高中数学三角函数知识点和试题总结
- 格式:pdf
- 大小:455.36 KB
- 文档页数:19
高中数学必修四三角函数知识点总结三角函数是高中数学考试必考的一个内容, 也是很多同学遇到的一个难点, 下面是给大家带来的高中数学必修四三角函数知识点总结, 希望对你有帮助。
高中数学三角函数找知识点总结(一)高中数学三角函数知识点总结:锐角三角函数公式sin =的对边/ 斜边cos =的邻边/ 斜边tan =的对边/ 的邻边cot =的邻边/ 的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方sin2(A) )高中数学三角函数知识点总结:三倍角公式sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a = tan a tan(/3+a) tan(/3-a)高中数学三角函数知识点总结:三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina高中数学三角函数知识点总结:辅助角公式Asin+Bcos=(A^2+B^2)^(1/2)sin(+t), 其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsin+Bcos=(A^2+B^2)^(1/2)cos(-t), tant=A/B降幂公式sin^2()=(1-cos(2))/2=versin(2)/2cos^2()=(1+cos(2))/2=covers(2)/2tan^2()=(1-cos(2))/(1+cos(2))高中数学三角函数知识点总结:推导公式tan+cot=2/sin2tan-cot=-2cot21+cos2=2cos^21-cos2=2sin^21+sin=(sin/2+cos/2)^2=2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa高中数学三角函数知识点总结(二)sin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(3/2)2-sin2a]=4sina(sin260-sin2a)=4sina(sin60+sina)(sin60-sina)=4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]cos[(60-a)/2] =4sinasin(60+a)sin(60-a)cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(3/2)2]=4cosa(cos2a-cos230)=4cosa(cosa+cos30)(cosa-cos30)=4cosa*2cos[(a+30)/2]cos[(a-30)/2]*{-2sin[(a+30)/2]sin[(a-30)/2]} =-4cosasin(a+30)sin(a-30)=-4cosasin[90-(60-a)]sin[-90+(60+a)]=-4cosacos(60-a)[-cos(60+a)]=4cosacos(60-a)cos(60+a)上述两式相比可得tan3a=tanatan(60-a)tan(60+a)高中数学三角函数知识点总结:半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(++)=sincoscos+cossincos+coscossin-sinsinsincos(++)=coscoscos-cossinsin-sincossin-sinsincostan(++)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan)点击下一页分享更多高中数学必修四三角函数知识点总结。
高中数学必修三角函数知识点与题型总结Last updated on the afternoon of January 3, 2021三角函数典型考题归类1.根据解析式研究函数性质例1(天津理)已知函数()2cos (sin cos )1f x x x x x =-+∈R ,.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.【相关高考1】(湖南文)已知函数2πππ()12sin 2sin cos 888f x x x x ⎛⎫⎛⎫⎛⎫=-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.求:(I )函数()f x 的最小正周期;(II )函数()f x 的单调增区间.【相关高考2】(湖南理)已知函数2π()cos 12f x x ⎛⎫=+ ⎪⎝⎭,1()1sin 22g x x =+.(I )设0x x =是函数()y f x =图象的一条对称轴,求0()g x 的值.(II )求函数()()()h x f x g x =+的单调递增区间.2.根据函数性质确定函数解析式例2(江西)如图,函数π2cos()(00)2y x x >ωθωθ=+∈R ,,≤≤的图象与y 轴相交于点(0,且该函数的最小正周期为π. (1)求θ和ω的值;(2)已知点π02A ⎛⎫⎪⎝⎭,,点P 是该函数图象上一点,点00()Q x y ,是PA的中点,当0y =0ππ2x ⎡⎤∈⎢⎥⎣⎦,时,求0x 的值. 【相关高考1】(辽宁)已知函数2ππ()sin sin 2cos 662x f x x x x ωωω⎛⎫⎛⎫=++--∈ ⎪ ⎪⎝⎭⎝⎭R ,(其中0ω>),(I )求函数()f x 的值域;(II )(文)若函数()y f x =的图象与直线1y =-的两个相邻交点间的距离为π2,求函数()y f x =的单调增区间.(理)若对任意的a ∈R ,函数()y f x =,(π]x a a ∈+,的图象与直线1y =-有且仅有两个不同的交点,试确定ω的值(不必证明),并求函数()y f x x =∈R ,的单调增区间. 【相关高考2】(全国Ⅱ)在ABC △中,已知内角A π=3,边BC =.设内角B x =,周长为y . (1)求函数()y f x =的解析式和定义域;(2)求函数()y f x =的最大值. 3.三角函数求值例3(四川)已知cos α=71,cos(α-β)=1413,且0<β<α<2π,(Ⅰ)求tan2α的值;(Ⅱ)求β.【相关高考1】(重庆文)已知函数f (x )=)2sin(42cos 2ππ+⎪⎭⎫ ⎝⎛-x x .(Ⅰ)求f (x )的定义域;(Ⅱ)若角a 在第一象限,且)。
