BP神经网络的网络学习评价模型
- 格式:pdf
- 大小:720.23 KB
- 文档页数:6
Microcomputer Applications V ol.27,No.12,2011研究与设计微型电脑应用2011年第27卷第12期文章编号:1007-757X(2011)12-0009-04基于BP神经网络的信息系统运行质量评价模型龚代圣,杨栋枢,王文清,杨德胜摘要:信息系统运行质量评价是供电企业信息系统运维的重要工作,其中关键的一项就是对信息系统运行质量进行分析评估,这对于信息系统运行可靠具有重要意义。
在分析影响信息系统运行质量因素的基础上,构建了信息系统运行质量评价指标体系,将遗传算法神经网络原理引入信息系统运行质量评价,构建了基于遗传算法和神经网络的信息系统运行质量评价模型,为供电企业的信息系统运行质量评估研究提供模型和方法的支撑。
实证结果表明:模型具有较强的自组织、自学习和自适应能力,模型评估结果比较客观合理。
关键词:信息系统;指标体系;运行质量评价;遗传算法;神经网络中图分类号:TP311文献标志码:A0引言供电企业是国内应用信息技术较早的行业之一,先后经历生产过程自动化、管理信息化等建设阶段。
目前,供电企业信息系统运行呈现出基础设备齐备、数据庞杂、应用广泛等特点,因此,对信息系统运行质量进行评估显得格外重要。
信息系统运行质量评价是为了提升信息化运行保障能力,准确而客观地评价信息系统运维水平,从而有效地指导信息系统安全、高效、经济运行。
如何积极开展信息系统运行质量评估来降低信息系统安全运行风险?通过何种指标来科学评价供电企业的信息系统运行质量发展水平?这是当前供电企业必须解决的一个问题,而目前供电企业还没有一套完整的供电企业的信息系统运行质量评价指标体系正式发布。
通过构建科学的、实用的、有效的供电企业信息系统运行质量评价指标体系,采用具有学习、记忆、归纳、容错及自学力、自适应能力的基于遗传算法的BP神经网络算法,科学有效地评价供电企业的信息系统运行质量,有利于规范和完善供电企业的信息系统运行水平建设,促进信息系统运维水平健康与快速的发展。
BP神经网络框架BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。
BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。
它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。
BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。
1BP神经网络基本原理BP神经网络的基本原理可以分为如下几个步骤:(1)输入信号Xi→中间节点(隐层点)→输出节点→输出信号Yk;(2)网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y 和期望输出值t之间的偏差。
(3)通过调整输入节点与隐层节点的联接强度取值Wij和隐层节点与输出节点之间的联接强度取值Tjk,以及阈值,使误差沿梯度方向下降。
(4)经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练到此停止。
(5)经过上述训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线性转换的信息。
2BP神经网络涉及的主要模型和函数BP神经网络模型包括输入输出模型、作用函数模型、误差计算模型和自学习模型。
输出模型又分为:隐节点输出模型和输出节点输出模型。
下面将逐个介绍。
(1)作用函数模型作用函数模型,又称刺激函数,反映下层输入对上层节点刺激脉冲强度的函数。
一般取(0,1)内的连续取值函数Sigmoid函数:f x=11+e^(−x)(2)误差计算模型误差计算模型反映神经网络期望输出与计算输出之间误差大小的函数:Ep=12(tpi−Opi)2其中,tpi为i节点的期望输出值;Opi为i节点的计算输出值。
(3)自学习模型自学习模型是连接下层节点和上层节点之间的权重矩阵Wij的设定和修正过程。
教学效果的BP神经网络评价作者:袁剑来源:《智能计算机与应用》2013年第06期摘要:对教师教学效果的考察是需要多角度进行评价,无论是学生为教师打分,还是督导组的评议,给出的评价是带有一些主观因素,合理建立评价体系,将各个评价指标客观化,使用综合评价向量作为输入,经由BP神经网络输出得到合理的分数。
实验仿真表明,通过训练的BP反向传播网络可模拟一个稳定的评价系统。
关键词:BP神经网络;模糊矩阵;教学评价中图分类号:TP183 文献标识码:A文章编号:2095-2163(2013)06-0060-030引言教师教学效果的审核评定是高校教学中的重要工作。
传统的考核方法或者只是由学生填写调查表,给教师划分等级,进行定性描述,或者是由督导组根据几堂课的听评给教师的课堂教学打出一个分值。
无论是哪种方法都不能全面客观地对教学工作做出科学评定。
而且传统的考核方法受主观因素影响较大,学生在对教师的评判中常会加入多种因素,各种因素之间的影响也各不相同,仅以学生或仅凭督导团的评定来实施评判显然已不尽合理。
因此,建立一种能尽量排除各种主观因素的干扰,同时又具有完善且稳定的评价体系的评定方法则成为必要和重要的研究课题。
本文构建一种教学效果评价体系,即对教师的评价从“教学态度”、“教学内容”、“教授方法”、“课堂效果”四大方面分项进行,无论是学生还是督导组均可据此评价体系给出相应评分。
本文提出使用BP反向传播神经网络来构建一个稳定的评分系统,各项评分指标为网络输入,使用已训练完成的BP神经网络来模拟一个专家的打分经验,由此输出一个终值。
BP神经网络通常是指基于误差反向传播算法的多层前向神经网络,由于BP网络的神经元采用的传递函数是Sigmoid型可微函数,因而可以实现输入和输出间的任意非线性映射[1]。
由于BP神经网络本身就是一种高度复杂的非线性动力系统的辨识模型,并且BP神经网络具有逼近任意非线性函数的能力[2],因此使用BP神经网络进行评价将使结果更具客观性,以此来模拟一个稳定的评分系统亦将具备了现实实现基础。