2016届高考数学大一轮复习 第二章 12函数模型及其应用课件 文
- 格式:ppt
- 大小:302.00 KB
- 文档页数:2
第二章 基本初等函数、导数及其应用 2.11 变化率与导数、导数的计算课时规范训练 理 北师大版[A 级 基础演练]1.(2016·江西赣州高三检测)已知t 为实数,f (x )=(x 2-4)·(x -t )且f ′(-1)=0,则t 等于( )A .0B .-1 C.12D .2解析:依题意得,f ′(x )=2x (x -t )+(x 2-4)=3x 2-2tx -4,∴f ′(-1)=3+2t -4=0,即t =12.答案:C2.(2014·高考大纲全国卷)曲线y =x e x -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1解析:y ′=e x -1+x ex -1=(x +1)ex -1,故曲线在点(1,1)处的切线斜率为y ′| x =1=2.答案:C3.(2016·长春质检)已知函数f (x )在R 上满足f (2-x )=2x 2-7x +6,则曲线y =f (x )在(1,f (1))处的切线方程是( )A .y =2x -1B .y =xC .y =3x -2D .y =-2x +3解析:法一:令x =1得f (1)=1,令2-x =t ,可得x =2-t ,代入f (2-x )=2x 2-7x +6得f (t )=2(2-t )2-7(2-t )+6,化简整理得f (t )=2t 2-t ,即f (x )=2x 2-x ,∴f ′(x )=4x -1,∴f ′(1)=3.∴所求切线方程为y -1=3(x -1),即y =3x -2.法二:令x =1得f (1)=1,由f (2-x )=2x 2-7x +6,两边求导可得f ′(2-x )·(2-x )′=4x -7,令x =1可得-f ′(1)=-3,即f ′(1)=3.∴所求切线方程为y -1=3(x -1),即y =3x -2. 答案:C4.(2016·宜昌模拟)已知函数f (x )=13x 3+3xf ′(0),则f ′(1)等于________.解析:∵f ′(x )=x 2+3f ′(0), ∴f ′(0)=0+3f ′(0),即f ′(0)=0,∴f ′(x )=x 2,则有f ′(1)=1. 答案:15.(2016·烟台诊断)已知曲线y =a sin x +cos x 在x =0处的切线方程为x -y +1=0,则实数a 的值为________.解析:因为y ′=a cos x -sin x ,y ′| x =0=a ,根据题意知a =1. 答案:16.曲线y =x (3ln x +1)在点(1,1)处的切线方程为________. 解析:y ′=3ln x +4,∴k =y ′|x =1=4,∴y -1=4(x -1), ∴y =4x -3. 答案:y =4x -3 7.求下列函数的导数:(1)y =x +x 5+sin x x 2;(2)y =(x +1)(x +2)(x +3); (3)y =-sin x 2⎝ ⎛⎭⎪⎫1-2cos 2x 4;(4)y =11-x +11+x ; (5)y =cos 2xsin x +cos x .解:(1)∵y =x 12+x 5+sin xx 2=x -32+x 3+sin x x 2,∴y ′=(x-3/2)′+(x 3)′+(x -2sin x )′=-32x -52+3x 2-2x -3sin x +x -2cos x .(2)∵y =(x 2+3x +2)(x +3)=x 3+6x 2+11x +6, ∴y ′=3x 2+12x +11.(3)∵y =-sin x 2⎝⎛⎭⎪⎫-cos x 2=12sin x ,∴y ′=⎝ ⎛⎭⎪⎫12sin x ′=12(sin x )′=12cos x . (4)∵y =11-x +11+x =1+x +1-x1-x 1+x=21-x,∴y ′=⎝ ⎛⎭⎪⎫21-x ′=-21-x ′1-x 2=21-x 2.(5)y =cos 2xsin x +cos x=cos x -sin x ,∴y ′=-sin x -cos x .8.(2016·渭南质检)已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)点P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程. 解:(1)由y =x 3+x -2,得y ′=3x 2+1, 由已知令3x 2+1=4,解之得x =±1. 当x =1时,y =0;当x =-1时,y =-4.又∵点P 0在第三象限,∴切点P 0的坐标为(-1,-4). (2)∵直线l ⊥l 1,l 1的斜率为4, ∴直线l 的斜率为-14.∵l 过切点P 0,点P 0的坐标为(-1,-4). ∴直线l 的方程为y +4=-14(x +1),即x +4y +17=0.[B 级 能力突破]1.