三角函数知识点及题型归纳三角函数是数学中的一个重要分支,在几何、物理、工程等领域都有广泛的应用。
下面我们来详细归纳一下三角函数的知识点和常见题型。
一、三角函数的基本概念1、角的概念角可以分为正角、负角和零角。
按旋转方向,逆时针旋转形成的角为正角,顺时针旋转形成的角为负角,没有旋转的角为零角。
2、弧度制把长度等于半径长的弧所对的圆心角叫做 1 弧度的角。
用弧度作为单位来度量角的制度叫做弧度制。
弧度与角度的换算公式为:180°=π 弧度。
3、任意角的三角函数设角α的终边上任意一点 P 的坐标为(x, y),它与原点的距离为 r(r =√(x²+ y²) > 0),则角α的正弦、余弦、正切分别为:sinα = y/r,cosα = x/r,tanα = y/x(x ≠ 0)。
4、三角函数线有正弦线、余弦线、正切线,它们分别是角α的终边与单位圆交点的纵坐标、横坐标、纵坐标与横坐标的比值。
二、同角三角函数的基本关系1、平方关系:sin²α +cos²α = 12、商数关系:tanα =sinα/cosα三、诱导公式诱导公式可以将任意角的三角函数转化为锐角的三角函数。
例如:sin(π +α) =sinα,cos(π α) =cosα 等。
四、三角函数的图象和性质1、正弦函数 y = sin x图象:是一条波浪形曲线,周期为2π,对称轴为 x =kπ +π/2(k∈Z),对称中心为(kπ, 0)(k∈Z)。
性质:在π/2 +2kπ, π/2 +2kπ(k∈Z)上单调递增,在π/2 +2kπ, 3π/2 +2kπ(k∈Z)上单调递减。
2、余弦函数 y = cos x图象:也是一条波浪形曲线,周期为2π,对称轴为 x =kπ(k∈Z),对称中心为(π/2 +kπ, 0)(k∈Z)。
性质:在π +2kπ, 2kπ(k∈Z)上单调递增,在2kπ, π +2kπ(k∈Z)上单调递减。
高中数学必修4《三角函数》知识点与易错点归纳知识点(一)任意角和弧度制1.与θ终边相同的角的集合是 ;第一或第三象限角的集合是 ;x 轴上的角的集合是 ;2.若α是锐角,则πα-是第 象限角;πα+是第 象限角;2πα-是第 象限角;α-是第 象限角;32πα-是第 象限角;2πα+是第 象限角。
3.180°=π;1°= 弧度; 1弧度= ;圆心角α弧度数的绝对值||α= ;扇形面积公式S = 。
4.角ααcos 2=-,则2α角是 象限角。
知识点二.任意角的三角函数1.任意角的三角函数的定义:设α是任意一个角,(,)P x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin α= ,cos α= ,tan α= 。
2.如图,三角函数线:正弦线是 、余弦线是 、正切线是 ;4.已知角α的终边经过点(3,4)P -,则sin tan αα+的值为 ; 5.函数sin cos tan |sin ||cos ||tan |y αααααα=++的值域是 ; 6.sin cos θθ<⇔ ;sin cos θθ>⇔ 。
知识点三.同角三角函数的基本关系式及诱导公式1.平方关系:22sin cos αα+= ;商数关系:tan α= ;2.已知tan 2α=,则ααααcos sin cos 3sin +-= ;sin cos αα⋅= ;4.1419costan()34ππ+-的值为 ; 5.化简23sin (180)cos(360)sin(270)cos (180)cos(90)tan(180)αααααα+⋅-⋅-=--⋅+⋅+ 。
yTA xα B SO M P知识点四.正弦、余弦、正切公式及倍角公式1.基本公式及变式()()22222sin sin cos cos sin sin 22sin cos 1sin 2(sin cos )cos cos cos sin sin cos2cos sin 2cos 112sin t αβαβαβαβαβαααααααβαβαβααααα==±=±−−−→=⇒±=±±=−−−→=-=-=-↓↓令令 ()222tan tan 2tan 1+cos21cos2an tan 2cos sin 1tan tan 1tan 22αβααααβααααβα±-±=→=- = ,=变式:1tantan tan tan()(1tan tan),tan()1tan4απαβαβαβαα++=+⋅-⋅=+-;sin cos ),sin 2sin(cos 2sin()436πππθθθθθθθθθ±=±±=±±=±2.4411111212cos sin ππ-= ;sin163sin 223sin 253sin313+= ; 3.在ABC ∆中,53sin ,cos 135A B ==,则cos C = ; 4.在直角ABC ∆中,sin sin A B ⋅的最大值为 ;5.已知等腰三角形的一个底角的正弦值为13,则这个三角形的顶角的余弦值是 。
高考数学之三角函数知识点总结高考数学中,三角函数是一个重要的知识点。
它在解三角形、解三角方程和求极限等方面都有广泛应用。
