突然变为零.A 车一直以v A =20 m/s 的速度做匀速运动,从最初相距84 m 时开始计时,经过t 0=12 s 后两车相遇.问B 车加速行驶的时间是多少?图1-5甲【解析】设B 车加速行驶的时间为t ,相遇时A 车的位移为:s A =v A t 0B 车加速阶段的位移为:s B 1=v B t +12at 2 匀速阶段的速度v =v B +at ,匀速阶段的位移为:s B 2=v (t 0-t )相遇时,依题意有:s A =s B 1+s B 2+s联立以上各式得:t 2-2t 0t -2[(v B -v A )t 0+s ]a =0 将题中数据v A =20 m/s ,v B =4 m/s ,a =2 m/s 2,t 0=12 s ,代入上式有:t 2-24t +108=解得:t 1=6 s ,t 2=18 s(不合题意,舍去)因此,B 车加速行驶的时间为6 s .[答案] 6 s【点评】①出现不符合实际的解(t 2=18 s)的原因是方程“s B 2=v (t 0-t )”并不完全描述B 车的位移,还需加一定义域t ≤12 s .②解析后可以作出v A -t 、v B -t 图象加以验证.图1-5乙根据v -t 图象与t 围成的面积等于位移可得,t =12 s 时,Δs =[12×(16+4)×6+4×6] m =84 m .(二)平抛运动平抛运动在高考试题中出现的几率相当高,或出现于力学综合题中,如2008年北京、山东理综卷第24题;或出现于带电粒子在匀强电场中的偏转一类问题中,如2008年宁夏理综卷第24题、天津理综卷第23题;或出现于此知识点的单独命题中,如2009年高考福建理综卷第20题、广东物理卷第17(1)题、2008年全国理综卷Ⅰ第14题.对于这一知识点的复习,除了要熟记两垂直方向上的分速度、分位移公式外,还要特别理解和运用好速度偏转角公式、位移偏转角公式以及两偏转角的关系式(即tan θ=2tan α).●例2 图1-6甲所示,m 为在水平传送带上被传送的小物体(可视为质点),A 为终端皮带轮.已知皮带轮的半径为r ,传送带与皮带轮间不会打滑.当m 可被水平抛出时,A 轮每秒的转数最少为( )图1-6甲A .12πg rB .g rC .grD .12πgr 【解析】解法一 m 到达皮带轮的顶端时,若m v 2r≥mg ,表示m 受到的重力小于(或等于)m 沿皮带轮表面做圆周运动的向心力,m 将离开皮带轮的外表面而做平抛运动又因为转数n =ω2π=v 2πr所以当v ≥gr ,即转数n ≥12πg r时,m 可被水平抛出,故选项A 正确. 解法二 建立如图1-6乙所示的直角坐标系.当m 到达皮带轮的顶端有一速度时,若没有皮带轮在下面,m 将做平抛运动,根据速度的大小可以作出平抛运动的轨迹.若轨迹在皮带轮的下方,说明m 将被皮带轮挡住,先沿皮带轮下滑;若轨迹在皮带轮的上方,说明m 立即离开皮带轮做平抛运动.图1-6乙又因为皮带轮圆弧在坐标系中的函数为:当y 2+x 2=r 2初速度为v 的平抛运动在坐标系中的函数为:y =r -12g (x v )2 平抛运动的轨迹在皮带轮上方的条件为:当x >0时,平抛运动的轨迹上各点与O 点间的距离大于r ,即y 2+x 2>r 即[r -12g (x v )2]2+x 2>r 解得:v ≥gr又因皮带轮的转速n 与v 的关系为:n =v 2πr 可得:当n ≥12πg r时,m 可被水平抛出. [答案] A【点评】“解法一”应用动力学的方法分析求解;“解法二”应用运动学的方法(数学方法)求解,由于加速度的定义式为a =Δv Δt ,而决定式为a =F m,故这两种方法殊途同归. ★同类拓展1 高台滑雪以其惊险刺激而闻名,运动员在空中的飞跃姿势具有很强的观赏性.某滑雪轨道的完整结构可以简化成如图1-7所示的示意图.其中AB 段是助滑雪道,倾角α=30°,BC 段是水平起跳台,CD 段是着陆雪道,AB 段与BC 段圆滑相连,DE 段是一小段圆弧(其长度可忽略),在D 、E 两点分别与CD 、EF 相切,EF 是减速雪道,倾角θ=37°.轨道各部分与滑雪板间的动摩擦因数均为μ=0.25,图中轨道最高点A 处的起滑台距起跳台BC 的竖直高度h =10 m .A 点与C 点的水平距离L 1=20 m ,C 点与D 点的距离为32.625 m .运动员连同滑雪板的总质量m =60 kg .滑雪运动员从A 点由静止开始起滑,通过起跳台从C 点水平飞出,在落到着陆雪道上时,运动员靠改变姿势进行缓冲使自己只保留沿着陆雪道的分速度而不弹起.除缓冲外运动员均可视为质点,设运动员在全过程中不使用雪杖助滑,忽略空气阻力的影响,取重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:图1-7(1)运动员在C 点水平飞出时的速度大小.(2)运动员在着陆雪道CD 上的着陆位置与C 点的距离. (3)运动员滑过D 点时的速度大小.【解析】(1)滑雪运动员从A 到C 的过程中,由动能定理得:mgh -μmg cos αhsin α-μmg (L 1-h cot α)=12m v 2C解得:v C =10 m/s .(2)滑雪运动员从C 点水平飞出到落到着陆雪道的过程中做平抛运动,有: x =v C t y =12gt 2 yx=tan θ 着陆位置与C 点的距离s =x cos θ解得:s =18.75 m ,t =1.5 s .(3)着陆位置到D 点的距离s ′=13.875 m ,滑雪运动员在着陆雪道上做匀加速直线运动.把平抛运动沿雪道和垂直雪道分解,可得着落后的初速度v 0=v C cos θ+gt sin θ加速度为:mg sin θ-μmg cos θ=ma运动到D 点的速度为:v 2D =v 20+2as ′ 解得:v D =20 m/s .[答案] (1)10 m/s (2)18.75 m (3)20 m/s 互动辨析 在斜面上的平抛问题较为常见,“位移与水平面的夹角等于倾角”为着落条件.同学们还要能总结出距斜面最远的时刻以及这一距离.二、受力分析要点归纳(一)常见的五种性质的力(二)力的运算、物体的平衡1.力的合成与分解遵循力的平行四边形定则(或力的三角形定则).2.平衡状态是指物体处于匀速直线运动或静止状态,物体处于平衡状态的动力学条件是:F合=0或F x=0、F y=0、F z=0.注意:静止状态是指速度和加速度都为零的状态,如做竖直上抛运动的物体到达最高点时速度为零,但加速度等于重力加速度,不为零,因此不是平衡状态.3.平衡条件的推论(1)物体处于平衡状态时,它所受的任何一个力与它所受的其余力的合力等大、反向.(2)物体在同一平面上的三个不平行的力的作用下处于平衡状态时,这三个力必为共点力.物体在三个共点力的作用下而处于平衡状态时,表示这三个力的有向线段组成一封闭的矢量三角形,如图1-8所示.图1-84.共点力作用下物体的平衡分析热点、重点、难点(一)正交分解法、平行四边形法则的应用1.正交分解法是分析平衡状态物体受力时最常用、最主要的方法.即当F合=0时有:F x合=0,F y合=0,F z合=0.2.平行四边形法有时可巧妙用于定性分析物体受力的变化或确定相关几个力之比.●例3举重运动员在抓举比赛中为了减小杠铃上升的高度和发力,抓杠铃的两手间要有较大的距离.某运动员成功抓举杠铃时,测得两手臂间的夹角为120°,运动员的质量为75 kg,举起的杠铃的质量为125 kg,如图1-9甲所示.求该运动员每只手臂对杠铃的作用力的大小.(取g=10 m/s2)图1-9甲【分析】由手臂的肌肉、骨骼构造以及平时的用力习惯可知,伸直的手臂主要沿手臂方向发力.取手腕、手掌为研究对象,握杠的手掌对杠有竖直向上的弹力和沿杠向外的静摩擦力,其合力沿手臂方向,如图1-9乙所示.图1-9乙【解析】手臂对杠铃的作用力的方向沿手臂的方向,设该作用力的大小为F,则杠铃的受力情况如图1-9丙所示图1-9丙由平衡条件得:2F cos 60°=mg解得:F=1250 N.[答案] 1250 N●例4两个可视为质点的小球a和b,用质量可忽略的刚性细杆相连放置在一个光滑的半球面内,如图1-10甲所示.已知小球a和b的质量之比为3,细杆长度是球面半径的 2 倍.两球处于平衡状态时,细杆与水平面的夹角θ是[2008年高考·四川延考区理综卷]()图1-10甲A.45°B.30°C.22.5°D.15°【解析】解法一设细杆对两球的弹力大小为T,小球a、b的受力情况如图1-10乙所示图1-10乙其中球面对两球的弹力方向指向圆心,即有: cos α=22R R =22解得:α=45°故F N a 的方向为向上偏右,即β1=π2-45°-θ=45°-θF N b 的方向为向上偏左,即β2=π2-(45°-θ)=45°+θ两球都受到重力、细杆的弹力和球面的弹力的作用,过O 作竖直线交ab 于c 点,设球面的半径为R ,由几何关系可得:m a g Oc =F N aR m b g Oc =F N bR解得:F N a =3F N b取a 、b 及细杆组成的整体为研究对象,由平衡条件得: F N a ·sin β1=F N b ·sin β2 即 3F N b ·sin(45°-θ)=F N b ·sin(45°+θ) 解得:θ=15°.解法二 由几何关系及细杆的长度知,平衡时有: sin ∠Oab =22R R =22故∠Oab =∠Oba =45°再设两小球及细杆组成的整体重心位于c 点,由悬挂法的原理知c 点位于O 点的正下方,且ac bc =m am b= 3即R ·sin(45°-θ)∶R ·sin(45°+θ)=1∶ 3解得:θ=15°. [答案] D【点评】①利用平行四边形(三角形)定则分析物体的受力情况在各类教辅中较常见.掌握好这种方法的关键在于深刻地理解好“在力的图示中,有向线段替代了力的矢量”.②在理论上,本题也可用隔离法分析小球a 、b 的受力情况,根据正交分解法分别列平衡方程进行求解,但是求解三角函数方程组时难度很大.