(2016·昆明市高三调研)若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =( )A .-1B .0C .1D .2解析:依题意得,f ′(x )=-a sin x ,g ′(x )=2x +b , 于是有f ′(0)=g ′(0),即-a sin 0=2×0+b ,b =0,m =f (0)=g (0),即m =a =1,因此a +b =1.答案:C2.(2016·石家庄一检)已知函数f (x )=a sin x +bx 3+4(a ∈R ,b ∈R ),f ′(x )为f (x )的导函数,则f (2 015)+f (-2 015)+f ′(2 016)-f ′(-2 016)=( )A .0B .2 015C .2 016D .8解析:设g (x )=a sin x +bx 3,∴f (x )=g (x )+4,且g (-x )=-g (x ),所以f (2 015)+f (-2 015)=g (2 015)+4+g (-2 015)+4=8,又因为f ′(x )=a cos x +3bx 2,所以f ′(x )为R 上的偶函数,则f ′(2 016)-f ′(-2 016)=0,所以f (2 015)+f (-2 015)+f ′(2 016)-f ′(-2 016)=8,故选D.答案:D3.(2014·高考新课标全国卷Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3解析:令f (x )=ax -ln(x +1),则f ′(x )=a -1x +1.由导数的几何意义可得在点(0,0)处的切线的斜率为f ′(0)=a -1.又切线方程为y =2x ,则有a -1=2,∴a =3.答案:D4.(2016·郑州模拟)已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是________.解析:∵y =4e x +1,∴y ′=-4exe x+12=-4e xe 2x +2e x+1=-4e x +1ex +2. ∵e x >0,∴e x+1ex ≥2,∴y ′∈[-1,0),∴tan α∈[-1,0). 又α∈[0,π),∴α∈⎣⎢⎡⎭⎪⎫3π4,π.答案:⎣⎢⎡⎭⎪⎫3π4,π5.(2015·高考课标卷Ⅱ)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:法一:∵y =x +ln x ,∴y ′=1+1x,y ′x =1=2.∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1.∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+a +2x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8.法二:同方法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1).∵y ′=2ax +(a +2),∴y ′x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+a +2=2,ax 20+a +2x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.答案:86.(2014·高考江苏卷)在平面直角坐标系xOy 中,若曲线y =ax 2+bx(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是________.解析:y =ax 2+b x 的导数为y ′=2ax -b x2, 直线7x +2y +3=0的斜率为-72.由题意得⎩⎪⎨⎪⎧4a +b2=-5,4a -b 4=-72,解得⎩⎪⎨⎪⎧a =-1,b =-2,则a +b =-3.答案:-37.已知曲线C n :y =nx 2,点P n (x n ,y n )(x n >0,y n >0)是曲线C n 上的点(n =1,2,…). (1)试写出曲线C n 在点P n 处的切线l n 的方程,并求出l n 与y 轴的交点Q n 的坐标; (2)若原点O (0,0)到l n 的距离与线段P n Q n 的长度之比取得最大值,试求点P n 的坐标(x n ,y n ).解:(1)∵y ′=2nx ,∴y ′|x =x n =2nx n ,切线l n 的方程为:y -n ·x 2n =2nx n (x -x n ). 即:2nx n ·x -y -n ·x 2n =0,令x =0, 得y =-nx 2n , ∴Q n (0,-nx 2n ).(2)设原点到l n 的距离为d ,则d =|-nx 2n |2nx n2+1=nx 2n1+4n 2x 2n, |P n Q n |=x 2n +2nx 2n 2.所以d |P n Q n |=n |x n |1+4n 2x 2n ≤n |x n |2·1·|2n ·x n |=14, 当且仅当1=4n 2x 2n , 即x 2n =14n2(x n >0)时,等号成立, 此时,x n =12n ,所以,P n ⎝ ⎛⎭⎪⎫12n ,14n .。