下面是对高考数学中三角函数的知识点进行总结:一、基本概念和性质:1.三角函数的定义:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数的定义。
2.三角函数的周期性:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数的周期性。
3.三角函数的奇偶性:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数的奇偶性。
4.三角函数的范围:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数的范围。
二、基本公式和恒等变换:1.三角函数的和差化积公式。
2.三角函数的倍角公式。
3.三角函数的半角公式。
4.三角函数的和差化积公式的逆运算。
三、极坐标与三角函数:1.极坐标下的坐标转换。
2.极坐标下的两点间距离公式。
四、三角函数的解析式:1.任意角的解析式。
2.一些特殊角的解析式。
五、三角函数的图像与性质:1.正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数的图像和性质。
2.三角函数图像的平移、伸缩和翻转。
3.三角函数的性态。
六、三角函数的应用:1.三角函数在测量中的应用:测量高度、测量角度、计算地理位置等。
2.三角函数在力学中的应用:力的合成、平衡条件等。
3.三角函数在电路中的应用:交流电的正弦表达式等。
4.三角函数在几何中的应用:解三角形、求面积等。
5.三角函数在物理中的应用:波动现象、振动现象等。
以上是高考数学中三角函数的主要知识点总结。
掌握这些知识点,对于解答相关题目、理解相关概念都有很大帮助。
在备考高考数学时,应不断强化基础知识,多进行题目练习和真题训练,同时注重理解和巩固基本概念和性质,提高解题的能力和技巧。
高三复习:三角函数-知识点、题型方法
归纳
一、知识点概述
1. 三角函数的定义和性质
- 正弦函数、余弦函数、正切函数的定义及其在数轴上的周期性;
- 三角函数的基本性质和关系:正弦函数与余弦函数的关系,正切函数与正弦函数、余弦函数的关系。
2. 三角函数的图像与性质
- 正弦函数、余弦函数的图像、特征和性质;
- 正切函数的图像、特征和性质。
3. 三角函数的基本变换
- 函数y = A · sin(Bx + C) + D的图像、特征和性质;
- 函数y = A · cos(Bx + C) + D的图像、特征和性质;
- 函数y = A · tan(Bx + C) + D的图像、特征和性质。
二、题型方法归纳
1. 计算题
- 利用三角函数的定义和性质,求解给定角的正弦、余弦、正切值;
- 利用三角函数的图像和性质,求解特定函数值。
2. 解方程和不等式
- 利用三角函数的定义和性质,解三角方程和三角不等式。
3. 图像分析题
- 分析三角函数的图像特征,如振幅、周期、对称轴等;
- 利用函数的基本变换,画出特定三角函数图像。
4. 证明题
- 利用三角函数的基本性质和关系,进行数学推导和证明。
三、总结
三角函数是高中数学的重要内容,通过复和掌握三角函数的知识点和题型方法,可以帮助学生提高解题能力和应用能力。
在复过程中,建议注重基本概念的理解、公式的记忆和方法的灵活运用,以及多做相关题目进行巩固和实践。
以上是三角函数复习的知识点和题型方法归纳,希望对你的高三复习有所帮助。
祝你学业进步,取得好成绩!。
高中数学第五章三角函数重点知识点大全单选题1、若sinα+cosαsinα−cosα=12,则tan (α+π4)的值为( ) A .−2B .2C .−12D .12 答案:C分析:利用弦化切和两角和的正切展开式化简计算可得答案. 因为sinα+cosαsinα−cosα=12.所以tanα+1tanα−1=12,解得tanα=−3,于是tan (α+π4)=tanα+tanπ41−tanαtanπ4=−3+11−(−3)=−12.故选:C.2、已知角α的终边经过点P (−3,4),则sinα−cosα−11+tanα的值为( )A .−65B .1C .2D .3答案:A分析:由三角函数的定义可得sinα=45,cosα=−35,tanα=−43,将其代入即可求解.由√(−3)2+42=5,得sinα=45,cosα=−35,tanα=−43,代入原式得=45−(−35)−11+(−43)=−65.故选:A3、记函数f(x)=sin (ωx +π4)+b(ω>0)的最小正周期为T .若2π3<T <π,且y =f(x)的图象关于点(3π2,2)中心对称,则f (π2)=( ) A .1B .32C .52D .3答案:A分析:由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解. 由函数的最小正周期T 满足2π3<T <π,得2π3<2πω<π,解得2<ω<3,又因为函数图象关于点(3π2,2)对称,所以3π2ω+π4=kπ,k ∈Z ,且b =2,所以ω=−16+23k,k ∈Z ,所以ω=52,f(x)=sin (52x +π4)+2, 所以f (π2)=sin (54π+π4)+2=1. 故选:A4、已知tanα=cosα2−sinα,则sinα=( ) A .√154B .12C .√32D .14答案:B分析:利用田家四季歌的基本关系得到sinαcosα=cosα2−sinα,整理可得2sinα=cos 2α+sin 2α,再根据平方关系计算可得;解:由tanα=cosα2−sinα,得sinαcosα=cosα2−sinα,即cos 2α=2sinα−sin 2α,∴2sinα=cos 2α+sin 2α=1, 解得sinα=12, 故选:B.5、已知sinαcosα=−16,π4<α<3π4,则sinα−cosα的值等于( )A .2√33B .−2√33C .−√63D .43答案:A分析:结合同角三角函数的基本关系式,利用平方的方法求得正确结论. 