③解法二较简便,但确定重心的公式ac bc =m am b=3超纲.(二)带电粒子在复合场中的平衡问题 在高考试题中,也常出现带电粒子在复合场中受力平衡的物理情境,出现概率较大的是在正交的电场和磁场中的平衡问题及在电场和重力场中的平衡问题.在如图1-11所示的速度选择器中,选择的速度v =EB ;在如图1-12所示的电磁流量计中,流速v =u Bd ,流量Q =πdu 4B.图1-11 图1-12●例5 在地面附近的空间中有水平方向的匀强电场和匀强磁场,已知磁场的方向垂直纸面向里,一个带电油滴沿着一条与竖直方向成α角的直线MN 运动,如图1-13所示.由此可判断下列说法正确的是( )图1-13A .如果油滴带正电,则油滴从M 点运动到N 点B .如果油滴带正电,则油滴从N 点运动到M 点C .如果电场方向水平向右,则油滴从N 点运动到M 点D .如果电场方向水平向左,则油滴从N 点运动到M 点【解析】油滴在运动过程中受到重力、电场力及洛伦兹力的作用,因洛伦兹力的方向始终与速度方向垂直,大小随速度的改变而改变,而电场力与重力的合力是恒力,所以物体做匀速直线运动;又因电场力一定在水平方向上,故洛伦兹力的方向是斜向上方的,因而当油滴带正电时,应该由M 点向N 点运动,故选项A 正确、B 错误.若电场方向水平向右,则油滴需带负电,此时斜向右上方与MN 垂直的洛伦兹力对应粒子从N 点运动到M 点,即选项C 正确.同理,电场方向水平向左时,油滴需带正电,油滴是从M 点运动到N 点的,故选项D 错误.[答案] AC 【点评】对于带电粒子在复合场中做直线运动的问题要注意受力分析.因为洛伦兹力的方向与速度的方向垂直,而且与磁场的方向、带电粒子的电性都有关,分析时更要注意.本题中重力和电场力均为恒力,要保证油滴做直线运动,两力的合力必须与洛伦兹力平衡,粒子的运动就只能是匀速直线运动.★同类拓展2 如图1-14甲所示,悬挂在O 点的一根不可伸长的绝缘细线下端挂有一个带电荷量不变的小球A .在两次实验中,均缓慢移动另一带同种电荷的小球B .当B 到达悬点O 的正下方并与A 在同一水平线上,A 处于受力平衡时,悬线偏离竖直方向的角度为θ.若两次实验中B 的电荷量分别为q 1和q 2,θ分别为30°和45°,则q 2q 1为 [2007年高考·重庆理综卷]( )图1-14甲A.2B.3C.23D.3 3【解析】对A球进行受力分析,如图1-14 乙所示,图1-14乙由于绳子的拉力和点电荷间的斥力的合力与A球的重力平衡,故有:F电=mg tan θ,又F电=k qQ Ar2.设绳子的长度为L,则A、B两球之间的距离r=L sin θ,联立可得:q=mL2g tan θsin2θkQ A,由此可见,q与tan θsin 2θ成正比,即q2q1=tan 45°sin245°tan 30°sin230°=23,故选项C正确.[答案] C互动辨析本题为带电体在重力场和电场中的平衡问题,解题的关键在于:先根据小球的受力情况画出平衡状态下的受力分析示意图;然后根据平衡条件和几何关系列式,得出电荷量的通解表达式,进而分析求解.本题体现了新课标在知识考查中重视方法渗透的思想.三、牛顿运动定律的应用要点归纳(一)深刻理解牛顿第一、第三定律1.牛顿第一定律(惯性定律)一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止.(1)理解要点①运动是物体的一种属性,物体的运动不需要力来维持.②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因.③牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例.牛顿第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系.(2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性.①惯性是物体的固有属性,与物体的受力情况及运动状态无关.②质量是物体惯性大小的量度.2.牛顿第三定律(1)两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条直线上,可用公式表示为F=-F′.(2)作用力与反作用力一定是同种性质的力,作用效果不能抵消.(3)牛顿第三定律的应用非常广泛,凡是涉及两个或两个以上物体的物理情境、过程的解答,往往都需要应用这一定律.(二)牛顿第二定律1.定律内容物体的加速度a跟物体所受的合外力F合成正比,跟物体的质量m成反比.2.公式:F合=ma理解要点①因果性:F合是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消失.②方向性:a与F合都是矢量,方向严格相同.③瞬时性和对应性:a为某时刻某物体的加速度,F合是该时刻作用在该物体上的合外力.3.应用牛顿第二定律解题的一般步骤:(1)确定研究对象;(2)分析研究对象的受力情况,画出受力分析图并找出加速度的方向;(3)建立直角坐标系,使尽可能多的力或加速度落在坐标轴上,并将其余的力或加速度分解到两坐标轴上;(4)分别沿x轴方向和y轴方向应用牛顿第二定律列出方程;(5)统一单位,计算数值.热点、重点、难点一、正交分解法在动力学问题中的应用当物体受到多个方向的外力作用产生加速度时,常要用到正交分解法.1.在适当的方向建立直角坐标系,使需要分解的矢量尽可能少.2.F x合=ma x合,F y合=ma y合,F z合=ma z合.3.正交分解法对本章各类问题,甚至对整个高中物理来说都是一重要的思想方法.●例6如图1-15甲所示,在风洞实验室里,一根足够长的细杆与水平面成θ=37°固定,质量m=1 kg的小球穿在细杆上静止于细杆底端O点.现有水平向右的风力F作用于小球上,经时间t 1=2 s 后停止,小球沿细杆运动的部分v -t 图象如图1-15乙所示.试求:(取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)图1-15(1)小球在0~2 s 内的加速度a 1和2~4 s 内的加速度a 2.(2)风对小球的作用力F 的大小.【解析】(1)由图象可知,在0~2 s 内小球的加速度为:a 1=v 2-v 1t 1=20 m/s 2,方向沿杆向上 在2~4 s 内小球的加速度为:a 2=v 3-v 2t 2=-10 m/s 2,负号表示方向沿杆向下. (2)有风力时的上升过程,小球的受力情况如图1-15丙所示图1-15丙在y 方向,由平衡条件得:F N1=F sin θ+mg cos θ在x 方向,由牛顿第二定律得:F cos θ-mg sin θ-μF N1=ma1停风后上升阶段,小球的受力情况如图1-15丁所示图1-15丁在y方向,由平衡条件得:F N2=mg cos θ在x方向,由牛顿第二定律得:-mg sin θ-μF N2=ma2联立以上各式可得:F=60 N.【点评】①斜面(或类斜面)问题是高中最常出现的物理模型.②正交分解法是求解高中物理题最重要的思想方法之一.二、连接体问题(整体法与隔离法)高考卷中常出现涉及两个研究对象的动力学问题,其中又包含两种情况:一是两对象的速度相同需分析它们之间的相互作用,二是两对象的加速度不同需分析各自的运动或受力.隔离(或与整体法相结合)的思想方法是处理这类问题的重要手段.1.整体法是指当连接体内(即系统内)各物体具有相同的加速度时,可以把连接体内所有物体组成的系统作为整体考虑,分析其受力情况,运用牛顿第二定律对整体列方程求解的方法.2.隔离法是指当研究对象涉及由多个物体组成的系统时,若要求连接体内物体间的相互作用力,则应把某个物体或某几个物体从系统中隔离出来,分析其受力情况及运动情况,再利用牛顿第二定律对隔离出来的物体列式求解的方法.3.当连接体中各物体运动的加速度相同或要求合外力时,优先考虑整体法;当连接体中各物体运动的加速度不相同或要求物体间的作用力时,优先考虑隔离法.有时一个问题要两种方法结合起来使用才能解决.●例7如图1-16所示,在光滑的水平地面上有两个质量相等的物体,中间用劲度系数为k的轻质弹簧相连,在外力F1、F2的作用下运动.已知F1>F2,当运动达到稳定时,弹簧的伸长量为()图1-16A .F 1-F 2kB .F 1-F 22kC .F 1+F 22kD .F 1+F 2k【解析】取A 、B 及弹簧整体为研究对象,由牛顿第二定律得:F 1-F 2=2ma取B 为研究对象:kx -F 2=ma(或取A 为研究对象:F 1-kx =ma )可解得:x =F 1+F 22k. [答案] C【点评】①解析中的三个方程任取两个求解都可以.②当地面粗糙时,只要两物体与地面的动摩擦因数相同,则A 、B 之间的拉力与地面光滑时相同.★同类拓展3 如图1-17所示,质量为m 的小物块A 放在质量为M 的木板B 的左端,B 在水平拉力的作用下沿水平地面匀速向右滑动,且A 、B 相对静止.某时刻撤去水平拉力,经过一段时间,B 在地面上滑行了一段距离x ,A 在B 上相对于B 向右滑行了一段距离L (设木板B 足够长)后A 和B 都停了下来.已知A 、B 间的动摩擦因数为μ1,B 与地面间的动摩擦因数为μ2,且μ2>μ1,则x 的表达式应为( )图1-17A .x =M m LB .x =(M +m )L mC .x =μ1ML (μ2-μ1)(m +M )D .x =μ1ML (μ2+μ1)(m +M ) 【解析】设A 、B 相对静止一起向右匀速运动时的速度为v ,撤去外力后至停止的过程中,A 受到的滑动摩擦力为:f 1=μ1mg其加速度大小a 1=f 1m=μ1g B 做减速运动的加速度大小a 2=μ2(m +M )g -μ1mg M由于μ2>μ1,所以a 2>μ2g >μ1g =a 1即木板B 先停止后,A 在木板上继续做匀减速运动,且其加速度大小不变对A 应用动能定理得:-f 1(L +x )=0-12m v 2 对B 应用动能定理得:μ1mgx -μ2(m +M )gx =0-12M v 2 解得:x =μ1ML (μ2-μ1)(m +M ). [答案] C【点评】①虽然使A 产生加速度的力由B 施加,但产生的加速度a 1=μ1g 是取大地为参照系的.加速度是相对速度而言的,所以加速度一定和速度取相同的参照系,与施力物体的速度无关.②动能定理可由牛顿第二定律推导,特别对于匀变速直线运动,两表达式很容易相互转换.三、临界问题●例8 如图1-18甲所示,滑块A 置于光滑的水平面上,一细线的一端固定于倾角为45°、质量为M 的光滑楔形滑块A 的顶端P 处,细线另一端拴一质量为m 的小球B .现对滑。
