第四章 跟踪与数据中继卫星系统——概述
- 格式:ppt
- 大小:4.81 MB
- 文档页数:2
第一章—绪论1.各国独立发射首颗卫星时间。
表格 1 各国独立发射首颗卫星时间表2.航天器的分类?答:航天器按是否载人可分为无人航天器和载人航天器两大类。
其中,无人航天人按是否环绕地球运行又分为人造地球卫星和空间探测器两大类;载人航天器可以分为载人飞船、空间站和航天飞机。
3.什么是航天器设计?答:航天器设计就是要解决每一个环节的具体设计,其中主要的几个关键内容为:航天任务分析与轨道设计、航天器构形设计、服务与支持分系统的具体设计。
4.画图说明航天器系统设计的层次关系并简述各组成部分的作用。
答:图 1 航天器系统设计的层次关系图(1).有效载荷分系统:航天器上直接完成特定任务的仪器、设备和核心部分;(2).航天器结构平台:整个航天器的结构体(3).服务和支持系统:有效载荷正常工作的必要条件。
①结构分系统:提供其他系统的安装空间;满足各设备安装方位,精度要求;确保设备安全;满足刚度,强度,热防护要求,确保完整性;提供其他特定功能②电源分系统:向航天器各系统供电③测控与通信系统:对航天器进行跟踪,测轨,定位,遥控,通信;④热控系统:对内外能量管理和控制,实现航天器上废热朝外部空间的排散,满足在飞行各阶段,星船各阶段、仪器设备、舱内壁及结构所要求的温度条件;⑤姿态与轨道控制系统:姿态控制--姿态稳定,姿态机动;轨道控制--用于保持或改变航天器的运行轨道,包括轨道确定(导航)和轨道控制(制导)两方面,使航天器遵循正确的航线飞行。
、⑥推进系统:向地球静轨道转移时的近地点与远地点点火;低轨道转移时,低轨到高轨的提升与离轨再入控制;星际航行向第二宇宙速度的加速过程;在轨运行⑦数据管理系统:将航天器遥控管理等综合在微机系统中⑧环境控制与生命保障:维持密闭舱内大气环境,保证航天员生命安全5.航天器的特点及其设计的特点?答:航天器的特点有5个,(1).系统整体性;(2).系统层次性;(3).航天器经受的环境条件:运载器环境、外层空间环境、返回环境;(4).航天器的高度自动化性质;(5).航天器长寿面高可靠性。
GPS卫星定位系统基础知识介绍GLOBAL Positioning System,简称GPS,即全球卫星定位系统,近年来得到了越来越广泛的应用,已经产生了可观的GPS产品需求。
并且随着科技水平的提高、应用方向的不断开拓,GPS将会不容置疑的迅速渗透到人们的日常生活中来。
我们经常提到的GPS定位系统由美国军方所设计、控制。
除此之外,我国的北斗双星定位系统正在默默地为我国的现代化建设做贡献;俄罗斯的GLONASS系统也曾有过辉煌的历史;欧盟组织设计的伽利略卫星定位系统兼容目前广泛应用的GPS系统,在几年后将会给全球定位系统增添更加光彩的一页。
GPS系统由三大部分组成:空间部分、控制部分和用户部分。
空间部分是GPS人造卫星的总称。
人造卫星的平均高度约20200Km,运行轨道是一个椭圆,地球位于该椭圆的一个焦点上;运行周期约12小时。
在6个倾角约55°的轨道面上不平均地分布着近30颗导航卫星,部分为备用卫星,美国军方可通过地面控制部分调整工作卫星的数目。
在GPS系统中,GPS卫星是动态的已知点,用户端所有的导航定位信息都是依据这个动态已知点发送的“星历”计算得到的。
GPS星历,实际上是一系列描述GPS卫星运动及轨道的实时状态参数。
民用GPS模块所接收到的广播星历是由GPS卫星以扩频通信方式通过导航电文直接向用户播发的用于实时数据处理的预报星历,在不同的载波上以不同的速率广播民用的伪随机码C/A码星历和军用的P码星历。
对于整个GPS系统来说,实际上地面控制部分是整个系统的核心。
所有的GPS卫星所播发的用于导航定位的星历,都是由分布在地面的5个监控站提供的。
地面系统负责监测GPS信号、收集数据、计算并注入导航电文,状态诊断、轨道修正等。
正是有了地面监控系统的海量数据处理,才使得GPS系统精确运转。
我们常说的GPS定位模块称为用户部分,它像“收音机”一样接收、解调卫星的广播C/A码信号,中以频率为1575.42MHz。