课时达标检测(十二) 函数与方程[练基础小题——强化运算能力]1.已知函数f (x )=6x-log 2x ,在下列区间中,包含 f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)解析:选C 因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4),故选C.2.函数f (x )=x 12-⎝ ⎛⎭⎪⎫12x的零点个数为( )A .0B .1C .2D .3解析:选B 令f (x )=0,得x 12=⎝ ⎛⎭⎪⎫12x ,在平面直角坐标系中分别画出函数y =x 12与y=⎝ ⎛⎭⎪⎫12x的图象(图略),可得交点只有一个,所以零点只有一个,故选B. 3.若f (x )是奇函数,且x 0是y =f (x )+e x的一个零点,则-x 0一定是下列哪个函数的零点( )A .y =f (-x )e x-1 B .y =f (x )e -x+1 C .y =e xf (x )-1D .y =e xf (x )+1解析:选C 由已知可得f (x 0)=-e x 0,则e -x 0f (x 0)=-1,e -x 0f (-x 0)=1,故-x 0一定是y =e xf (x )-1的零点.4.函数f (x )=2x-2x-a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A .(1,3)B .(1,2)C .(0,3)D .(0,2)解析:选C 因为f (x )在(0,+∞)上是增函数,则由题意得f (1)·f (2)=(0-a )(3-a )<0,解得0<a <3,故选C.5.(2016·天津六校联考)已知函数y =f (x )的图象是连续的曲线,且对应值如表:则函数y 解析:依题意知f (2)>0,f (3)<0,f (4)>0,f (5)<0,根据零点存在性定理可知,f (x )在区间(2,3),(3,4),(4,5)内均至少含有一个零点,故函数y =f (x )在区间[1,6]上的零点至少有3个.答案:3[练常考题点——检验高考能力]一、选择题1.设a 是方程2ln x -3=-x 的解,则a 在下列哪个区间内( ) A .(0,1) B .(3,4) C .(2,3)D .(1,2)解析:选D 令f (x )=2ln x -3+x ,则函数f (x )在(0,+∞)上递增,且f (1)=-2<0,f (2)=2ln 2-1=ln 4-1>0,所以函数f (x )在(1,2)上有零点,即a 在区间(1,2)内.2.已知a 是函数f (x )=2x-log 12x 的零点,若0<x 0<a ,则f (x 0)的值满足( )A .f (x 0)=0B .f (x 0)>0C .f (x 0)<0D .f (x 0)的符号不确定解析:选C 在同一坐标系中作出函数y =2x,y =log 12x 的图象(图略),由图象可知,当0<x 0<a 时,有2x 0<log 12x 0,即f (x 0)<0.3.若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点有( )A .多于4个B .4个C .3个D .2个解析:选B 因为偶函数f (x )满足f (x +2)=f (x ),故函数的周期为2.当x ∈[0,1]时,f (x )=x ,故当x ∈[-1,0]时,f (x )=-x .函数y =f (x )-log 3|x |的零点的个数等于函数y=f (x )的图象与函数y =log 3|x |的图象的交点个数.在同一个坐标系中画出函数y =f (x )的图象与函数y =log 3|x |的图象,如图所示:显然函数y =f (x )的图象与函数y =log 3|x |的图象有4个交点,故选B.4.已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,x -2,x >2,函数g (x )=3-f (2-x ),则函数y =f (x )-g (x )的零点个数为( )A .2B .3C .4D .5解析:选A 由已知条件得g (x )=3-f (2-x )=⎩⎪⎨⎪⎧|x -2|+1,x ≥0,3-x 2,x <0,分别画出函数y =f (x ),y =g (x )的草图,观察发现有2个交点.故选A.5.(2016·山西四校联考)函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≥0,f x +,x <0,若方程f (x )=-x +a 有且只有两个不相等的实数根,则实数a 的取值范围为( )A .(-∞,0)B .[0,1)C .(-∞,1)D .