2019届高考物理二轮复习第二章相互作用牛顿动动定律提能增分练(二)动力学四大模型之二——斜面1.如图所示,斜面小车M静止在光滑水平面上,一边紧贴墙壁。
若再在斜面上加一物体m,且M、m相对静止,此时小车受力个数为( )A.3 B.4 C.5 D.6解析:选B 先对物体m受力分析,受到重力、支持力和静摩擦力;再对M受力分析,受重力、m对它的垂直斜面向下的压力和沿斜面向下的静摩擦力,同时地面对M有向上的支持力,共受到4个力。
故B正确。
2.如图所示,质量为m带+q电荷量的滑块,沿绝缘斜面匀速下滑,当滑块滑至竖直向下的匀强电场区域时,滑块运动的状态为( )A.继续匀速下滑 B.将加速下滑C.将减速下滑 D.以上三种情况都可能发生解析:选A 滑块在电场中受力方向沿着电场线方向,即竖直向下,相当于滑块的重力变大了,因为滑块开始是匀速下滑的,则摩擦力大小等于滑块重力沿着斜面向下的分力的大小。
故滑块在斜面方向上的合力为零不改变,所以滑块继续匀速下滑。
只有A正确。
3.物块静止在固定的斜面上,分别按图示的方向对物块施加大小相等的力F,A中F 垂直于斜面向上,B中F垂直于斜面向下,C中F竖直向上,D中F竖直向下,施力后物块仍然静止,则物块所受的静摩擦力增大的是( )解析:选D 物块受重力、支持力及摩擦力处于平衡,A中当加上F后,物块仍处于平衡,则在沿斜面方向上物块平衡状态不同,而重力沿斜面向下的分力不变,故摩擦力不变;故A错误;同理B中摩擦力也不变,故B错误;C中加竖直向上的F后,F有沿斜面向上的分力,若物块有沿斜面向下的运动趋势,此时沿斜面向下的重力的分力与沿斜面向上的F 的分力及摩擦力平衡,故摩擦力将变小,故C错误;同理D中加竖直向下的力F后,F有沿斜面向下的分力,则沿斜面向下的力增大,故增大了摩擦力;故D正确。
4.(2017·四川双流中学模拟)如图,静止在水平面上的斜面体质量为M,一质量为m的物块恰能沿斜面匀速下滑,现对物块施加水平向右的拉力F,物块m仍能沿斜面运动。
专题二 功与能 (2)——2023届高考物理大单元二轮复习练重点【新课标全国卷】1.如图所示,在水平向右的匀强电场中,质量为m 的带电小球,以初速度v 从M 点竖直向上运动,通过N 点时,速度大小为2v ,方向与电场方向相反,则小球从M 运动到N 的过程( )A.动能增加212mv B.机械能增加22mv C.重力势能增加232mv D.电势能增加22mv 2.如图所示在足够长的光滑水平面上有一静止的质量为M 的斜面,斜面表面光滑、高度为h 、倾角为θ。
一质量为()m m M 的小物块以一定的初速度0v 沿水平面向右运动,不计冲上斜面过程中的机械能损失。
如果斜面固定,则小物块恰能冲到斜面的顶端。
如果斜面不固定,则小物块冲上斜面后能达到的最大高度为( )A.hB.mh m M +C.mh MD.Mh m M+ 3.如图甲所示,水平地面上竖直固定一半径为0.5 m 的半圆形轨道,A 为最低点,B 为轨道中点,C 为最高点。
现有一质量为1 kg 的小球从A 点以一定速度进入半圆轨道,恰好能到达最高点C 。
测得小球在轨道上速度的平方与其高度的关系如图乙所示。
已知轨道粗糙程度处处相同,空气阻力不计,重力加速度g 取210m/s 。
则( )A.图乙中25x =B.小球在A 点时对轨道的压力大小为10 NC.小球从A 到C ,合力做的功为15.5 JD.小球从B 到C ,损失的机械能小于2.75 J 4.如图所示,水平传送带以恒定的速率顺时针转动,传送带右端上方的挡板上固定着一轻弹簧。
将小物块P 轻放在传送带左端,P 在接触弹簧前速度已达到v ,与弹簧接触后弹簧的最大形变量为d 。
P 的质量为m ,与传送带之间的动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力,重力加速度为g 。
从P 开始接触弹簧到弹簧第一次达到最大形变量的过程中( )A.P 的速度一直减小B.传送带对P 做功的功率一直减小C.传送带对P 做的功小于mgd μD.弹簧的弹性势能变化量为212mv mgd μ+ 5.如图所示,劲度系数为k 的轻弹簧下端悬挂一质量为M 的圆盘,圆盘处于静止状态。
相互作用【原卷】1.(2021·广东佛山市·佛山一中高一月考)如图甲、乙所示,倾角为θ的固定斜面上分别有一个滑块M,图甲中滑块上表面水平,图乙中滑块的上表面平行斜面,在滑块M上分别有一个质量为m的物块,现在M和m相对静止,一起沿斜面匀速下滑,下列说法正确的是()A.图甲中物块m受3个力B.图甲中滑块M受5个力C.图甲中物块m受4个力D.图乙中滑块M受5个力2.(2021·广东佛山市·佛山一中高一月考)如图甲所示,轻杆OB可绕B点自由转动,另一端O点用细绳拉住,固定在左侧墙壁上,质量为m的重物用细绳OC悬挂在轻杆的O点,OA与轻杆的夹角∠BOA=30°。
乙图中水平轻杆OB 一端固定在竖直墙壁上,另一端O装有小滑轮,用一根绳跨过滑轮后悬挂一质量为m的重物,图中∠BOA=30°,以下说法正确的是()A.甲图中绳对杆的压力不沿杆B.乙图中滑轮对绳的支持力与水平方向呈30°角指向右上方C.两图中绳所受的支持力与绳AO段的拉力,这两个力的合力方向一定不同D.甲图中绳AO段与绳OC段上的拉力大小相等3.(2021·江阴市华士高级中学高一期末)如图所示,质量为1kg的物体与地面间的动摩擦因数μ=0.2,从t=0开始以初速度v0沿水平地面向右滑行,同时受到一个水平向左的恒力F=1N的作用,取g=10m/s2,向右为正方向,该物体受到的摩擦力F f随时间变化的图像是(设最大静摩擦力等于滑动摩擦力)()A.B.C.D.4.(2021·湖南株洲市·高三期末)如图为汽车内常备的两种类型的“千斤顶”:甲是“菱”形,乙是“y”形,摇动手柄,使螺旋杆转动,A、B间距离发生改变,从而实现重物的升降。
若物重均为G,螺旋杆保持水平,AB与BC之间的夹角都为 ,不计杆件自重,则甲乙两千斤顶螺旋杆的拉力大小之比为( )A .1:1B .1:2C .2:1D .2:35.(2021·吉林吉林市·高一期末)如图历示,轻质三角支架的水平杆末端放着一盆花,斜杆与竖直墙面的夹角为θ,若花盆(看成质点)的质量为m ,重力加速度大小为g ,水平横杆和斜杆中的弹力方向均沿杆方向,大小分别为F 1和F 2,下列判断正确的是( )A .1sin F mg θ=B .2sin mg F θ=C .2cos F mg θ=D .2cos mg F θ= 6.(2021·吉林吉林市·高一期末)用如图所示的工程机械装置移动重物,其中轻杆的A 端用铰链固定,滑轮在轻杆A 端的正上方(滑轮大小及摩擦均可不计),轻杆的B 端吊一重物,将轻绳的一端拴在轻杆的B 端,用拉力F 将B端缓慢放下,直到轻杆AB达到水平,下列说法正确的是()A.F不变B.F增大C.轻杆AB受力增大D.轻杆AB受力减小7.(2021·安徽师范大学附属中学高一月考)如图所示,一个“Y”形弹弓顶部跨度为L,两根相同的橡皮条自由长度均为L,在两橡皮条的末端用一块软羊皮(长度不计)做成裹片。
第一部分 专题二 第2讲基础题——知识基础打牢1. (多选)(2022·广东汕头二模)科学家常在云室中加入铅板以降低运动粒子的速度.图示为物理学家安德森拍下的正电子在云室中运动的径迹,已知图示云室加垂直纸面方向的匀强磁场,由图可以判定( BC )A .匀强磁场方向向外B .正电子由上而下穿过铅板C .正电子在铅板上、下磁场中运动角速度相同D .正电子在铅板上、下磁场运动中动量大小相等【解析】 正电子在匀强磁场中,洛伦兹力提供向心力,则有qvB =m v 2r 解得r =mv qB,由于正电子经过铅板后速度会减小,可知正电子经过铅板后的轨迹半径减小,从图中可以看出正电子在铅板上方轨迹半径比下方轨迹半径大,故正电子由上而下穿过铅板,由左手定则判断匀强磁场方向向里,A 错误,B 正确;正电子经过铅板后速度会减小,则正电子经过铅板后动量减小,正电子在铅板上、下磁场运动中动量大小不相等,D 错误;正电子在磁场中做圆周运动的角速度为ω=v r =qBm可知正电子在铅板上、下磁场中运动角速度相同,C 正确.故选BC.2. (多选)(2022·重庆八中模拟)2022北京冬奥会期间,校园陆地冰壶也在积极的参与中.如图所示,某次投掷时,冰壶A 以速度v =3 m/s 与冰壶B 发生正碰,碰撞前后的速度均在同一直线上,若A 、B 的质量均为1 kg ,则下列说法正确的是( CD )A .碰撞后A 的速度可能为2 m/sB .碰撞后B 的速度可能为1 m/sC .碰撞后A 不可能反向运动D .碰撞后B 的速度可能为2.5 m/s【解析】 设A 、B 的质量为m ,若发生弹性碰撞,根据动量守恒得mv =mv A +mv B ,根据机械能守恒得12mv 2=12mv 2A +12mv 2B ,解得A 、B 的速度分别为v A =0,v B =v =3 m/s ,若发生完全非弹性碰撞,则mv =(m +m )v 共,解得A 、B 的共同速度为v 共=1.5 m/s ,所以碰撞后A 、B 球的速度范围分别为0~1.5 m/s,1.5 m/s ~3 m/s ,故选CD.3. (2022·广东汕头二模)汕头市属于台风频发地区,图示为风级(0~12)风速对照表.