中继卫星系统用户终端关键技术分析熊小莉【摘要】用户终端在跟踪与数据中继卫星系统(TDRSS)中具有重要作用.介绍了中继卫星系统用户终端的分类、功能和组成,重点对用户终端采用的全数字化可编程综合基带、自动增益控制(AGC)、相参转发和小型化等关键技术进行了总结和分析,已工程实现的用户终端功能和性能满足系统要求.最后,提出了用户终端技术的发展趋势.【期刊名称】《电讯技术》【年(卷),期】2010(050)007【总页数】5页(P16-20)【关键词】TDRSS;中继卫星系统;用户终端;数字化综合基带;自动增益控制;相参转发【作者】熊小莉【作者单位】中国西南电子技术研究所,成都,610036【正文语种】中文【中图分类】V556.81 引言中继卫星系统是一个利用同步卫星和地面终端站对中、低轨飞行器(用户星)进行高覆盖率测控和数据中继的测控通信系统。
目前,美国NASA的中继卫星系统——跟踪与数据中继卫星系统(TDRSS)已发展到第二代,第三代系统正在论证之中;欧空局也于2001年发射了第一代数据中继卫星Artemis,并于2003年投入使用,将于2010年到达寿命期,欧空局正在进行第二代数据中继卫星系统(EDRSS)的方案构想;我国的“天链”一号中继卫星系统也于2008年4月投入使用。
中继卫星系统具有跟踪测轨和数据中继两方面的功能,同时具有全轨道跟踪多个用户星以及高速数传的能力,代表了新一代天基测控系统的发展方向[1]。
中继卫星用户终端与中继卫星、地面站构成了跟踪与数据中继卫星系统。
中继卫星用户终端安装在中、低轨道的用户航天器(或其它用户平台)上,是外部信号与用户航天器内部设备之间的接口设备。
它通过中继卫星与地面站建立前返向链路,完成信号的接收和发送,通过总线接口与用户航天器的指令分系统、数据分系统、遥测分系统相连接,完成对用户航天器的测控和数据传输。
中继卫星系统用户终端是中继卫星系统的重要组成部分,它不仅具有遥控、遥测、测距、测速功能,还能进行数据的中继传输,因此,其性能的优劣将直接影响系统对用户航天器测轨跟踪与数据通信质量[2]。
跟踪与数据中继卫星系统链路仿真研究摘要:中继卫星运行在地球同步静止轨道,既能直视中低轨道航天器,又能直视地面站,是用户航天器与地面站之间通信的桥梁。
若考虑两颗中继卫星,则中低轨用户航天器基本上在中继卫星星座的覆盖范围之内,能够进行正常通信。
本文利用opnet建立tdrs系统,并对链路层进行了仿真,为上层网络的研究和分析奠定了基础。
关键词:跟踪与数据中继卫星系统;卫星链路;opnet;数据吞吐量1 引言跟踪与数据中继卫星系统tdrss(tracking and data relay satellite system)是为中、低轨道的航天器与航天器之间、航天器与地面站之间提供数据中继、连续跟踪与轨道测控服务的系统。
由于这个系统中的同步卫星从地球同步轨道向地球俯视,这可形象地视为把测控站搬到了天上的同步卫星轨道,故又称为“天基测控系统”[1]。
中继卫星系统主要用于:为载人飞船、低轨卫星、空间站提供与地面之间的连续不断的通信;为航天器间的交会对接和分离提供导航和测控手段;连续跟踪航天器,转发测距和多普勒频移信息,实现对其轨道的精确测控;实时地把航天器所获得的大量遥感、遥测数据等以高速率转发给地面。
2 中继卫星系统的组成中继卫星系统一般有3部分组成。
(1)空间部分(2)用户航天器中继卫星系统的主要用户是中低轨道的各种航天器,尤其是要求高轨道覆盖率的载人航天器和高数据传速率的用户星等。
该系统还可以用于动态运载火箭的全程遥测数据传输,以及为运载火箭或导弹发送遥控指令[2]。
(3)地面部分地面测控终端站主要向用户航天器发送遥测摇控、跟踪信号,该指令通过中继卫星转发,在中继卫星与用户航天器之间建立通信链路,发送给用户航天器。
美国的地球终端设在地球纬度低、处于沙漠地带雨量少、对ku波段传播减少的白沙靶场。
地球终端站装备了3副18米天线,每副天线对空间站某一颗星建立馈电通信链路;一副6米天线用作星地之间测控,还有其他辅助天线4副。