[0,+∞)解析:选C 函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≥0,f x +,x <0的图象如图所示,作出直线l :y =a -x ,向左平移直线l ,观察可得当函数y =f (x )的图象与直线l :y =-x +a 的图象有两个交点,即方程f (x )=-x +a 有且只有两个不相等的实数根时,有a <1,故选C.6.(2017·湖南衡阳模拟)函数f (x )的定义域为[-1,1],图象如图1所示,函数g (x )的定义域为[-2,2],图象如图2所示,方程f (g (x ))=0有m 个实数根,方程g (f (x ))=0有n 个实数根,则m +n =( )A .14B .12C .10D .8解析:选A 由题图可知,若f (g (x ))=0,则g (x )=-1或g (x )=0或g (x )=1;由题图2知,g (x )=-1时,x =-1或x =1;g (x )=0时,x 的值有3个;g (x )=1时,x =2或x =-2,故m =7.若g (f (x ))=0,则f (x )=-32或f (x )=32或f (x )=0.由题图1知,f (x )=32与f (x )=-32各有2个;f (x )=0时,x =-1或x =1或x =0,故n =7.由此可得m +n =14.故选A.二、填空题7.若f (x )=⎩⎪⎨⎪⎧x 2-x -1,x ≥2或x ≤-1,1,-1<x <2,则函数g (x )=f (x )-x 的零点为________.解析:要求函数g (x )=f (x )-x 的零点,即求f (x )=x 的根,∴⎩⎪⎨⎪⎧x ≥2或x ≤-1,x 2-x -1=x 或⎩⎪⎨⎪⎧-1<x <2,1=x .解得x =1+2或x =1.∴g (x )的零点为1+2,1.答案:1+2,18.已知f (x )=⎩⎪⎨⎪⎧x +3,x ≤1,-x 2+2x +3,x >1,则函数g (x )=f (x )-e x的零点个数为________.解析:函数g (x )=f (x )-e x的零点个数即为函数y =f (x )与y =e x的图象的交点个数.作出函数图象可知有2个交点,即函数g (x )=f (x )-e x 有2个零点.答案:29.(2016·湖北优质高中联考)函数f (x )=⎝ ⎛⎭⎪⎫12|x -1|+2cos πx (-4≤x ≤6)的所有零点之和为________.解析:题设可转化为两个函数y =⎝ ⎛⎭⎪⎫12|x -1|与y =-2cos πx 在[-4,6]上的交点的横坐标的和,因为两个函数均关于x =1对称,所以两个函数在x =1两侧的交点对称,则每对对称点的横坐标的和为2,分别画出两个函数的图象易知两个函数在x =1两侧分别有5个交点,所以5×2=10.答案:1010.已知0<a <1,k ≠0,函数f (x )=⎩⎪⎨⎪⎧a x,x ≥0,kx +1,x <0,若函数g (x )=f (x )-k 有两个零点,则实数k 的取值范围是________.解析:函数g (x )=f (x )-k 有两个零点,即f (x )-k =0有两个解,即y =f (x )与y =k 的图象有两个交点.分k >0和k <0作出函数f (x )的图象.当0<k <1时,函数y =f (x )与y =k 的图象有两个交点;当k =1时,有一个交点;当k >1或k <0时,没有交点,故当0<k <1时满足题意.答案:(0,1) 三、解答题11.关于x 的二次方程x 2+(m -1)x +1=0在区间[0,2]上有解,求实数m 的取值范围. 解:设f (x )=x 2+(m -1)x +1,x ∈[0,2], ①若f (x )=0在区间[0,2]上有一解,∵f (0)=1>0, ∴f (2)≤0.又∵f (2)=22+(m -1)×2+1,∴m ≤-32.而当m =-32时,f (x )=0在[0,2]上有两解12和2,∴m <-32.②若f (x )=0在区间[0,2]上有两解, 则⎩⎪⎨⎪⎧ Δ≥0,0<-m -12<2,f ,∴⎩⎪⎨⎪⎧m -2-4≥0,-3<m <1,4+m -+1≥0.∴⎩⎪⎨⎪⎧m ≥3或m ≤-1,-3<m <1,m ≥-32.∴-32≤m ≤-1.由①②可知实数m 的取值范围是(-∞,-1].12.已知y =f (x )是定义域为R 的奇函数,当x ∈[0,+∞)时,f (x )=x 2-2x . (1)写出函数y =f (x )的解析式;(2)若方程f (x )=a 恰有3个不同的解,求a 的取值范围. 解:(1)设x <0,则-x >0,∴f (-x )=x 2+2x . 又∵f (x )是奇函数,∴f (x )=-f (-x )=-x 2-2x .∴f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0.(2)方程f (x )=a 恰有3个不同的解,即y =f (x )与y =a 的图象有3个不同的交点,作出y =f (x )与y =a 的图象如图所示,故若方程f (x )=a 恰有3个不同的解,只需-1<a <1,故a 的取值范围为(-1,1).。
