第二节 有机化合物的结构特点第1课时 有机化合物中碳原子的成键特点
- 格式:pptx
- 大小:2.50 MB
- 文档页数:98
第二节有机化合物的结构特点教学目标知识与技能:1、掌握有机物的成键特点,同分异构现象。
2、掌握有机物同分异构体的书写。
过程与方法:1、用球棍模型制作C3H6、C4H8、C2H6O的分子模型。
2、强化同分异构体的书写,应考虑几种异构形式——碳链异构、位置异构、官能团异构,强化同分异构体的书写练习。
情感、态度与价值观:通过同分异构体的书写练习,培养思维的有序性、逻辑性、严谨性。
教学重点有机化合物的成键特点;有机化合物的同分异构现象。
教学难点有机化合物同分异构体的书写。
【教学过程设计】第一课时[新课导入]有机物种类繁多,有很多有机物的分子组成相同,但性质却有很大差异,为什么?多个碳原子可以相互结合成长短不一的碳链和碳环,碳链和碳环还可以相互结合。
[板书设计]一.有机物中碳原子的成键特点与简单有机分子的空间构型1、有机物中碳原子的成键特点:(1)在有机物中,碳原子有4个价电子,碳呈价,价键总数为。
(成键数目多)(2)碳原子既可与其它原子形成共价键,碳原子之间也可相互成键,既可以形成键,也可以形成键或键。
(成键方式多)(3)多个碳原子可以相互结合成长短不一的碳链和碳环,碳链和碳环还可以相互结合。
[归纳总结]①有机物常见共价键:C-C、C=C、C≡C、C-H、C-O、C-X、C=O、C≡N、C-N、苯环。
②在有机物分子中,仅以单键方式成键的碳原子称为饱和碳原子;连接在双键、叁键或在苯环上的碳原子(所连原子的数目少于4)称为不饱和碳原子。
③C—C单键可以旋转而C=C不能旋转(或三键)。
2、碳原子的成键方式与分子空间构型的关系:当一个碳原子与其它4个原子连接时,这个碳原子将采取取向与之成键;当碳原子之间或碳原子与其它原子之间形成双键时,形成该双键的原子以及与之直接相连的原子处于上;当碳原子之间或碳原子与其它原子之间形成叁键时,形成该叁键的原子以及与之直接相连的原子处于上。
[归纳总结]1、有机物的代表物基本空间结构:甲烷是正四面体结构(5个原子不在一个平面上);乙烯是平面结构(6个原子位于一个平面);乙炔是直线型结构(4个原子位于一条直线);苯环是平面结构(12个原子位于一个平面)。
第二节有机化合物的结构特点一、有机化合物中碳原子的成键特点1、碳原子有4个价电子,能与其他原子形成4个共价键,碳碳之间的结合方式有单键、双键或三键;多个碳原子之间可以相互形成长短不一的碳链和碳环,碳链和碳环也可以相互结合,所以有机物结构复杂,数量庞大。
2、单键——甲烷的分子结构CH4分子中1个碳原子与4个氢原子形成4个共价键,构成以碳原子为中心、4个氢原子位于四个顶点的正四面体结构甲烷的电子式甲烷的结构式甲烷分子结构示意图在甲烷分子中,4个碳氢键是等同的,碳原子的4个价键之间的夹角(键角)彼此相等,都是109°28′。
4个碳氢键的键长都是1.09×10-10 m。
经测定,C—H键的键能是413.4 kJ·mol-13、不饱和键1)不饱和键:未与其他原子形成共价键的电子对,常见有双键、三键2)不饱和度:与烷烃相比,碳原子缺少碳氢单键的程度也可理解为缺氢程度3)不饱和度(Ω)计算*a 、烃CxHy 的不饱和度的计算2y 2x 2-+=Ω 与碳原子以单键直连的卤族原子或无碳基视为氢原子b 、根据结构计算一个双键或环相当于一个不饱和度一个三键相当于两个不饱和度一个碳氧双键相当于一个不饱和度二 、有机化合物的同分异构现象1、同分异构化合物具有相同的分子式,但具有不同的结构的现象叫做同分异构。
具有同分异构现象的化合物互称为同分异构体。
它是有机物种类繁多的重要原因之一。
同分异构体之间的转化是化学变化。
同分异构体的特点是分子式相同,结构不同,性质不同2.同分异构的种类(1)碳链异构:由于碳链骨架不同,产生的异构现象称为碳链异构。
烷烃中的同分异构体均为碳链异构。
如有三种同分异构体,即正戊烷,异戊烷,新戊烷。