1.【卫星通信系统概念】卫星通信是地球上多个地球站(包括陆地、水面和大气层)利用空中人造通信卫星作为中继站而进行的无线电通信。
卫星通信系统是由通信卫星、地球站和跟踪遥测及指令分系统和监控管理分系统。
通信卫星由若干个转发器、数副天线与位置和姿态控制、遥测和指令、电源分系统组成,其主要作用是转发各地球站信号。
地球站由天线、发射、接受、终端分系统及电源、监控和地面设备组成,主要作用是发射和接受用户信号。
跟踪遥测指令站是用来接收卫星发来的信标和各种数据,然后经过分析处理,再向卫星发出指令去控制卫星的位置、姿态及各部分工作状态。
监控管理分系统对在轨卫星的通信性能及参数进行业务开道前的监测和业务开通后的例行监测与控制,以便保证通信卫星的正常运行和工作2.卫星通信体制所谓通信体制,是指通信系统采用的信号传输方式和信号交换方式。
卫星通信系统的体制主要包括基带信号的类型及复用方式、中频(或射频)信号的调制方式、多址联接方式、信道分配方式等四个方面的内容。
其中复用方式和调制方式是无线通信中都要涉及到的,而多址联接和多址分配是卫星通信所特有的.3. 卫星通信地球站卫星通信系统中设置在地球上(包括大气层中)的通信终端站。
用户通过卫星通信地球站接入卫星通信线,进行相互间的通信。
主要业务为电话、电报、传真、电传、电视和数据传输。
卫星通信地球站按使用方式分为固定站、可搬运站和移动站(船载、车载、飞机载);按通信性能分为标准站和非标准站。
在标准站中又分为A、B、C、D 4种类型。
典型的卫星通信地球站的基本组成包括:天线系统、高功率发射系统、低噪声接收系统、信道终端系统、电源系统、监控系统。
为实现用户间通信,还需有地面接口系统、信息传输系统和信息交换中心。
近年来世界各国竞相发展便于移动、便于安装的小型卫星通信地球站,发展了一种非常小口径通信终端()地球站,具有广阔的应用前景。
4.卫星通信的线路 (sorry 设计与测试未找到资料)在一个卫星通信系统中,各地球站经过通信卫星转发器可以组成多条单跳单工或双跳单工卫星通信线路。
1.【卫星通信系统概念】卫星通信是地球上多个地球站(包括陆地、水面和大气层)利用空中人造通信卫星作为中继站而进行的无线电通信。
卫星通信系统是由通信卫星、地球站和跟踪遥测及指令分系统和监控管理分系统。
通信卫星由若干个转发器、数副天线与位置和姿态控制、遥测和指令、电源分系统组成,其主要作用是转发各地球站信号。
地球站由天线、发射、接受、终端分系统及电源、监控和地面设备组成,主要作用是发射和接受用户信号。
跟踪遥测指令站是用来接收卫星发来的信标和各种数据,然后经过分析处理,再向卫星发出指令去控制卫星的位置、姿态及各部分工作状态。
监控管理分系统对在轨卫星的通信性能及参数进行业务开道前的监测和业务开通后的例行监测与控制,以便保证通信卫星的正常运行和工作2.卫星通信体制所谓通信体制,是指通信系统采用的信号传输方式和信号交换方式。
卫星通信系统的体制主要包括基带信号的类型及复用方式、中频(或射频)信号的调制方式、多址联接方式、信道分配方式等四个方面的内容。
其中复用方式和调制方式是无线通信中都要涉及到的,而多址联接和多址分配是卫星通信所特有的.3. 卫星通信地球站卫星通信系统中设置在地球上(包括大气层中)的通信终端站。
用户通过卫星通信地球站接入卫星通信线,进行相互间的通信。
主要业务为电话、电报、传真、电传、电视和数据传输。
卫星通信地球站按使用方式分为固定站、可搬运站和移动站(船载、车载、飞机载);按通信性能分为标准站和非标准站。
在标准站中又分为A、B、C、D 4种类型。
典型的卫星通信地球站的基本组成包括:天线系统、高功率发射系统、低噪声接收系统、信道终端系统、电源系统、监控系统。
为实现用户间通信,还需有地面接口系统、信息传输系统和信息交换中心。
近年来世界各国竞相发展便于移动、便于安装的小型卫星通信地球站,发展了一种非常小口径通信终端(VSAT)地球站,具有广阔的应用前景。
4.卫星通信的线路 (sorry 设计与测试未找到资料)在一个卫星通信系统中,各地球站经过通信卫星转发器可以组成多条单跳单工或双跳单工卫星通信线路。