由于sinαcosα=−16,π4<α<3π4,所以sinα>0,cosα<0,故sinα−cosα>0,所以sinα−cosα=√(sinα−cosα)2=√1−2sinαcosα=√1+13=2√33. 故选:A6、√3tan26∘tan34∘+tan26∘+tan34∘= ( ) A .√33B .−√3C .√3D .−√33答案:C解析:利用两角和的正切公式,特殊角的三角函数值化简已知即可求解.解:√3tan26°tan34°+tan26°+tan34°=√3tan26°tan34°+tan(26°+34°)(1−tan26°tan34°)=√3tan26°tan34°+√3(1−tan26°tan34°) =√3tan26°tan34°+√3−√3tan26°tan34°=√3. 故选:C .7、已知sinθ+sin (θ+π3)=1,则sin (θ+π6)=( ) A .12B .√33C .23D .√22答案:B分析:将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值. 由题意可得:sinθ+12sinθ+√32cosθ=1,则:32sinθ+√32cosθ=1,√32sinθ+12cosθ=√33, 从而有:sinθcos π6+cosθsin π6=√33, 即sin (θ+π6)=√33. 故选:B.小提示:本题主要考查两角和与差的正余弦公式及其应用,属于中等题.8、将函数y =2sin (x +π3)的图象向左平移m (m >0)个单位长度后,所得到的图象关于原点对称,则m 的最小值是( ) A .π12B .π6C .π3D .2π3答案:D分析:由三角函数平移变换可得平移后函数为y =2sin (x +m +π3),根据对称性得到m +π3=kπ(k ∈Z ),结合m >0可得所求最小值.将y =2sin (x +π3)向左平移m (m >0)个单位长度得:y =2sin (x +m +π3),∵y=2sin(x+m+π3)图象关于原点对称,∴m+π3=kπ(k∈Z),解得:m=−π3+kπ(k∈Z),又m>0,∴当k=1时,m取得最小值2π3.故选:D.多选题9、已知tanθ=2,则下列结论正确的是()A.tan(π−θ)=−2B.tan(π+θ)=−2C.sinθ−3cosθ2sinθ+3cosθ=−17D.sin2θ=45答案:ACD分析:对于A,B利用诱导公式可求解;对于C,D利用齐次式化简可判断. 对于A选项,tan(π−θ)=−tanθ=−2,故A选项正确;对于B选项,tan(π+θ)=tanθ=2,故B选项错误;对于C选项,sinθ−3cosθ2sinθ+3cosθ=tanθ−32tanθ+3=2−34+3=−17,故C选项正确;对于D选项,sin2θ=2sinθcosθ=2sinθcosθsin2θ+cos2θ=2tanθtan2θ+1=44+1=45,故D选项正确.故选:ACD10、下列选项中,与sin(−330∘)的值相等的是()A.2cos215∘B.cos18∘cos42∘−sin18∘sin42∘C.2sin15∘sin75∘D.tan30∘+tan15∘+tan30∘tan15∘答案:BC分析:求出sin(−330∘)的值以及各选项中代数式的值,由此可得出合适的选项.sin(−330∘)=sin(360∘−330∘)=sin30∘=12.对于A选项,2cos215∘=2×1+cos30∘2=1+cos30∘=1+√32;对于B选项,cos18∘cos42∘−sin18∘sin42∘=cos(18∘+42∘)=cos60∘=12;对于C选项,2sin15∘sin75∘=2sin15∘sin(90∘−15∘)=2sin15∘cos15∘=sin30∘=12;对于D选项,∵tan45∘=tan(30∘+15∘)=tan30∘+tan15∘1−tan30∘tan15∘=1,化简可得tan30∘+tan15∘+tan30∘tan15∘=1.故选:BC.11、已知tanα=4,tanβ=−14,则( )A .tan(−α)tanβ=1B .α为锐角C .tan(β+π4)=35D .tan2α=tan2β 答案:ACD分析:由诱导公式可判断A ,由正切函数的定义可判断B ,由正切函数的两角和公式可判断C ,由二倍角公式可判断D.对于A ,∵tanα=4,tanβ=−14,∴tan(−α)tanβ=−tanαtanβ=1,故A 正确;对于B ,∵tanα=4>0,∴α为第一象限角或第三象限角,故B 错误; 对于C ,∵tanβ=−14,∴tan(β+π4)=1+tanβ1−tanβ=35,故C 正确;对于D ,∵tanα=4,tanβ=−14,∴tan2α=2tanα1−tan 2α=2×41−42=−815,tan2β=2×(−14)1−(−14)2=−815,故D 正确.故选:ACD12、设α是第三象限角,则α2所在象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限 答案:BD解析:用不等式表示第三象限角α,再利用不等式的性质求出α2满足的不等式,从而确定α2的终边所在的象限.∵α是第三象限角,∴k ⋅360°+180°<α<k ⋅360°+270°,k ∈Z , 则k ⋅180°+90°<α2<k ⋅180°+135°,k ∈Z ,令k =2n ,n ∈Z 有n ⋅360°+90°<α2<n ⋅360°+135°,n ∈Z ;在二象限;k =2n +1,n ∈z , 有n ⋅360°+270°<α2<n ⋅360°+315°,n ∈Z ;在四象限;故选:B D .