函数模型及其应用讲义一、知识梳理1.几类函数模型函数模型 函数解析式一次函数模型 f (x )=ax +b (a ,b 为常数,a ≠0) 反比例函数模型 f (x )=kx+b (k ,b 为常数且k ≠0)二次函数模型 f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0)指数函数模型 f (x )=ba x +c (a ,b ,c 为常数,b ≠0,a >0且a ≠1) 对数函数模型 f (x )=b log a x +c (a ,b ,c 为常数,b ≠0,a >0且a ≠1) 幂函数模型f (x )=ax n +b (a ,b 为常数,a ≠0)2.三种函数模型的性质函数性质y =a x (a >1) y =log a x (a >1) y =x n (n >0) 在(0,+∞)上的增减性单调递增 单调递增 单调递增 增长速度 越来越快 越来越慢 相对平稳 图象的变化 随x 的增大逐渐表现为与y 轴平行随x 的增大逐渐表现为与x 轴平行随n 值变化而各有不同值的比较存在一个x 0,当x >x 0时,有log a x <x n <a x注意:1.解函数应用题的步骤2.“对勾”函数形如f (x )=x +ax(a >0)的函数模型称为“对勾”函数模型:(1)该函数在(-∞,-a ]和[a ,+∞)上单调递增,在[-a ,0)和(0,a ]上单调递减. (2)当x >0时,x =a 时取最小值2a , 当x <0时,x =-a 时取最大值-2a .二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按九折出售,则每件还能获利.()(2)函数y=2x的函数值比y=x2的函数值大.()(3)不存在x0,使0x a<0n x<log a x0.()(4)在(0,+∞)上,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y=x a(a>0)的增长速度.()(5)“指数爆炸”是指数型函数y=a·b x+c(a≠0,b>0,b≠1)增长速度越来越快的形象比喻.()题组二:教材改编2.某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是()A.收入最高值与收入最低值的比是3∶1B.结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D.前6个月的平均收入为40万元3.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x万件时的生产成本为C(x)=12x2+2x+20(万元).一万件售价为20万元,为获取更大利润,该企业一个月应生产该商品数量为______万件.4.]用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为________.题组三:易错自纠5.某市生产总值连续两年持续增加.第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为____________.6.已知某种动物繁殖量y(只)与时间x(年)的关系为y=a log3(x+1),设这种动物第2年有100只,到第8年它们发展到________只.三、典型例题题型一:用函数图象刻画变化过程1.高为H,满缸水量为V的鱼缸的轴截面如图所示,其底部破了一个小洞,满缸水从洞中流出,若鱼缸水深为h时水的体积为v,则函数v=f(h)的大致图象是()2.物价上涨是当前的主要话题,特别是菜价,我国某部门为尽快实现稳定菜价,提出四种绿色运输方案.据预测,这四种方案均能在规定的时间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的是()3.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程.下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油量最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油思维升华:判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:根据实际问题中两变量的变化快慢等特点,结合图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.题型二:已知函数模型的实际问题典例(1)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足函数关系p=at2+bt+c(a,b,c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为________分钟.