跟踪与数据中继卫星,以其能较大幅度地覆盖和转发地球站对中、低轨道航天器的跟踪测控信号并对中、低轨道航天器发回地面的数据、图像、话音等信息进行实时、连续的中继等优势,逐渐成为发展航天技术越来越重要的项目。
美国与俄罗斯两国的跟踪与数据中继卫星已组网运行,现正在发展后续系统;欧空局和日本在这种卫星的发展中以其新思路和技术途径,大有后来居上之趋势。
一、美国的跟踪与数据中继卫星(TDRS)系统1 用10年时间完成了第一代TDRS系统的组网1983年4月4日,美国挑战者号航天飞机发射了第一颗跟踪与数据中继卫星(TDRS-1),直至1993年1月第6颗(TDRS 6)卫星发射后,该系统具有了在轨运行和轨道备份能力,这才真正完成其组网过程。
除去研制时间外,其发射时间跨度长达10年,足以证明这是一项难度很大的工作。
美国之所以如此坚持不懈地努力发展这一系统,重要原因就是它是一种作用很大的卫星。
由于发射失败和卫星本身故障,直到1991年发射第5颗卫星(TDRS 5)时,美国只能保持一颗完好的卫星在轨,虽然其间也曾有过2颗工作卫星在轨的情况,但没有足够的轨道备份。
尽管如此,这种卫星系统已发挥了很大作用,它曾为12种以上各种中、低轨道航天器提供跟踪与数据中继业务。
美国这一系统的发展,基本适应于各种用户航天器发展的规模和速度,因此其系统利用率及服务能力(注:系统利用率定义为系统运行时间与向用户实际提供业务的时间比,用以衡量系统容量是否存在浪费问题。
系统服务能力定义为系统所具有的业务能力与所安排的用户实际业务之比,用以衡量系统设计对用户航天器需求的适应性)均较高。
统计表明,自1989 年该系统全部投入运行以来,平均系统利用率已超过99%,1990年5月1日至1991 年10月31日期间,系统利用率接近100%,系统服务能力也超过99%。
美国TDRS系统的经济效益也是可观的。
该系统年投入的运行费用约6500万美元,其经济效益不仅表现在大量民用中、低轨道航天器为使用该系统所交纳的费用,仅军用中、低轨道航天器使用该系统每年就付费达1亿美元。
天链中继卫星系统天宫看电视?从中国“天链”浅析中继卫星系统原理及应用2016年10月21日晚上,中央电视台《新闻联播》首次在太空播出,景海鹏、陈冬两名航天员在天宫二号实验舱内,首次天地同步收看到了《新闻联播》节目。
除了同步收看《新闻联播》,据称航天员还可以与地面人员进行实时的视频通话。
这看似是很简单的一项任务,但实际上这需要强大的航天测控能力在背后进行支持,特别是全球数据中继卫星的支持。
一、航天测控催生中继卫星从1957年人类发射第一颗人造卫星开始,航天测控成为一项非常重要的技术。
航天测控是人类拽紧卫星这只风筝的线,人们都想牢牢地把卫星拽在手上,监控它的状态,和它进行通信。
在冷战期间,美苏两个超级大国凭借强大的经济、政治、外交实力在全球多个地区建立了地面测控站,造了无数测控船和飞机。
然而,除非地球上密密麻麻遍布地球测控站,否则时时刻刻与卫星保持通信是不可能的。
人们想,既然同步卫星可以实现几乎全球覆盖的通信,那么让同步卫星作为中继器,担负中低轨卫星的传话筒,问题即可迎刃而解。
这样的卫星叫做跟踪与数据中继卫星,即用于转发地球站对中低轨道航天器的跟踪测控信号和中继航天器发回地面的消息的地球静止通信卫星。
它能够实现对中低轨航天器85%~100%的轨道覆盖。
这样的卫星系统就称为跟踪与数据中继卫星系统(Tracking and Data Relay Satellite System),简称TDRSS。
美国是最早实现TDRSS的国家。
其第一代系统由6颗卫星组成,可以实现20个用户的多址业务,S波段多址前向链路最大数据率可以达到10kb/s,单址数据率可以达到6Mb/s。
第二代系统的单址数据率提高了30倍。
前苏联也发射了它们的TDRSS,用于礼炮空间站和地面控制站的数据交换。
欧空局和日本也发射了TDRSS卫星。
二、中国智慧打造中国天链2003年,中国人首次实现了载人航天。
然而,那时我国的中继卫星系统尚未建立,神舟飞船只能在进入地面测控站测控弧段时才能进行天地沟通。