小提示:本题考查象限角的表示方法,不等式性质的应用,通过角满足的不等式,判断角的终边所在的象限,属于容易题.13、下列化简正确的是A.tan(π+1)=tan1B.sin(−α)tan(360∘−α)=cosαC.sin(π−α)cos(π+α)=tanαD.cos(π−α)tan(−π−α)sin(2π−α)=1答案:AB解析:利用诱导公式,及tanα=sinαcosα,依次分析即得解利用诱导公式,及tanα=sinαcosαA选项:tan(π+1)=tan1,故A正确;B选项:sin(−α)tan(360o−α)=−sinα−tanα=sinαsinαcosα=cosα,故B正确;C选项:sin(π−α)cos(π+α)=sinα−cosα=−tanα,故C不正确;D选项:cos(π−α)tan(−π−α)sin(2π−α)=−cosα⋅(−tanα)−sinα=−cosα⋅sinαcosαsinα=−1,故D不正确故选:AB小提示:本题考查了诱导公式和同角三角函数关系的应用,考查了学生概念理解,转化划归,数学运算能力,属于基础题.填空题14、已知函数f(x)=3sin(ωx+π6)(ω>0)在(0,π12)上单调递增,则ω的最大值是____.答案:4分析:根据正弦型函数的单调性即可求解.由函数f(x)=3sin(ωx+π6)(ω>0)在区间(0,π12)上单调递增,可得ω⋅π12+π6≤π2,求得ω≤4,故ω的最大值为4,所以答案是:415、已知f(x)=2sin(2x+π3),若∃x1,x2,x3[0,3π2],使得f(x1)=f(x2)=f(x3),若x1+x2+x3的最大值为M,最小值为N,则M+N=___________.答案:23π6分析:作出f(x)在[0,3π2]上的图象,x1,x2,x3为f(x)的图象与直线y=m交点的横坐标,利用数形结合思想即可求得M和N﹒作出f(x)=2sin(2x+π3)在[0,3π2]上的图象(如图所示)因为f(0)=2sinπ3=√3,f(3π2)=2sin(π+π3)=−√3,所以当f(x)的图象与直线y=√3相交时,由函数图象可得,设前三个交点横坐标依次为x1、x2、x3,此时和最小为N,由2sin(2x+π3)=√3,得sin(2x+π3)=√32,则x1=0,x2=π6,x3=π,N=7π6;当f(x)的图象与直线y=−√3相交时,设三个交点横坐标依次为x1、x2、x3,此时和最大为M,由2sin(2x+π3)=−√3,得sin(2x+π3)=−√32,则x1+x2=7π6,x3=3π2,M=8π3;所以M+N=23π6.所以答案是:23π6.16、已知角α终边落在直线y=34x上,求值:sinα+1cosα=_______.答案:2或−12解析:由题意利用任意角的三角函数的定义,同角三角函数的基本关系,分类讨论,分别求得sinα和cosα的值,可得要求式子的值.解:当角α终边落在直线y =34x(x ⩾0)上,α为锐角,sinαcosα均为正值,且tanα=sinαcosα=34,再结合sin 2α+cos 2α=1,求得sinα=35,cosα=45, 则sinα+1cosα=35+145=2.当角α终边落在直线y =34x(x <0)上,α∈(π,3π2),sinαcosα均为负值,且tanα=sinαcosα=34,再结合sin 2α+cos 2α=1,求得sinα=−35,cosα=−45, 则sinα+1cosα=−35+1−45=−12,所以答案是:2或−12.小提示:本题主要考查任意角的三角函数的定义,同角三角函数的基本关系,考查运算能力,属于基础题. 解答题17、已知0<α<π2,cos (α+π4)=13.(1)求sinα的值;(2)若−π2<β<0,cos (β2−π4)=√33,求α−β的值.答案:(1)4−√26(2)α−β=π4分析:(1)利用同角三角函数的基本关系结合两角差的正弦公式可求得sinα的值;(2)利用二倍角的余弦公式可求得sinβ的值,利用同角三角函数的基本关系以及两角差的余弦公式求出cos (α−β)的值,结合角α−β的取值范围可求得结果. (1)解:因为0<α<π2,∴π4<α+π4<3π4,又cos(α+π4)=13,所以sin(α+π4)=√1−(13)2=2√23,所以sinα=sin[(α+π4)−π4]=sin(α+π4)cosπ4−cos(α+π4)cosπ4=√22(2√23−13)=4−√26.(2)解:因为cos(β2−π4)=√33,sinβ=cos(β−π2)=cos[2(β2−π4)]=2cos2(β2−π4)−1=2×13−1=−13,又因为−π2<β<0,所以cosβ=√1−sin2β=2√23,由(1)知,cosα=cos[(α+π4)−π4]=cos(α+π4)cosπ4+sin(α+π4)sinπ4=4+√26,所以cos(α−β)=cosαcosβ+sinαsinβ=4+√26×2√23+4−√26×(−13)=√22.因为0<α<π2,−π2<β<0,则0<α−β<π,所以α−β=π4.18、已知函数f(x)=2sinxsin(π3−x)+2cos2x−12.(1)求函数f(x)的单调增区间;(2)当x∈(−π6,π4)时,函数g(x)=f2(x)−2mf(x)+m2−116有四个零点,求实数m的取值范围.答案:(1)[kπ−5π12,kπ+π12],k∈Z(2)2√3+14<m<4√3−14分析:(1)化简f(x)的解析式,根据正弦函数的增区间可得结果;(2)转化为ℎ(t)=t2−2mt+m2−116在(√32,√3)内有两个零点,根据二次函数列式可得结果.