假设不同风级的风迎面垂直吹向某一广告牌,且吹到广告牌后速度立刻减小为零,则“12级”风对广告牌的最大作用力约为“4级”风对广告牌最小作用力的( A )C .27倍D .9倍【解析】 设空气的密度为ρ,广告牌的横截面积为S ,经过Δt 时间撞击在广告牌上的空气质量为Δm =ρΔV =ρSv Δt ,根据动量定理可得F Δt =Δmv ,解得F =ρSv 2,根据牛顿第三定律可知,风对广告牌作用力为F ′=F =ρSv 2∝v 2,则“12级”风对广告牌的最大作用力与“4级”风对广告牌最小作用力的比值为F 12′F 4′=36.925.52≈45,故选A.4. (2022·江苏连云港模拟)离子发动机是利用电场加速离子形成高速离子流而产生推力的航天发动机,这种发动机适用于航天器的姿态控制、位置保持等.某航天器质量M ,单个离子质量m ,带电量q ,加速电场的电压为U ,高速离子形成的等效电流强度为I ,根据以上信息计算该航天器发动机产生的推力为( B )A .I mU qB .I 2mUqC .I3mUqD .I5mUq【解析】 对离子,根据动能定理有qU =12mv 2,解得v =2qUm,根据电流的定义式则有I =Q Δt =Nq Δt ,对离子,根据动量定理有F ·Δt =Nmv ,解得F =Nmv Δt =mvIq=I 2Um q,根据牛顿第三定律,推进器获得的推力大小为F ′=I2Umq,故B 正确,A 、C 、D 错误.5. (多选)(2022·湖南长郡中学月考)如图所示,质量为m 的半圆轨道小车静止在光滑的水平地面上,其水平直径AB 长度为2R ,现将质量也为m 的小球从距A 点正上方h 0高处由静止释放,然后由A 点经过半圆轨道后从B 冲出,在空中能上升的最大高度为h 02(不计空气阻力).则下列说法错误的是( ACD )A .小球和小车组成的系统动量守恒B .小车向左运动的最大距离为RC .小球从B 点离开小车不会再落回轨道内D .小球从B 点离开小车后又会从B 点落回轨道,再次恰好到达A 点时速度为零不会从A 点冲出【解析】 小球与小车组成的系统在水平方向不受外力,所以只是系统水平方向动量守恒,故A 错误;系统水平方向动量守恒,以向右为正方向,在水平方向,由动量守恒定律得:mv -mv ′=0,m2R -x t =m xt解得x =R ,故B 正确;由于小球第二次在车中滚动时,对应位置的速度减小,因此小车给小球的弹力变小,摩擦力变小,克服摩擦力做的功小于12mgh 0,因此小球一定能从A 点冲出,故D 错误;小球与小车组成的系统水平方向上动量守恒,则知小球由B 点离开小车时水平方向动量为零,小球与小车水平方向速度均为零,小球离开小车后竖直上抛运动,最后又从B 点落回,故C 错误.故选ACD.6. (多选)(2022·湖南长沙二模)如图所示一平板车A 质量为2m ,静止于光滑水平面上,其右端与竖直固定挡板相距为L .小物块B 的质量为m ,以大小为v 0的初速度从平板车左端开始向右滑行,一段时间后车与挡板发生碰撞,已知车碰撞挡板时间极短,碰撞前后瞬间的速度大小不变但方向相反.A 、B 之间的动摩擦因数为μ,平板车A 表面足够长,物块B 总不能到平板车的右端,重力加速度大小为g .L 为何值,车与挡板能发生3次及以上的碰撞( CD )A .L =v20μgB .L =v2032μgC .L =v2065μgD .L =v2096μg【解析】 在车与挡板碰撞前,有mv 0=2mv A +mv B ,如果L 为某个值L 1,使A 与挡板能发生二次碰撞,从A 开始运动到与挡板第一次碰撞前瞬间,对A 由动能定理可得μmgL 1=12·2mv 2A ,设A 第二次与挡板碰撞前瞬间A 、B 的速度大小分别为v A ′、v B ′,从A 与挡板第一次碰撞后瞬间到第二次碰撞前瞬间,由动量守恒定律可得mv B -2mv A =2mv A ′+mv B ′且第二次碰撞前,A 、B 未达到共同速度,A 在这段时间内先向左后向右运动,加速度保持不变,根据匀变速直线运动的对称性可知v A ′=v A ,A 与挡板第二次碰撞后经一段时间后A 、B 同时停止运动,即mv B ′-2mv A ′=0,联立解得L 1=v2064μg ,车与挡板能发生3次及以上的碰撞的条件L <v 2064μg,故C 、D 可能,A 、B 不可能.7. (多选)(2022·江西贵溪二模)如图所示,在光滑水平面上放置一个质量为M 的滑块,滑块的一侧是一个14弧形凹槽OAB ,凹槽半径为R ,A 点切线水平,另有一个质量为m (m >M )的小球以速度v 0从A 点冲上凹槽,重力加速度大小为g ,不计摩擦.下列说法中正确的是( AB )A .当v 0=2gR 时,小球不可能到达B 点B .当v 0=2gR 时,小球在弧形凹槽上运动的过程中,滑块的动能一直增大C .如果小球的速度足够大,小球将从滑块的左侧离开滑块后落到水平面上D .当v 0=gR 时,小球返回A 点后可能做自由落体运动【解析】 当小球能够恰好到达B 点时,设小球和滑块达到共同速度v ,根据动量守恒定律有mv 0=(m +M )v ,根据机械能守恒定律有12mv 20=12(m +M )v 2+mgR ,联立以上两式解得v 0=2M +mMgR >2gR ,所以当v 0=2gR 时,小球不能到达B 点,A 正确;当v 0=2gR 时,小球未到达B 点,小球从进入凹槽至最高点的过程中,小球对滑块的作用力始终做正功,所以滑块的动能一直增大,B 正确;如果小球的初速度足够大,小球将从B 点冲出,由于B 点的切线方向竖直,小球离开滑块时,二者水平方向的速度相同,小球相对滑块做竖直上抛运动,最后将从B 再次进入凹槽,最后从滑块的右侧离开,C 错误;当v 0=gR 时,小球再次回到凹槽底部时的速度为v 1,凹槽的速度为v 2,根据系统机械能守恒和水平方向动量守恒可得12mv 20=12mv 21+12Mv 22,mv 0=mv 1+Mv 2,解得v 1=m -M m +M v 0,因为m >M ,则可知v 1=m -M m +M v 0>0,小球返回A 点后做平抛运动,而不是自由落体运动,D 错误.故选AB.应用题——强化学以致用8. (多选)(2022·重庆二诊)喷丸处理是一种表面强化工艺,即使用丸粒轰击工件表面,提升工件疲劳强度的冷加工工艺.用于提高零件机械强度以及耐磨性、抗疲劳性和耐腐蚀性等.某款喷丸发射器采用离心的方式发射喷丸,转轮直径为530 mm ,角速度为230 rad/s ,喷丸离开转轮时的速度与转轮上最大线速度相同.喷丸撞击到器件表面后发生反弹,碰撞后垂直器件方向的动能变为碰撞前动能的81%,沿器件表面方向的速度不变.一粒喷丸的质量为3.3×10-5kg ,若喷丸与器件的作用时间相同,且不计喷丸重力,则关于图甲、乙所示的两种喷射方式的说法正确的是( AD )A .喷丸发出过程喷丸发射器对一粒喷丸做的功约为0.06 JB .喷丸发出过程喷丸发射器对一粒喷丸做的功约为0.12 JC .图甲、乙所示一粒喷丸对器件表面的平均作用力之比为2∶1D .图甲、乙所示一粒喷丸对器件表面的平均作用力之比为2∶ 3【解析】 喷丸离开转轮时的速度与转轮上最大线速度相同,转轮上线速度的最大值为v =ωr =60.95 m/s ,则喷丸发出过程喷丸发射器对喷丸做的功约为W =12mv 2≈0.06 J,选项A 正确,B 错误;结合题述可知,喷丸碰撞后垂直器件表面的速度大小变为碰撞前的90%,设喷丸速度为v ,垂直喷射时有F 1=0.9mv --mvt,以60°角喷射时,有F 2=0.9×32mv -⎝ ⎛⎭⎪⎫-32mv t,解得F 1F 2=23,选项C 错误,D 正确.故选AD.9. (多选)(2022·河北衡水四调)质量为3m 足够长的木板静止在光滑的水平面上,木板上依次排放质量均为m 的木块1、2、3,木块与木板间的动摩擦因数均为μ.现同时给木块1、2、3水平向右的初速度v 0、2v 0、3v 0,已知重力加速度为g .则下列说法正确的是( BCD )A .木块1相对木板静止前,木板是静止不动的B .木块1的最小速度是12v 0C .木块2的最小速度是56v 0D .木块3从开始运动到相对木板静止时对地位移是4v 2μg【解析】 木块1在木板上向右减速运动,该过程木板向右做加速运动,当木块1与木板速度相等时相对木板静止,由此可知,木块1相对静止前木板向右做加速运动,故A 错误;木块与木板组成的系统所受合外力为零,当木块1与木板共速时木板的速度最小,设木块与木板间的摩擦力为f ,则木块1的加速度a 1=f m 做匀减速运动,而木板a =3f 3m =fm做匀加速运动,则v 1=v 0-a 1t =at ,v 1=12v 0,故B 正确;设木块2的最小速度为v 2,此时木块2与木板刚刚共速,木块2此时速度的变量为2v 0-v 2,则木块3此时速度为3v 0-(2v 0-v 2)=v 0+v 2,由动量守恒定律得:m (v 0+2v 0+3v 0)=5mv 2+m (v 0+v 2),解得v 2=56v 0,故C 正确;木块与木板组成的系统动量守恒,以向右为正方向,木块3相对木板静止过程,由动量守恒定律得m (v 0+2v 0+3v 0)=(3m +3m )v 3,解得v 3=v 0,对木块3,由动能定理得-μmgx =12mv 23-12m (3v 0)2,解得x =4v20μg,故D 正确.故选BCD.10. (2022·辽宁沈阳二模)如图(a),质量分别为m A 、m B 的A 、B 两物体用轻弹簧连接构成一个系统,外力F 作用在A 上,系统静止在光滑水平面上(B 靠墙面),此时弹簧形变量为x .撤去外力并开始计时,A 、B 两物体运动的a t 图像如图(b)所示,S 1表示0到t 1时间内A的a t 图线与坐标轴所围面积大小,S 2、S 3分别表示t 1到t 2时间内A 、B 的a t 图线与坐标轴所围面积大小.A 在t 1时刻的速度为v 0.