(2)位置异构:指官能团或取代基在碳链上的位置不同而造成的异构。
如1-丁烯与2-丁烯、1-丙醇与2-丙醇。
(3)官能团异构:指官能团不同而造成的异构,如乙醇和二甲醚,葡萄糖和果糖。
有机化合物中碳原子的成键特点1.四价性:碳原子具有四个价电子,每个电子可与其他原子的电子形成共价键。
四价性使得碳原子可以与其他碳原子或其他元素形成多种多样的化学键,使得有机化合物的结构和性质多样化。
2.杂化轨道:由于碳原子的四价性,碳原子的4个价电子需要形成四个稳定的共价键。
为了完成这四个共价键,碳原子中的三个2s和一个2p 杂化轨道参与成键。
碳原子通过sp3杂化形成了四个等能量的sp3杂化轨道,每个轨道空间分布方向相互垂直,并指向一个立体角的顶点,从而有机化合物中的碳原子呈现出四面体结构。
3.正向和侧向重叠成键:有机化合物中的碳原子通过两种方式与其他原子成键,即正向和侧向重叠成键。
在正向重叠成键中,碳原子的sp3杂化轨道与其他原子的轨道正向重叠,形成σ键。
而在侧向重叠成键中,碳原子的p轨道与其他原子的轨道侧向重叠,形成π键。
4.自由旋转性:由于碳原子的四面体结构,有机化合物中碳原子与其它原子成键后,存在自由旋转的能力。
这种自由旋转性使得有机化合物在空间中具有很大的灵活性,不同的构象和立体异构体可相互转变。
5.链状结构:由于碳原子可以与自身形成多个共价键,碳原子可以通过形成共价键与其他碳原子连接在一起,形成链状结构。
这种链状结构使得有机化合物能够形成复杂的化学结构,且碳链的长度可以很长。
6.亲电性:碳原子相对于其它元素的原子,亲电性较小。
这是因为碳原子的电负性较低,即它不容易鼓励与其它原子形成共价键。
这种亲电性较小使得碳原子具有稳定性,不容易发生反应。
总之,有机化合物中碳原子的成键特点主要包括四价性、杂化轨道、正向和侧向重叠成键、自由旋转性、链状结构和亲电性。
这些特点使得有机化合物具有很高的结构多样性和反应活性,是有机化学研究的基础。
有机物中碳原子的成键特点碳原子是有机物中最重要的元素之一,它的成键特点对于有机化学的研究和理解至关重要。
碳原子具有特殊的电子结构,使得它能够形成多种不同类型的化学键,包括共价键、极性共价键和芳香键等。
1. 共价键:碳原子是一个四价元素,意味着它有四个可供成键的空轨道。
碳原子通常通过共价键与其他原子进行成键,共享电子对以完成其八个价电子的填充。
共价键是有机化合物中最常见的成键类型,也是最稳定的成键类型之一。
2. 极性共价键:有时,碳原子与其他原子之间的共价键并不是完全均匀共享电子对。
这种情况下,碳原子与其他原子之间的电子密度会发生一定程度的偏移,形成极性共价键。
极性共价键通常发生在碳原子与较电负的原子(如氧、氮等)之间的成键中。
这种极性成键会影响有机物的物理性质和化学性质,如溶解性、反应活性等。
3. 芳香键:芳香化合物是一类具有特殊稳定性的有机化合物,其中的芳香键起到了至关重要的作用。
芳香键是由碳原子之间的共享电子对形成的,它们在分子中形成了一个稳定的芳香环结构。
芳香键具有特殊的共轭结构和共轭性质,使得芳香化合物具有较高的稳定性和特殊的化学性质。
除了成键类型的特点外,碳原子在有机化学中还具有以下重要的特点和性质:1. 四价性:碳原子具有四个价电子,可以形成四条共价键。
这种四价性使得碳原子能够形成复杂的分子结构和多样性的化合物,从而构建了有机化学的基础。
2. 高稳定性:碳原子与其他原子之间的共价键通常都很稳定,可以抵抗外界环境的影响。
这种高稳定性使得有机化合物具有较长的寿命,并且能够在较宽的条件范围内存在和反应。
3. 多样性:由于碳原子的四价性和成键特点,碳原子可以与多种不同的原子和基团发生成键,形成复杂的有机分子。
这种多样性使得有机化合物具有丰富的结构和性质,为生命体系的构建和化学合成提供了丰富的可能性。
碳原子在有机化学中的成键特点和性质对于有机化学的研究和理解具有重要意义。
碳原子能够形成多种不同类型的化学键,包括共价键、极性共价键和芳香键等。