(1)f(x)=2sinxsin(π3−x)+2cos2x−12=2sinx(sinπ3cosx−cosπ3sinx)+1+cos2x−12 =√3sinxcosx−sin2x+1+cos2x−12=√32sin2x+cos2x+cos2x−12=√32sin2x+1+cos2x2+cos2x−12=√32sin2x+32cos2x=√3sin(2x +π3),由2kπ−π2≤2x +π3≤2kπ+π2,k ∈Z , 得kπ−512π≤x ≤kπ+π12,k ∈Z ,所以函数f (x )的单调增区间为[kπ−5π12,kπ+π12],k ∈Z . (2)当x ∈(−π6,π4)时,2x +π3∈(0,5π6),f(x)=√3sin(2x +π3)∈(0,√3],因为函数g (x )=f 2(x )−2mf (x )+m 2−116有四个零点,令t =f(x),则t ∈(0,√3)且ℎ(t)=t 2−2mt +m 2−116在(√32,√3)内有两个零点, 所以{Δ=4m 2−4(m 2−116)>0√32<m <√3ℎ(√32)>0ℎ(√3)>0,即{ √32<m <√334−√3m +m 2−16>03−2√3m +m 2−16>0,解得{√32<m <√3m 〈2√3−14或m 〉2√3+14m 〈4√3−14或m 〉4√3+14,解得2√3+14<m <4√3−14,所以实数m 的取值范围是2√3+14<m <4√3−14. 小提示:方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.。
正弦函数、余弦函数的图象知识点正弦函数、余弦函数的图象五点法五点法思考为什么把正弦、余弦曲线向左、右平移2π的整数倍个单位长度后图象形状不变?答案由诱导公式一知sin(x+2kπ)=sin x,cos(x+2kπ)=cos x,k∈Z可得.【基础演练】【基础演练】1.函数y=sin(-x),x∈[0,2π]的简图是()解析y=sin(-x)=-sin x,y=-sin x与y=sin x的图象关于x轴对称,故选B.2.用“五点法”画函数y=1+12sin x的图象时,首先应描出五点的横坐标是() A.0,π4,π2,3π4,π B.0,π2,π,3π2,2πC.0,π,2π,3π,4π D.0,π6,π3,π2,2π3解析 所描出的五点的横坐标与函数y =sin x 的五点的横坐标相同,即0,π2,π,3π2,2π,故选B.3.在同一平面直角坐标系内,函数y =sin x ,x ∈[0,2π]与y =sin x ,x ∈[2π,4π]的图象( ) A .重合 B .形状相同,位置不同 C .关于y 轴对称 D .形状不同,位置不同答案 B解析 根据正弦曲线的作法可知函数y =sin x ,x ∈[0,2π]与y =sin x ,x ∈[2π,4π]的图象只是位置不同,形状相同. 4.在[0,2π]内,不等式sin x <-32的解集是( ) A .(0,π) B.⎝⎛⎭⎫π3,4π3 C.⎝⎛⎭⎫4π3,5π3 D.⎝⎛⎭⎫5π3,2π 解析 画出y =sin x ,x ∈[0,2π]的草图如下.当sin x =-32时,x =4π3或x =5π3, 可知不等式sin x <-32在[0,2π]上的解集是⎝⎛⎭⎫4π3,5π3.故选C. 5.函数y =cos x +4,x ∈[0,2π]的图象与直线y =4的交点的坐标为________.解析 由⎩⎪⎨⎪⎧y =cos x +4,y =4得cos x =0,当x ∈[0,2π]时,x =π2或3π2,∴交点坐标为⎝⎛⎭⎫π2,4,⎝⎛⎭⎫3π2,4.【典型例题】考点一:正弦函数、余弦函数图象的初步认识 例1 (1)下列叙述正确的个数为( )①y =sin x ,x ∈[0,2π]的图象关于点P (π,0)成中心对称; ②y =cos x ,x ∈[0,2π]的图象关于直线x =π成轴对称;③正弦、余弦函数的图象不超过直线y =1和y =-1所夹的范围. A .0 B .1 C .2 D .3解析 分别画出函数y =sin x ,x ∈[0,2π]和y =cos x ,x ∈[0,2π]的图象,由图象(略)观察可知①②③均正确.答案 D(2)函数y =sin |x |的图象是( )答案 B解析 y =sin |x |=⎩⎪⎨⎪⎧sin x ,x ≥0,-sin x ,x <0,结合选项可知选B.反思感悟 解决正弦、余弦函数图象的注意点对于正弦、余弦函数的图象问题,要画出正确的正弦曲线、余弦曲线,掌握两者的形状相同,只是在坐标系中的位置不同,可以通过相互平移得到.跟踪训练1 下列关于正弦函数、余弦函数的图象的描述,不正确的是( ) A .都可由[0,2π]内的图象向上、向下无限延展得到 B .都是对称图形 C .都与x 轴有无数个交点D .y =sin(-x )的图象与y =sin x 的图象关于x 轴对称 答案 A解析 由正弦、余弦函数图象知,B ,C ,D 正确.考点二:用“五点法”作三角函数的图象 例2 用“五点法”作出下列函数的简图: (1)y =sin x -1,x ∈[0,2π]; (2)y =-2cos x +3,x ∈[0,2π]. 解 (1)列表:描点并将它们用光滑的曲线连接起来,如图.(2)列表:描点、连线得出函数y=-2cos x+3,x∈[0,2π]的图象.反思感悟作形如y=a sin x+b(或y=a cos x+b),x∈[0,2π]的图象的三个步骤跟踪训练2利用“五点法”作出函数y=2+cos x(0≤x≤2π)的简图.解列表:描点并将它们用光滑的曲线连接起来,如图.考点三:正弦函数、余弦函数图象的应用 例3 不等式2sin x -1≥0,x ∈[0,2π]解集为( ) A.⎣⎡⎦⎤0,π6 B.⎣⎡⎦⎤0,π4 C.⎣⎡⎦⎤π6,π D.⎣⎡⎦⎤π6,5π6答案 D解析 因为2sin x -1≥0,所以sin x ≥12.在同一直角坐标系下,作函数y =sin x ,x ∈[0,2π]以及直线y =12的图象.由函数的图象知,sin π6=sin 5π6=12.所以根据图象可知,sin x ≥12的解集为⎣⎡⎦⎤π6,5π6. 延伸探究1.在本例中把“x ∈[0,2π]”改为“x ∈R ”,求不等式2sin x -1≥0的解集. 解 在x ∈[0,2π]上的解集为⎣⎡⎦⎤π6,5π6.