下列说法正确的是( C )A .m A <mB B .S 1+S 2=S 3C .0到t 1时间内,墙对B 的冲量大小等于m A v 0D .B 运动后,弹簧的最大形变量等于x【解析】 a t 图线与坐标轴所围图形的面积大小等于物体速度的变化量,因t =0时刻A 的速度为零,t 1时刻A 的速度大小v 0=S 1,t 2时刻A 的速度大小v A =S 1-S 2,B 的速度大小v B=S3,由图(b)所示图像可知,t1时刻A的加速度为零,此时弹簧恢复原长,B开始离开墙壁,到t2时刻两者加速度均达到最大,弹簧伸长量达到最大,此时两者速度相同,即v A=v B,则S1-S2=S3,t1到t2时间内,A与B组成的系统动量守恒,取向右为正方向,由动量守恒定律得m A v0=(m A+m B)v A,联立解得m A∶m B=S3∶S2,由图知S3>S2,所以m A>m B,故A、B错误;撤去外力后A受到的合力等于弹簧的弹力,0到t1时间内,对A,由动量定理可知,合力即弹簧弹力对A的冲量大小I=m A v0,弹簧对A与对B的弹力大小相等、方向相反、作用时间相等,因此弹簧对B的冲量大小与对A的冲量大小相等、方向相反,即弹簧对B的冲量大小I弹簧=m A v0,对B,以向右为正方向,由动量定理得I墙壁-I弹簧=0,解得,墙对B的冲量大小I墙壁=m A v0,方向水平向右,故C正确;B运动后,当A、B速度相等时弹簧形变量(伸长量或压缩量)最大,此时A、B的速度不为零,A、B的动能不为零,由能量守恒定律可知,B运动后弹簧形变量最大时A、B的动能与弹簧的弹性势能之和与撤去外力时弹簧的弹性势能相等,则B 运动后弹簧形变量最大时弹簧弹性势能小于撤去外力时弹簧的弹性势能,即B运动后弹簧形变量最大时弹簧的形变量小于撤去外力时弹簧的形变量x,故D错误.11. (2022·山东押题练)2022年北京冬奥会自由式滑雪女子大跳台决赛中,中国选手谷爱凌以188.25分的成绩获得金牌.北京冬奥会报道中利用“Al+8K”技术,把全新的“时间切片”特技效果首次运用在8K直播中,更精准清晰地抓拍运动员比赛精彩瞬间,给观众带来全新的视觉体验.将谷爱凌视为质点,其轨迹视为一段抛物线图.图(a)是“时间切片”特技的图片,图(b)是谷爱凌从3 m高跳台斜向上冲出的运动示意图,图(c)是谷爱凌在空中运动时离跳台底部所在水平面的高度y随时间t变化的图线.已知t=1 s时,图线所对应的切线斜率为4(单位:m/s),重力加速度g取10 m/s2,忽略空气阻力.(1)求谷爱凌冲出跳台时竖直速度的大小;(2)求谷爱凌离跳台底部所在水平面的最大高度;(3)若谷爱凌从空中落到跳台底部所在水平地面时与地面的碰撞时间Δt=0.4 s,经缓冲没有脱离地面,水平速度不受影响,求碰撞过程中谷爱凌受到地面的平均作用力大小与自身重力大小的比值.【答案】(1)14 m/s (2)12.8 m (3)5【解析】(1)运动员竖直方向做匀减速直线运动,有v y=v y0-gty t 图线斜率表示竖直分速度,t =1 s 时v y =4 m/s解得谷爱凌冲出跳台时的竖直分速度v y 0=14 m/s 谷爱凌冲出跳台时竖直速度的大小为14 m/s.(2)最高点竖直分速度为0,竖直方向做匀减速直线运动,设离开跳台可以上升h 高度,则0-v 2y 0=-2gh代入数据解得h =9.8 m 跳台离地面高度y 0=3 m解得离跳台底部所在水平面的最大高度为y =h +y 0=12.8 m.(3)谷爱凌落到跳台底部所在水平面的竖直分速度大小v yt =2gy =16 m/s落在水平地面时,在竖直方向上,运动员受重力和水平地面的作用力,水平方向速度不变,以竖直向上为正方向,由动量定理得(F -mg )Δt =0-(-mv yt )代入数据解得Fmg=5.12. (2021·浙江6月选考)如图所示,水平地面上有一高H =0.4 m 的水平台面,台面上竖直放置倾角θ=37°的粗糙直轨道AB 、水平光滑直轨道BC 、四分之一圆周光滑细圆管道CD 和半圆形光滑轨道DEF ,它们平滑连接,其中管道CD 的半径r =0.1 m 、圆心在O 1点,轨道DEF 的半径R =0.2 m 、圆心在O 2点,O 1、D 、O 2和F 点均处在同一水平线上.小滑块从轨道AB 上距台面高为h 的P 点由静止下滑,与静止在轨道BC 上等质量的小球发生弹性碰撞,碰后小球经管道CD 、轨道DEF 从F 点竖直向下运动,与正下方固定在直杆上的三棱柱G 碰撞,碰后速度方向水平向右,大小与碰前相同,最终落在地面上Q 点.已知小滑块与轨道AB 间的动摩擦因数μ=112,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2.(1)若小滑块的初始高度h =0.9 m ,求小滑块到达B 点时速度v 0的大小; (2)若小球能完成整个运动过程,求h 的最小值h min ;(3)若小球恰好能过最高点E ,且三棱柱G 的位置上下可调,求落地点Q 与F 点的水平距离x 的最大值x max .【答案】 (1)4 m/s (2)0.45 m (3)0.8 m【解析】 (1)小滑块在AB 轨道上运动,根据动能定理得mgh -μmg cos θ·hsin θ=12mv 20,解得v 0=4 m/s.(2)小滑块与小球碰撞后动量守恒,机械能守恒,因此有mv 0min =mv 块+mv 球min ,12mv 20min =12mv 2块+12mv 2球min , 解得v 块=0,v 球min =v 0min ,小球沿CDEF 轨道运动,在最高点可得mg =m v 2E minR,从C 点到E 点由机械能守恒可得 12mv 2E min +mg (R +r )=12mv 2球min , 由(1)问可知,小滑块提供给小球的初速度v 0min =43gh min ,解得h min =0.45 m.(3)设F 点到G 点的距离为y ,小球从E 点到G 点的运动,由动能定理得mg (R +y )=12mv2G -12mv 2E min , 由平抛运动可得x =v G t ,H +r -y =12gt 2,联立可得水平距离为x =20.5-y0.3+y ,由数学知识可得当0.5-y =0.3+y ,x 取最大值,最大值为x max =0.8 m.。
第二部分硬功夫----解题技术人要过河,不能没有船或桥。
解题也如此,但解题有法,解无定法。
物理解题是一门技术,学习物理,不但要用功,更需要体会科学思维方法。
一、客观定位,找准切点。
1.紧定信心,功到自能。
知识可以补救,态度不可缺失。
笨鸟先飞是良训,一份辛苦一份才。
其实,辛苦与快乐是一种自我感觉体验,与学习态度有关。
学习物理过程本身也遵循功能原理----功是能量转化的量度。
潜能故事:唤醒自我,激发潜能。
2.强化三基,通性通法。
(1)选择题——方法单一、志在必得。
着重考查学生对概念和规律的理解能力和逻辑推理能力,及简单的运算能力。
(2)计算题突出主题:牛顿力学、功能关系、带电粒子在电场或磁场中的运动、法拉第电磁感应定律的应用。
抓住四环:过程分解、建立模型、新旧对接(迁移),数理转化、数学工具。
试卷结构:24题:力学为主,中等难度题25题:电磁为主,有一定难度,为高分获得者所设置33、34、35:(1)主干知识,中等偏易(2)主干知识,中等难度例(通性通法----滚筒法)(3)创新题——旧瓶新酒、新瓶新酒四个特点:信息大、知识小;起点高、落点低;思考多、运算少;情境新、模型老。
例1: 11年高考第25题3.抽象建模,题型归类。
把一个复杂的物理问题抽象成一个物理模型,往往是解决问题的关键。
从物理学的角度看,所谓“建模”,就是将我们研究的物理对象或物理过程通过抽象、理想化、简化和类比等方法形成物理模型。
它是一种重要的思维方法。
包括物理对象“建模”和物理过程“建模”。
物理模型对象模型(质点、轻杆、轻绳、弹簧振子、单摆、理想气体、点电荷、理想电表、理想变压器、匀强电场、匀强磁场、点光源、光线、原子模型等)过程模型(匀速直线运动、匀变速直线运动、匀速圆周运动、平抛运动、简谐运动、简谐波、弹性碰撞、子弹打木块、传送带、人船模型、自由落体运动、竖直上抛运动等)新高考在继续考查“抽象问题”的同时,开始加大对“原始问题”(实际问题)的考查,体现“从生活走向物理,从物理走向社会”的理念,对学生提出了更高的要求。
2023年高考物理二轮复习讲练专题静电场2______________________一、单选题1.某同学在实验室做电场线模拟实验时,将电场线演示板中的两电极柱连接到感应起电机两放电杆上,摇动起电机,过一会发现蓖麻油中头发屑有规则地排列起来,拍下的照片如图所示,则通过照片可推知()A.左侧电极柱带正电荷,右侧电极柱带负电荷B.A点的电场强度比B点的电场强度大C.A点的电势比B点的电势高D.没有头发屑的地方电场强度一定为零2.人体的细胞膜模型图如图所示,由磷脂双分子层组成,双分子层之间存在电压(医学上称为膜电位)。
现研究某小块均匀的细胞膜,厚度为d,膜内的电场可看作匀强电场,简化模型如图所示。
初速度可视为零的正一价钠离子仅在电场力的作用下,从图中的A点运动到B点,下列说法正确的是()A.A点电势低于B点电势B.钠离子的电势能减小C.钠离子的加速度变大D.若膜电位不变,当d越大时,钠离子进入细胞内的速度越大3.如图,医用口罩由多层织物材料构成,其中有一层熔喷布经过特殊工艺处理后成为驻极体材料,这层材料表面长期带有正电荷,能有效吸附细小的粉尘,而这些粉尘通常是细菌和病毒传播的载体。
则其中即将被吸附的带电粉尘,一定是()A.带正电B.沿电场线加速靠近熔喷布C.在靠近熔喷布的过程中电场力做正功D.在靠近熔喷布的过程中电势能增加4.电场分选是在高压电场中利用入选物料的电性差异进行分选的方法。