(2)某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为p 元,销售量为Q 件,则销售量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8 300-170p -p 2,则最大毛利润为(毛利润=销售收入-进货支出)( ) A .30元 B .60元 C .28 000元D .23 000元思维升华:求解所给函数模型解决实际问题的关注点 (1)认清所给函数模型,弄清哪些量为待定系数. (2)根据已知利用待定系数法,确定模型中的待定系数. (3)利用该模型求解实际问题.跟踪训练 (1)拟定甲、乙两地通话m 分钟的电话费(单位:元)由f (m )=1.06(0.5[m ]+1)给出,其中m >0,[m ]是不超过m 的最大整数(如[3]=3,[3.7]=3,[3.1]=3),则甲、乙两地通话6.5分钟的电话费为______元. (2)某工厂生产某种产品固定成本为2 000万元,并且每生产一单位产品,成本增加10万元.又知总收入K 是单位产品数Q 的函数,K (Q )=40Q -120Q 2,则总利润L (Q )的最大值是________万元.题型三:构建函数模型的实际问题 命题点1:构造一次函数、二次函数模型典例 (1)某航空公司规定,乘飞机所携带行李的质量x (kg)与其运费y (元)之间的关系由如图所示的一次函数图象确定,那么乘客可免费携带行李的质量最大为________kg.(2)将进货单价为80元的商品按90元一个出售时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个,为了赚得最大利润,每个售价应定为________元. 命题点2:构造指数函数、对数函数模型典例 一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22. (1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?引申探究:本例的条件不变,试计算:今后最多还能砍伐多少年? 命题点3:构造y =x +ax(a >0)型函数典例 (1)某汽车运输公司购买了一批豪华大客车投入营运,据市场分析,每辆客车营运的总利润y (万元)与营运年数x 的关系如图所示(抛物线的一段),则为使其营运年平均利润最大,每辆客车营运年数为________.(2)某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边夹角为60°(如图),考虑防洪堤坚固性及石块用料等因素,设计其横断面要求面积为93平方米,且高度不低于3米.记防洪堤横断面的腰长为x 米,外周长(梯形的上底线段BC 与两腰长的和)为y 米.要使防洪堤的上面与两侧面的水泥用料最省(即横断面的外周长最小),则防洪堤的腰长x =________.命题点4:构造分段函数模型典例某景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x (元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分). (1)求函数y =f (x )的解析式;(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?思维升华:构建数学模型解决实际问题,要正确理解题意,分清条件和结论,理顺数量关系,将文字语言转化成数学语言,建立适当的函数模型,求解过程中不要忽略实际问题对变量的限制.跟踪训练 (1)某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求.(已知lg 2≈0.301 0,lg 3≈0.477 1)(2)大学毕业生小赵想开一家服装专卖店,经过预算,该门面需要装修费为20 000元,每天需要房租、水电等费用100元,受经营信誉度、销售季节等因素的影响,专卖店销售总收益R 与门面经营天数x 的关系是R (x )=⎩⎪⎨⎪⎧400x -12x 2,0≤x ≤400,80 000,x >400,则总利润最大时,该门面经营的天数是________.函数应用问题:典例 (12分)已知美国某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设公司一年内共生产该款手机x 万部并全部销售完,每万部的销售收入为R (x )万美元,且R (x )=⎩⎪⎨⎪⎧400-6x ,0<x ≤40,7 400x-40 000x 2,x >40.(1)写出年利润W (万美元)关于年产量x (万部)的函数解析式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.四、反馈练习1.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( )x 1.992 3 4 5.15 6.126 y1.5174.041 87.51218.01A.y =2x -2 B .y =12(x 2-1)C .y =log 2xD .y =12log x2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系图象正确的是( )3.