所以x ∈R 时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪π6+2k π≤x ≤5π6+2k π,k ∈Z . 2.试求关于x 的不等式12<sin x ≤32.解 作出正弦函数y =sin x 在[0,2π]上的图象,作出直线y =12和y =32,如图所示.由图可知,在[0,2π]上当π6<x ≤π3或2π3≤x <5π6时,不等式12<sin x ≤32成立,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪π6+2k π<x ≤π3+2k π或2π3+2k π≤x <5π6+2k π,k ∈Z . 反思感悟 利用三角函数图象解三角不等式sin x >a (cos x >a )的步骤 (1)作出相应的正弦函数或余弦函数在[0,2π]上的图象. (2)确定在[0,2π]上sin x =a (cos x =a )的x 值. (3)写出不等式在区间[0,2π]上的解集. (4)根据公式一写出定义域内的解集.跟踪训练3 求函数y =1-2cos x 的定义域. 解 依题意有1-2cos x ≥0,即cos x ≤12.作出余弦函数y =cos x ,x ∈[0,2π]以及直线y =12的图象,如图所示,由图象可以得到满足条件的x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪π3+2k π≤x ≤5π3+2k π,k ∈Z .根据函数图象求范围典例 函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,则k 的取值范围是________. 答案 (1,3)解析 f (x )=⎩⎪⎨⎪⎧3sin x ,0≤x ≤π,-sin x ,π<x ≤2π.图象如图所示.结合图象可知1<k <3.[素养提升] 关于方程根的个数问题,往往运用数形结合的方法构造函数,转化为函数图象交点的个数问题来解决,体现了直观想象的核心素养.1.(多选)用五点法画y =3sin x ,x ∈[0,2π]的图象时,下列哪个点不是关键点( ) A.⎝⎛⎭⎫π6,32 B.⎝⎛⎭⎫π2,3 C .(π,0) D .(2π,3) 答案 AD解析 五个关键点的横坐标依次是0,π2,π,3π2,2π.代入计算得B ,C 是关键点.2.已知函数f (x )=sin ⎝⎛⎭⎫x +π2,g (x )=cos ⎝⎛⎭⎫x -π2,则f (x )的图象( ) A .与g (x )的图象相同 B .与g (x )的图象关于y 轴对称C .向左平移π2个单位长度,得g (x )的图象D .向右平移π2个单位长度,得g (x )的图象答案 D解析 f (x )=sin ⎝⎛⎭⎫x +π2,g (x )=cos ⎝⎛⎭⎫x -π2=cos ⎝⎛⎭⎫π2-x =sin x , f (x )的图象向右平移π2个单位长度得到g (x )的图象.3.在[0,2π]上,函数y =2sin x -2的定义域是( ) A.⎣⎡⎦⎤0,π4 B.⎣⎡⎦⎤π4,3π4 C.⎣⎡⎦⎤π4,π2D.⎣⎡⎦⎤3π4,π解析 依题意得2sin x -2≥0,即sin x ≥22.作出y =sin x 在[0,2π]上的图象及直线y =22,如图所示.由图象可知,满足sin x ≥22的x 的取值范围是⎣⎡⎦⎤π4,3π4,故选B. 4.函数y =1+sin x ,x ∈[0,2π]的图象与直线y =12交点的个数是( )A .0B .1C .2D .3 答案 C解析 由函数y =1+sin x ,x ∈[0,2π]的图象(如图所示),可知其与直线y =12有2个交点.5.函数f (x )=sin x -1,x ∈[0,2π]的零点为________. 答案 π2解析 令f (x )=0,∴sin x =1,∴又x ∈[0,2π],∴x =π2.6.已知函数f (x )=2cos x +1,若f (x )的图象过点⎝⎛⎭⎫π2,m ,则m =________;若f (x )<0,则x 的取值集合为________.答案 1 ⎩⎨⎧⎭⎬⎫x ⎪⎪2π3+2k π<x <4π3+2k π,k ∈Z 解析 当x =π2时,f (x )=2cos π2+1=1,∴m =1.f (x )<0,即cos x <-12,作出y =cos x 在x ∈[0,2π]上的图象,如图所示.由图知x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪2π3+2k π<x <4π3+2k π,k ∈Z . 7.根据y =cos x 的图象解不等式:-32≤cos x ≤12,x ∈[0,2π]. 解 函数y =cos x ,x ∈[0,2π]的图象如图所示:根据图象可得不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪π3≤x ≤5π6或7π6≤x ≤5π3.8.(多选)函数y =sin x -1,x ∈[0,2π]与y =a 有一个交点,则a 的值为( ) A .-1 B .0 C .1 D .-2 答案 BD解析 画出y =sin x -1的图象.如图.依题意a =0或a =-2.9.函数y =cos x +|cos x |,x ∈[0,2π]的大致图象为( )答案 D解析 由题意得y =⎩⎨⎧2cos x ,0≤x ≤π2或3π2≤x ≤2π,0,π2<x <3π2.10.函数f (x )=lg cos x +25-x 2的定义域为________________. 答案 ⎣⎡⎭⎫-5,-3π2∪⎝⎛⎭⎫-π2,π2∪⎝⎛⎦⎤3π2,5 解析 由题意,得x 满足不等式组⎩⎪⎨⎪⎧ cos x >0,25-x 2≥0,即⎩⎪⎨⎪⎧cos x >0,-5≤x ≤5,作出y =cos x 的图象,如图所示.结合图象可得x ∈⎣⎡⎭⎫-5,-3π2∪⎝⎛⎭⎫-π2,π2∪⎝⎛⎦⎤3π2,5.11.函数y =2cos x ,x ∈[0,2π]的图象和直线y =2围成的一个封闭的平面图形的面积是________. 答案 4π解析 如图所示,将余弦函数的图象在x 轴下方的部分补到x 轴的上方,可得一个矩形,其面积为2π×2=4π.12.若方程sin x =1-a 2在x ∈⎣⎡⎦⎤π3,π上有两个实数根,求a 的取值范围. 解 在同一直角坐标系中作出y =sin x ,x ∈⎣⎡⎦⎤π3,π的图象,y =1-a2的图象,由图象可知,当32≤1-a2<1,即当-1<a ≤1-3时,y =sin x ,x ∈⎣⎡⎦⎤π3,π的图象与y =1-a 2的图象有两个交点,即方程sin x =1-a 2在x ∈⎣⎡⎦⎤π3,π上有两个实数根.。