如图所示,从漏斗漏出的混合物料经起电区(未画出)起电(带正电或负电)后沿电场中线由静止进入高压电场,已知物料全部落入M、N 槽中且打不到极板,不计空气阻力和物料间的相互作用力,则起电后的物料经过高压电场区域时()A.所用时间一定不同B.机械能一定增大C.一定做曲线运动D.电势能可能增大二、多选题5.如图所示,磁控管内局部区域分布有水平向右的匀强电场和垂直纸面向里的匀强磁场。
电子从M点由静止释放,沿图中所示轨迹依次经过N、P两点。
高考物理二轮复习热门考点归纳—传送带中的动力学和能量问题1.传送带中动力学问题的注意事项(1)摩擦力的方向及存在阶段的判断.理清物体与传送带间的相对运动方向及摩擦力方向是解决传送带问题的关键.(2)物体能否达到与传送带共速的判断.物体与传送带达到相同速度时往往出现摩擦力突变的临界状态,对这一临界状态进行分析往往是解题的突破口.2.传送带中摩擦力做功与能量转化(1)静摩擦力做功的特点:①静摩擦力可以做正功,也可以做负功,还可以不做功.②相互作用的一对静摩擦力做功的代数和总是等于零,不会转化为内能.(2)滑动摩擦力做功的特点:①滑动摩擦力可以做正功,也可以做负功,还可以不做功.②相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功之和的绝对值等于产生的内能.(3)摩擦生热的计算:①Q=F f·s相对,其中s相对为相互摩擦的两个物体间的相对路程.②传送带因传送物体多消耗的能量等于物体增加的机械能与系统产生的内能之和.例1(2022·河北省高三学业考试)如图甲所示,倾斜的传送带正以恒定速率v1沿顺时针方向转动,传送带的倾角为37°.一物块以初速度v0从传送带的底部冲上传送带并沿传送带向上运动,其运动的v-t图像如图乙所示,物块到传送带顶端时速度恰好为零,sin37°=0.6,cos37°=0.8,g取10m/s2,则()A.0~1s内物块受到的摩擦力大小大于1~2s内的摩擦力大小B.摩擦力方向一直与物块运动的方向相反C.物块与传送带间的动摩擦因数为0.5D.传送带底端到顶端的距离为10m答案D解析由题图乙可知在0~1s内物块的速度大于传送带的速度,物块所受摩擦力的方向沿传送带向下,与物块运动的方向相反;1~2s内,物块的速度小于传送带的速度,物块所受摩擦力的方向沿传送带向上,与物块运动的方向相同,由于物块对传送带的压力相等,根据F f=μF N,可知两段时间内摩擦力大小相等,A、B错误;在0~1s内物块的加速度大小为a=|ΔvΔt =12-41m/s2=8m/s2,根据牛顿第二定律有mg sin37°+μmg cos37°=ma,解得μ=0.25,C错误;物块运动的位移大小等于v-t图线与时间轴所围图形的“面积”大小,为x=4+122×1m+4×12m=10m,所以传送带底端到顶端的距离为10m,D正确.例2(2022·江苏海安市高三期末)如图所示,一个工作台由水平传送带与倾角θ=37°的斜面体组成,传送带AB间的长度L=1.7m,传送带顺时针匀速转动,现让质量m=1kg的物块以水平速度v0=5m/s从A点滑上传送带,恰好能滑到斜面上高度h=1.08m的C点,物块与斜面体和传送带之间的动摩擦因数均为μ=0.5,传送带与斜面平滑连接,g取10m/s2.(sin37°=0.6,cos37°=0.8)(1)求物块由A运动到B时的速度大小v B;(2)求物块由A运动到C所需要的时间t;(3)若改变传送带转速,物块以初动能E k x从A点水平滑上传送带,滑上斜面后恰好能返回出发点A,求物块初动能E k x的取值范围.答案(1)6m/s(2)0.9s(3)34J≤E k x≤42.5J解析(1)物块从B运动到C过程,由动能定理可得-mgh-μmg cos37°·hsin37°=0-12 mv B2解得v B=6m/s;(2)设物块从A运动到B过程中相对传送带的位移是x相对,由动能定理可得1 2mv B2-12mv02=μmgx相对解得x相对=1.1m<L即物块在传送带上先匀加速到v B,然后在传送带上匀速运动.设物块在传送带上匀加速时间为t1,有v B=v0+at1,a=μg解得t1=0.2s设物块在传送带上匀速时间为t2,有L-x相对=v B t2解得t2=0.1s设物块从B运动到C所用时间为t3,由牛顿第二定律可得mg sin37°+μmg cos37°=ma′,又0=v B-a′t3,联立可得t3=0.6s,物块由A 运动到C 所需要的时间为t =t 1+t 2+t 3=0.9s ;(3)物块以初动能E k x 从A 点水平滑上传送带,设到达B 点动能为E k B ,相对传送带位移为x ,则有E k B -E k x =μmgx ,0≤x ≤L ,物块从B 沿斜面运动到最高点,设上滑距离为s ,有0-E k B =-μmg cos 37°·s -mg sin 37°·s ,物块从B 上滑后又返回B 过程,有E k B ′-E k B =-2μmg cos 37°·s ,其中E k B ′是物块返回B 时的动能,从B 经传送带返回A 过程,有0-E k B ′=-μmgL ,联立可得34J≤E k x ≤42.5J.1.(多选)(2022·宁夏回族自治区银川一中一模)如图所示,机场将货物用与水平面成θ=30°角的传送带送到货仓,传送带以v =2m/s 的速度顺时针运行,地勤人员将一质量m =1kg 的货物以初速度v 0=4m/s 从底部滑上传送带,货物恰好能到达传送带的顶端.已知货物与传送带之间的动摩擦因数为μ=35,最大静摩擦力等于滑动摩擦力,取重力加速度g =10m/s 2,下列说法正确的是()A .传送带从底端到顶端的长度为1mB .货物在传送带上运动的时间为1.25sC .货物在传送带上留下的划痕为1.25mD .货物在传送带上向上运动的过程中由于摩擦产生的热量为3.75J答案BD解析开始时,货物相对传送带向上运动,受到的摩擦力沿传送带向下,货物将匀减速上滑,直至与传送带等速,设货物上滑的加速度大小为a1,由牛顿第二定律得mg sinθ+μmg cosθ=ma1,代入数据得a1=8m/s2,则货物相对传送带匀减速上滑,直至与传送带等速的时间为t1=v-v0-a1=2-4-8s=0.25s,货物沿传送带向上的位移为x1=v0+v2t1=4+22×0.25m=0.75m,货物与传送带相对静止瞬间,由于最大静摩擦力F f=μmg cosθ<mg sinθ,相对静止状态不能持续,货物速度会继续减小,此后,货物受到的摩擦力沿传送带向上,但所受合力沿传送带向下,故继续匀减速上升,直至速度为0,令此时货物减速上升的加速度大小为a2,由牛顿第二定律得mg sinθ-μmg cosθ=ma2,代入数据得a2=2m/s2,由于货物恰好能到达传送带的顶端,则货物到达传送带顶端速度减为零且时间为t2=va2=1s,货物沿传送带向上运动的位移为x2=v2t2=1m,货物在传送带上运动的时间为t=t1+t2=0.25s+1s=1.25s,B正确;根据选项B可知,传送带从底端到顶端的长度L=x1+x2=1.75m,A错误;货物减速到与传送带速度相等时传送带的位移大小x传送带1=vt1=2×0.25m=0.5m,货物与传送带速度相等后运动过程传送带的位移大小x传送带2=vt2=2×1m=2m,货物速度与传送带速度相等前运动过程货物对于传送带的位移大小L1=x1-x传送带1=0.75m-0.5m=0.25m,货物速度与传送带速度相等后运动过程货物对于相传送带的位移大小L2=x传送带2-x2=2m-1m=1 m>L1,货物速度与传送带速度相等后向上运动过程中货物与传送带上留下的划痕与第一阶段减速运动过程划痕重合,因此货物在传送带上留下划痕的长度L=L2=1m,C错误;货物从滑上传送带到滑离传送带的过程中,因摩擦产生的热量为Q=μmg cosθ·(L1+L2)=3.75J,D正确.2.(2022·湖南长沙一中高三检测)如图所示,水平传送带足够长,顺时针运动的速度v=4m/s,与倾角为37°的斜面的底端P平滑连接,将一质量m=2kg的小物块(可看作质点)从A点静止释放.已知A、P的距离L=9m,物块与斜面、传送带间的动摩擦因数分别为μ1=0.5、μ2=0.1,取重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8.求物块:(1)第1次滑过P点时的速度大小v1;(2)第1次在传送带上往返运动的时间t;(3)从释放到最终停止运动,与斜面间摩擦产生的热量Q.答案(1)6m/s(2)12.5s(3)88J解析(1)由动能定理得(mg sin37°-μ1mg cos37°)L=12mv12-0解得v1=6m/s(2)由牛顿第二定律有μ2mg=ma物块与传送带共速时,由速度公式得-v=v1-at1解得t1=10s匀速运动阶段的时间为t2=v122a-v22av=2.5s第1次在传送带上往返运动的时间t=t1+t2=12.5s(3)由分析可知,物块第一次离开传送带以后,每次再到达传送带和离开传送带的速度大小相等,物块最终停止在P 点,则根据能量守恒有Q =μ1mg cos 37°·L +12mv 2=88J.专题强化练1.(2022·河南省濮阳外国语学校月考)如图甲,M 、N 是倾角θ=37°的传送带的两个端点,一个质量m =5kg 的物块(可看作质点)以4m/s 的初速度自M 点沿传送带向下运动.物块运动过程的v -t 图像如图乙所示,g 取10m/s 2,sin 37°=0.6,cos 37°=0.8,下列说法正确的是()A .物块最终从N 点离开传送带B .物块与传送带间的动摩擦因数为0.6C .物块在第6s 时回到M 点D .