国家规定某行业征税如下:年收入在280万元及以下的税率为p %,超过280万元的部分按(p +2)%征税,有一公司的实际缴税比例为(p +0.25)%,则该公司的年收入是( ) A .560万元 B .420万元 C .350万元D .320万元4.某大型民企为激励创新,计划逐年加大研发资金投入.若该民企2016年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该民企全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( ) A .2017年 B .2018年 C .2019年D .2020年5.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10 m 3的,按每立方米m 元收费;用水超过10 m 3的,超过部分加倍收费.某职工某月缴水费16m 元,则该职工这个月实际用水为( ) A .13 m 3 B .14 m 3 C .18 m 3D .26 m 36.某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( ) A .10.5万元 B .11万元 C .43万元D .43.025万元7.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt (其中k 为常数,t 表示时间,单位:小时,y 表示病毒个数),则k =________,经过5小时,1个病毒能繁殖为________个.8.西北某羊皮手套公司准备投入适当的广告费对其生产的产品进行促销.在一年内,根据预算得羊皮手套的年利润L 万元与广告费x 万元之间的函数解析式为L =512-)82(xx (x >0).则当年广告费投入________万元时,该公司的年利润最大.9.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为____m.10.某市用37辆汽车往灾区运送一批救灾物资,假设以v km/h 的速度直达灾区,已知某市到灾区公路线长400 km ,为了安全起见,两辆汽车的间距不得小于2)20(v km ,那么这批物资全部到达灾区的最少时间是________ h(车身长度不计).11.声强级Y (单位:分贝)由公式Y =10lg )10(12I给出,其中I 为声强(单位:W/m 2). (1)平常人交谈时的声强约为10-6 W/m 2,求其声强级;(2)一般常人能听到的最低声强级是0分贝,求能听到最低声强为多少?(3)比较理想的睡眠环境要求声强级Y ≤50分贝,已知熄灯后两位同学在宿舍说话的声强为5×10-7 W/m 2,问这两位同学是否会影响其他同学休息?12.某书商为提高某套丛书的销售量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到15-0.1x 万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格,问: (1)每套丛书售价定为100元时,书商能获得的总利润是多少万元? (2)每套丛书售价定为多少元时,单套丛书的利润最大?13.一艘轮船在匀速行驶过程中每小时的燃料费与速度v 的平方成正比,且比例系数为k ,除燃料费外其他费用为每小时96元.当速度为10海里/小时时,每小时的燃料费是6元.若匀速行驶10海里,当这艘轮船的速度为________海里/小时时,总费用最小.14.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +x (b -a ).这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项.据此可得,最佳乐观系数x =________.15.某地西红柿从2月1日开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/100 kg)与上市时间t (单位:天)的数据如下表:时间t 60 100 180 种植成本Q11684116Q 与上市时间t 的变化关系:Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t . 利用你选取的函数,求得:(1)西红柿种植成本最低时的上市天数是________;(2)最低种植成本是________(元/100 kg).16.某店销售进价为2元/件的产品A,该店产品A每日的销售量y(单位:千件)与销售价格x(单位:元/件)满足关系式y=10x-2+4(x-6)2,其中2<x<6.(1)若产品A销售价格为4元/件,求该店每日销售产品A所获得的利润;(2)试确定产品A的销售价格,使该店每日销售产品A所获得的利润最大.(保留1位小数)。