(完整版)高中三角函数知识点总结高中三角函数知识点总结1. 基本三角函数概念- 三角函数是以单位圆为基础的函数,包括正弦函数、余弦函数和正切函数。
- 正弦函数(sin):在直角三角形中,对于一个锐角,其对边与斜边的比值称为正弦值。
即:sinA = 对边/斜边。
- 余弦函数(cos):在直角三角形中,对于一个锐角,其邻边与斜边的比值称为余弦值。
即:cosA = 邻边/斜边。
- 正切函数(tan):在直角三角形中,对于一个锐角,其对边与邻边的比值称为正切值。
即:tanA = 对边/邻边。
2. 基本三角函数性质和公式- 三角函数的周期性:正弦函数和余弦函数的周期都是2π;正切函数的周期是π.- 三角函数的奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。
- 三角函数的同角关系:sinA/cosA = tanA。
- 三角函数的和差化积公式和积化和差公式:具体公式可根据需要进行查阅。
3. 三角函数图像和性质- 正弦函数图像:在0到2π的区间内,正弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于零值。
- 余弦函数图像:在0到2π的区间内,余弦函数的图像为一条周期性的波浪线,最高点为1,最低点为-1,对应于最大值和最小值,0点对应于最大值。
- 正切函数图像:在0到π的区间内,正切函数的图像无法在x=π/2和3π/2时定义,其他点对应的图像为一条连续的射线。
4. 三角函数的应用- 三角函数广泛应用于科学和工程领域中的周期性现象的描述和计算,例如电流的正弦波,声波的波动等。
- 在几何学中,三角函数也应用于测量角度和距离等问题的解决。
以上为高中三角函数的基本知识点总结,更详细的内容和公式可以参考相关教材或资料。
)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等
)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍
-。
.三角形的面积公式:
1
2
1
2
a
的三角形是斜三角形,则称为解斜三角形
,对应的三个角为
> a
R
如果函数的图像关于点中心对称,那么的最小值为())) (D)
、右图所示的是函数图象的一部分,则其函数解析式是. B. C D
、已知函数的最小正周期为,则该函数图象
.关于直线对称(,
(,.关于直线对称
、由函数的图象.向左平移个单位.向左平移个单位
.向右平移个单位.向右平移个单位
、若是函数图象的一条对称轴,当取最小正数时.在单调递增.在单调递减
.在单调递减.在单调递增
、函数()的最小正周期是,若其图像向左平移个单位后得到的函数为奇函数,则的值为
. B. C D.
年高考(新课标理))已知,函数在上单调递减的取值范围是
. B. C. D.
年高考(福建文))函数的图像的一条对称轴是
. B. C. D.
.函数内单调递增.函数的最小正2
.函数的图象是关于点(,
.函数的图象是关于直线x=成轴对称的图形
、已知,则等于
. .
,则的值为
. B. C . D.
、已知平面向量,,与垂直,则是(
、设,
点共线,则的最小值是
,若·=6
|
、若是夹角为的单位向量,且,则=
4 C. D.
的半径为,圆周上两点恰构成三角形,则向量的数. B. C. D.
的中心,则()()等于. B. C. D.
年高考(大纲文))若函数是偶函数则
. B. C. D.
、若<0,且<0,则有在
y=cosx(o≤x≤,且x≠)
、在中,内角的对边长分别为、、,已知,且
b.
、已知函数.
求函数的单调递增区间;
(Ⅱ)已知中,角所对的边长分别为,若,,求的面积.
、已知向量
)若,求的值
)记,在中,角的对边分别是,且满足
,求函数的取值范围。
、设=3);()。
、已知向量,
)当∥时,求的值;()求在上的值f(x)=
、已知函数
)求函数的最小正周期;
)若对,不等式恒成立,求实数、函数()
间的距离为,
求函数的解析式设,则,求的值
、已知函数的最小正周期为,且当时,函数的最小值为
)求函数的表达式;
)在△ABC,若的值。
设函数
)求函数的最小正周期;)设函数对任意,有
,且当时,;求函数在上的解析式。
已知函数.
(Ⅰ)求函数的最小正周期和值域;
(Ⅱ)若为第二象限角,且,求的值.
夹角为,且为正实数。
)若垂直,求;
)若,求的最小值及对应的
)若为锐角,对于正实数的方程有两个不同的正实数解,且的取值范围。
、设△的内角所对边的长分别为,且有。
若,,为的中点,求的长。
、已知函数,。
求函数的最小正周期,并求函数在上的最大值、最小值;
函数的图像经过怎样的平移和伸缩变换可以得到函数的图像、已知向量,函数·,(Ⅰ)求函数的单调递增区间;
满足,且边所对的角为,试求的范围及函数的值域.
、的值为______。
、设向量⊥,||=____________.
、已知平面向量,,则与的夹角余弦值等于
(),.若,求角的值;
若,求的值.
、 8
、。
的取值范围为
、(Ⅰ)
)。