传送带的速度v =2m/s ,方向沿逆时针转动答案C 解析从题图乙可知,物块速度减为零后反向沿传送带向上运动,最终的速度大小为2m/s ,方向沿传送带向上,所以没从N 点离开传送带,从M 点离开,并且可以推出传送带沿顺时针转动,速度大小为2m/s ,A 、D 错误;速度时间图像中斜率表示加速度,可知物块沿传送带下滑时的加速度大小a =Δv Δt=1.5m/s 2,根据牛顿第二定律有μmg cos 37°-mg sin 37°=ma ,解得μ≈0.94,B 错误;图线与时间轴围成的面积表示位移大小,由题图乙可知t1=83s时,物块的速度减为0,之后物块沿传送带向上运动,所以物块沿传送带向下运动的位移大小x1=12×4×83m=16 3m,t1=83s到t2=6s,物块沿传送带向上运动的位移大小x2=6-4+6-832×2m=163m,因为x1=x2,所以物块在第6s时回到M点,C正确.2.(多选)(2022·广东省模拟)如图,水平传送带在电动机带动下以恒定速率v顺时针运行,某时刻一个质量为m的快递包裹(可视为质点)以初速度v0(v0<v)从传送带左端滑上传送带.若从包裹滑上传送带开始计时,t0时刻包裹的速度达到v,快递包裹与传送带间的动摩擦因数为μ.重力加速度为g,则该快递包裹在传送带上运动的过程中()A.包裹先受到滑动摩擦力的作用,后受到静摩擦力的作用B.0~t0时间内,包裹所受摩擦力对包裹做功的功率越来越大C.若仅增大包裹的初速度v0(v0仍小于v),则包裹被传送的整个过程中传送带对包裹所做的功也一定增加D.电动机因传送该包裹而多消耗的电能为μmgvt0答案BD解析由题意可知,包裹先受向右的滑动摩擦力做加速运动,速度与传送带相同后做匀速运动,匀速运动阶段不受摩擦力作用,A错误;0~t0时间内,包裹所受摩擦力恒定为μmg,包裹速度越来越大,摩擦力做功功率为P=F f v t,可知摩擦力对包裹做功的功率越来越大,B正确;由动能定理知,整个过程中传送带对包裹所做的功等于包裹动能的增加量,所以v0增大,而末速度不变,动能增加量减小,传送带对包裹做的功减小,C错误;电动机因传送该包裹而多消耗的电能等于包裹动能的增加量及产生的摩擦热,在0~t0时间内,摩擦力对包裹所做的功为W=F f x=μmg v+v02t0,包裹动能的增加量ΔE k=W,产生的摩擦热Q=μmgΔx=μmg(vt0-v0+v2t0),则电动机因传送该包裹多消耗的电能为E=μmgvt0,D正确.3.(2022·湖南常德市模拟)如图所示,水平传送带AB间的距离为16m,质量分别为2kg、4kg的物块P、Q,通过绕在光滑定滑轮上的细线连接,Q在传送带的左端且连接物块Q的细线水平.当传送带以8m/s的速度逆时针转动时,Q恰好静止.重力加速度g=10m/s2,最大静摩擦力等于滑动摩擦力.当传送带以8m/s 的速度顺时针转动时,下列说法正确的是()A.Q与传送带间的动摩擦因数为0.6B.Q从传送带左端运动到右端所用的时间为2.6sC.Q在运动过程中所受摩擦力始终不变D.Q从传送带左端运动到右端的过程中P处于失重状态答案B解析当传送带以v=8m/s逆时针转动时,Q恰好静止不动,对Q受力分析,则有F T=F f,即m P g=μm Q g,代入数据解得μ=0.5,故A错误;当传送带以v=8m/s顺时针转动,物块Q做初速度为零的匀加速直线运动,根据牛顿第二定律有m P g+μm Q g=(m P+m Q)a,解得a=203m/s2,当Q速度达到传送带速度即8m/s 后,做匀速直线运动,根据速度时间公式有v=at1,代入数据解得匀加速的时间为t1=1.2s,匀加速的位移大小为x=v22a,代入数据解得x=4.8m,则匀速运动的时间为t2=L-xv,代入数据解得t2=1.4s,Q从传送带左端滑到右端所用的时间为t总=t1+t2=2.6s,故B正确;物块Q做匀加速直线运动时,摩擦力方向水平向右,匀速运动过程中,摩擦力方向水平向左,故Q在运动过程中所受摩擦力方向变化,故C错误;由B的分析可知,Q在这个过程中先加速后匀速,Q做匀加速直线运动时,P加速下降,处于失重状态,Q匀速运动过程中,P匀速下降,处于平衡状态,故D错误.4.(2022·广东省模拟)如图甲所示,倾角为37°的传送带以速度v0=3m/s顺时针运转,两传动轮之间的距离足够长,质量m=2kg的滑块从左侧底端以一定速度滑上传送带,滑块在传送带上运动的v-t图像如图乙所示,已知此过程传送带的速度保持不变(sin37°=0.6,cos37°=0.8,g=10m/s2),则在图示时间内()A.滑块与传送带间的动摩擦因数μ=0.6B.0~4s内,传送带对滑块做的功为56JC.0~4s内,滑块对传送带做功大小为156JD.0~4s内,系统产生的内能为20J解析根据图像可知,滑块向上先加速后匀速,加速过程有μmg cos37°-mg sin37°=ma,a=ΔvΔt=1m/s2,解得μ=0.875,A错误;根据能量守恒定律可知,在0~4s内,传送带对滑块做的功为W=12mv02-12mv2+mgx sin37°,x=1+32×2m+3×2m=10m,联立解得W=128J,B错误;在0~4s内,滑块对传送带做负功,大小为W′=μmg cos37°×3×2 J+mg sin37°×2×3J=156J,C正确;在0~4s内,系统产生的内能为Q=μmgΔx cos37°,Δx=12×2×2m=2m,联立解得Q=28J,则在0~4s内系统产生的内能为28J,D错误.5.(2022·重庆八中高三检测)如图所示,水平传送带以v=4m/s逆时针匀速转动,A、B为两轮圆心正上方的点,AB=L1=2m,两边水平面分别与传送带上表面无缝对接,弹簧右端固定,自然长度时左端恰好位于B点.现将一小物块与弹簧接触但不拴接,并压缩至图示位置后由静止释放.已知小物块与各接触面间的动摩擦因数均为μ=0.2,AP=L2=1m,小物块与轨道左端P碰撞后原速反弹,小物块刚好返回到B点时速度减为零.g=10m/s2,则下列说法正确的是()A.小物块第一次运动到A点时,速度大小一定为4m/sB.弹簧对小物块做的功等于小物块离开弹簧时的动能C.小物块离开弹簧时的速度可能为1m/sD.小物块对传送带做功的绝对值与传送带对小物块做功的绝对值一定相等解析设物块到达P点时的速度大小为v′,反弹后运动到B点时的速度为零,对物块从P点返回到B点的过程,由动能定理得-μmg(L1+L2)=0-12mv′2,解得v′=23m/s,对物块由A点到P点过程,由动能定理得-μmgL2=12mv′2-12mv A2,解得v A=4m/s,小物块可能在传送带上减速到共速、加速到共速,也可能一开始到B端时就共速,故A正确;弹簧对小物块做的正功与摩擦力对小物块做的负功之和等于小物块离开弹簧时的动能,故B错误;若物块滑上传送带时的速度v B 较大,则一直做匀减速运动,对其从滑上B点到返回B点的过程,有-2μmg(L1+L2)=0-12mv B2,解得v B=26m/s,若速度v B较小,物块在AB上一直加速,到A点时恰好与传送带同速,有μmg=ma,L1=v B t+12at2,v=v B+at,联立解得v B =22m/s,故小物块离开弹簧时的速度一定满足22m/s≤v B≤26m/s,故C错误;小物块与传送带间摩擦力大小相等,但小物块对传送带做功的绝对值为摩擦力乘传送带位移,传送带对小物块做功的绝对值为摩擦力乘小物块位移,当有摩擦力时,两者位移不同,因此功的绝对值也不同,故D错误.6.(多选)(2022·广东省模拟)我国快递行业迅猛发展,工作人员在分快递时常用传送带传送快递商品,工作人员用如图所示的倾斜传送带向高处传送质量为m=2kg 的快递商品,传送带倾角为37°,传送带的底端A和顶端B之间的距离L=9m,传送带以恒定速率v=3m/s顺时针运行,将快递商品静止放于传送带底端A,经过一段时间将快递商品传送到传送带的顶端B,快递商品与传送带间的动摩擦因数为μ=0.875,快递商品可以看作质点,最大静摩擦力等于滑动摩擦力,重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8,下列说法正确的是()A.快递商品从底端A传送到顶端B用的时间为32sB.快递商品从底端A传送到顶端B过程中滑动摩擦力对快递商品做的功为126J C.快递商品从底端A传送到顶端B过程中机械能的增量为117JD.快递商品从底端A传送到顶端B过程中电动机比空载时多消耗的电能为180J 答案CD解析快递商品开始运动时受到沿传送带向上的滑动摩擦力F f1=μmg cos37°根据牛顿第二定律有F f1-mg sin37°=ma,解得加速度大小a=1m/s2与传送带达到共同速度经历的时间为t1=va=3s,运动的位移为x1=v2t1=4.5m因为μ=0.875,μmg cos37°>mg sin37°当快递商品的速度与传送带的速度相等时开始做匀速直线运动,运动的位移为x2=L-x1=4.5m匀速运动的时间为t2=x2v=1.5s,则快递商品从底端传送到顶端用的时间为t=t1+t2=4.5s,A错误;快递商品加速运动时滑动摩擦力做的功为W=F f1x1=63J,B错误;快递商品从底端A传送到顶端B过程中机械能的增量为ΔE=12mv2+mgL sin37°=117J,C正确;快递商品与传送带之间发生相对滑动时,传送带做匀速运动位移x3=vt1=9.0m,则产生的热量为Q=μmg cos37°(x3-x1)=63J,第二阶段快递商品与传送带之间没有相对滑动,不产生热量,物块在传送带上运动过程中因摩擦产生的热量是63J ,根据能量守恒定律可知,快递商品从底端A 传送到顶端B 过程中电动机多消耗的电能为系统能量的增量,即系统内能和快递商品机械能的增量,则E 电=Q +ΔE =180J ,D 正确.7.(多选)(2022·河南省高三检测)如图(a),倾角为37°的传送带以v =5m/s 的速度逆时针匀速转动,传送带A 、B 之间的距离为20m ,质量为m =1kg 的物块(可视为质点)自A 点无初速度放上传送带.物块在传送带上运动时,其动能E k 与位移x 的关系图像(E k -x )如图(b)所示,设物块与传送带之间的动摩擦因数为μ,物块从A 运动到B 所用时间为t ,已知重力加速度g 取10m/s 2,sin 37°=0.6,cos 37°=0.8.则下列说法中正确的是()A .μ=0.25B .x 0=1.25mC .t =4sD .E 0=50J 答案BD 解析由题图(b)可知,开始时,物块所受摩擦力方向向下,当物块的速度和传送带速度相等时,摩擦力反向,但此时物块重力沿传送带向下的分力仍大于摩擦力,故物块继续做加速运动,当位移为x 0时,物块的速度为5m/s ,可得E 04=12mv 2,代入数据解得E 0=50J ,故D 正确;根据功能关系得(mg sin θ+μmg cos θ)x 0=12mv 2=E 04,(mg sin θ-μmg cos θ)×10x 0=3E 04-E 04,联立解得μ=0.5,x 0=1.25m ,故B 正确,A 错误;传送带A 、B 之间的距离为20m ,物块速度和传送带速度相等前,根据牛顿第二定律得a1=g sinθ+μg cosθ=10m/s2,可得时间t1=va1=0.5s,当速度和传送带速度相等后,根据牛顿第二定律有a2=g sinθ-μg cosθ=2m/s2,根据运动学公式有20m-x0=vt2+12a2t22,解得t2=2.5s,物块从A运动到B所用时间为t=t1+t2=3s,故C错误.8.(2022·湖南郴州市质检)近些年网购流行,物流业发展迅速,工作人员常利用传送带来装卸快递或包裹.如图所示为某仓库卸货时的示意图,以恒定速率v1=0.6 m/s逆时针运行的传送带与水平面间的夹角α=37°.工作人员沿传送方向以速度v2=1.4m/s从传送带顶端推下一质量m=5kg的小包裹(可视为质点).5s后突然停电,传送带立即停止运动,经过一定时间后包裹到达传送带底端速度恰好为0;包裹与传送带间的动摩擦因数μ=0.8,最大静摩擦力等于滑动摩擦力,取重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8.求:(1)传送带顶端到底端的距离L;(2)整个过程产生的热量Q.答案(1)4.25m(2)40J解析(1)包裹被从顶端推下传送带时由牛顿第二定律可得μmg cosα-mg sinα=ma,解得a=0.4m/s2设经过t1后包裹与传送带速度相等,有t1=v2-v1a=2s这段时间内包裹运动的距离s1=v1+v22·t1=2m传送带运动的距离s1′=v1t1=1.2m由于μmg cosθ>mg sinθ,则包裹与传送带共速后,一起做匀速运动,共速后匀速运动时间t2=Δt-t1=3s包裹匀速运动距离s2=v1t2=1.8m停电后包裹做匀减速直线运动,加速度大小仍为a,匀减速直线运动时间t3=v1 a=1.5s停电后运动的距离s3=v12t3=0.45m传送带顶端到底端的距离L=s1+s2+s3=4.25m(2)产生的热量Q=μmg(s1-s1′)cosα+μmgs3cosα=40J.9.(2022·江苏苏州市高三期末)如图所示,一倾斜固定的传送带与水平面的倾角θ=37°,传送带以v=2m/s的速率沿顺时针方向匀速运行.从距离传送带底端x0=4 m的O点由静止释放一质量m=0.5kg的滑块(视为质点),滑块沿传送带向下运动,到达传送带底端时与挡板P发生碰撞,碰撞时间极短,碰撞后反弹速率不变.滑块与传送带间的动摩擦因数μ=0.5,取g=10m/s2,sin37°=0.6,cos37°=0.8,传送带与轮子间无相对滑动,不计轮轴处的摩擦.求:(1)滑块刚要与挡板P第一次碰撞时的速度大小;(2)滑块与挡板P第一次碰撞后到达的最高位置与传送带底端之间的距离L;(3)试描述经过足够长时间后滑块所处的状态,并计算与放置滑块前相比电动机增加的功率.答案(1)4m/s(2)1.6m(3)见解析解析(1)由牛顿第二定律有mg sin37°-μmg cos37°=ma,解得a=2m/s2,由2ax0=v12,可得v1=4m/s.(2)上滑时,滑块速度大于传送带速度的过程,加速度大小为a1=mg sin37°+μmg cos37°m=10m/s2,由v2-v12=-2a1L1,解得L1=0.6m,速度小于传送带速度后加速度等于第一次下滑时的加速度,由v2=2aL2,得L2=1m,则滑块与挡板P第1次碰撞后到达的最高位置与传送带底端之间的距离为L=L1+L2=1.6m.(3)滑块上升到最高点后,沿传送带以加速度大小a向下做匀加速运动,与挡板P 发生第二次碰撞,根据速度位移公式可得碰撞前瞬间的速度大小为v2=2aL=6.4m/s与挡板第二次碰撞后,滑块以原速被反弹,先沿传送带向上以加速度大小a1做匀减速运动直到速度为v,此过程运动距离为L3,则L3=v2-v22-2a1=0.12m之后以加速度大小a继续做匀减速运动直到速度为0,此时上升到最高点,此过程运动距离为L4,则有L4=v22a=1m,滑块滑到最高点后,沿传送带以a的加速度向下匀加速,与挡板P发生第三次碰撞,碰前速度为v3=2a L3+L4=4.48m/s,第三次碰撞后,沿传送带上滑的距离为L′=v2-v32-2a1+v22a=1.024m,以此类推,经过多次碰撞后滑块以2m/s的速度被反弹,在距挡板1m的范围内不断做向上的减速运动和向下的加速运动,加速度大小均为2m/s2,滑块对传送带有一与传送带运动方向相反的阻力F f=μmg cos37°=2N,故电动机增加的输出功率为P=μmgv cos37°=4W.。
微元法本专题主要讲解利用微元法解决动力学问题、变力做功问题、电场和电磁感应等问题,主要分为时间微元和位移微元两大类。
微元法在近几年高考中考查频率较高,出现了分值高、难度较大的计算题。
微元法是一种非常有效的解题方法,将研究对象或研究过程分解为众多细小的“微元”,分析这些“微元”,进行必要的数学推理或物理思想处理,能够有效的简化复杂的物理问题。
考查学生的分析推理能力,应用数学方法解决物理问题能力。
时间微元微元思想是中学物理中的重要思想。
所谓微元思想,是将研究对象或者物理过程分割成无限多个无限小的部分,先取出其中任意部分进行研究,再从局部到整体综合起来加以考虑的科学思维方法。
如图所示,两根平行的金属导轨MN和PQ放在水平面上,左端连接阻值为R的电阻。
导轨间距为L,电阻不计。
导轨处在竖直向上的匀强磁场中,匀强磁场的磁感应强度为B。
一根质量为m、阻值为r的金属棒放置在水平导轨上。
现给金属棒一个瞬时冲量,使其获得一个水平向右的初速度v0后沿导轨运动。
设金属棒运动过程中始终与导轨垂直且接触良好,导轨足够长,不计一切摩擦。
求:(1)金属棒的速度为v时受到的安培力是多大?(2)金属棒向右运动的最大距离是多少?物理学研究问题一般从最简单的理想情况入手,由简入繁,逐渐贴近实际。
在研究真实的向上抛出的物体运动时,我们可以先从不受阻力入手,再从受恒定阻力研究,最后研究接近真实的、阻力变化的运动情形。
现将一个质量为m的小球以速度v0竖直向上抛出,重力加速度为g。
(1)若忽略空气阻力对小球运动的影响,求物体经过多长时间回到抛出点;(2)若空气阻力大小与小球速度大小成正比,已知小球经t时间上升到最高点,再经一段时间匀速经过抛出点时,速度大小为v1,求小球抛出后瞬间的加速度和上升的最大高度。
涉及时间微元问题的一般解题步骤:(1)本方法一般用来处理变加速直线运动的情况且物体所受的变力与速度成正比。
(2)找微元:对于这类变速运动,通常选取极短的一段时间∆t,在这段极短的时间内可认为物体的受力、速度等物理量不变。
2021届高三物理二轮阶段性复习 力的相互作用与共点力分析 1.两个劲度系数分别为1k 和2k 的轻质弹簧a b 、串接在一起,a 弹簧的一端固定在墙上,如图所示.开始时弹簧均处于原长状态,现用水平力F 作用在b 弹簧的P 端向右拉动弹簧,已知a 弹簧的伸长量为L ,则( )A.b 弹簧的伸长量也为LB.b 弹簧的伸长量为12k L kC.P 端向右移动的距离为2LD.P 端向右移动的距离为21(1)k L k 2.如图所示,有一个重力不计的方形容器,被水平力F 压在竖直的墙面上处于静止状态,现缓慢地向容器内注水,直到将容器刚好盛满为止,在此过程中容器始终保持静止,则下列说法中正确的是( )A.容器受到的摩擦力不变B.容器受到的摩擦力逐渐增大C.水平力F 一定不变D.水平力F 必须逐渐增大 3.如图所示为两个共点力的合力F 随两分力的夹角θ变化的图像,则这两个分力的大小可能为( )A.1 N和4 NB.2 N和3 NC.1 N和5 ND.2 N和4 N4.设有三个力同时作用在质点P上,它们的大小和方向相当于正六边形的两条边和一条对角线,如图所示,这三个力中最小的力的大小为F,则这三个力的合力等于( )A.3FB.4FC.5FD.6F5.—盏电灯重力为G,悬于天花板上的A点,在电线O处系一细线OB,β=°,如图所示。
现保持β角不变,缓使电线OA偏离竖直方向的夹角为30慢调整OB方向至虚线位置,则在此过程中细线OB中的拉力()A.先减小后增大B.先增大后减小C.不断增大D.不断减小6.如图所示,质量为1kgm=的物块置于倾角为30°的粗糙斜面上,物块恰好处于静止状态.现用竖直向上的外力F作用在物块上,外力F由零缓慢增加,物块所受的最大静摩擦力等于滑动摩擦力,重力加速度g取210m/s,则在物块发生移动之前,物块所受的斜面的支持力和摩擦力的值不可能为( )A.2 N,N N C.N ,5 N N 7.螺旋千斤顶的构造如图甲所示,它是靠用力推手柄1,使螺杆2的螺纹沿底座3的螺纹槽(相当于螺母,图中未画出)缓慢旋进而顶起重物4,并要在顶起重物后,重物和螺杆不会自动下降,可在任意位置保持平衡,要实现这点,必须满足自锁条件.螺纹可以看成是绕在直径为d 的圆柱体上的斜面,如图乙所示.已知螺杆与螺母之间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,则螺距h (相邻两螺纹间的距离)应满足( )A.h d μB.πh d μC.h d μD.πh d μ8.如图,黑板擦在手施加的恒力F 作用下匀速擦拭黑板。