(标准抽样检验)理论分布和抽样分布
- 格式:doc
- 大小:294.00 KB
- 文档页数:36
抽样与抽样分布在统计学中,抽样是一种常用的数据收集方法,通过从总体中选择一部分样本来进行研究和分析。
抽样的目的是通过样本来推断总体的特征和性质。
在进行抽样时,我们需要了解抽样的方法和抽样分布的概念。
一、抽样方法1. 无偏抽样无偏抽样是指所有样本有相同被选中的机会。
这样可以确保样本的代表性,从而减小样本估计值和总体真值之间的误差。
常见的无偏抽样方法包括简单随机抽样、系统抽样和分层抽样等。
2. 有偏抽样有偏抽样是指样本的选择并不具有相等的机会。
这样可能导致样本的代表性不足,从而产生较大的估计误差。
有时,有偏抽样也可以用于特定的研究目的,但需要明确地说明和分析偏差带来的影响。
二、抽样分布1. 抽样分布的概念抽样分布是指统计量在各个可能样本上的取值分布。
统计量可以是样本均值、样本方差等。
抽样分布的性质对于进行统计推断和假设检验非常重要。
2. 样本均值的抽样分布样本均值的抽样分布在中心极限定理的条件下近似服从正态分布。
中心极限定理指出,当样本容量足够大时,无论总体分布如何,样本均值的抽样分布都会接近正态分布。
3. 样本比例的抽样分布样本比例的抽样分布在满足一些条件的情况下也近似服从正态分布。
这些条件包括样本容量足够大、总体比例接近0.5以及样本与总体之间的独立性等。
4. 样本方差的抽样分布样本方差的抽样分布不服从正态分布。
通常情况下,样本方差的抽样分布呈右偏态,即偏度大于0。
为了得到样本方差的抽样分布,可以使用抽样分布的近似分布,如卡方分布。
三、应用案例抽样与抽样分布的方法和理论在实际统计学中有广泛的应用。
以下是一些常见的应用案例:1. 调查研究在进行调查研究时,我们经常需要从总体中选择一部分样本进行问卷调查或面访。
通过利用抽样与抽样分布的方法,我们可以将样本的调查结果推广到总体中,从而得到总体的特征和性质。
2. 假设检验假设检验是统计学中常用的推断方法之一。
通过比较样本统计量与假设的总体参数值,我们可以判断假设的合理性。
抽样分布与理论分布一、抽样分布总体分布:总体中所有个体关于某个变量的取值所形成的分布。
样本分布:样本中所有个体关于某个变量大的取值所形成的分布。
抽样分布:样品统计量的概率分布,由样本统计量的所有可能取值和相应的概率组成。
即从容量为N 的总体中抽取容量为n 的样本最多可抽取m 个样本,m 个样本统计值形成的频率分布,即为抽样分布。
样本平均数的抽样分布:设变量X 是一个研究总体,具有平均数μ和方差σ2。
那么可以从中抽取样本而得到样本平均数x ,样本平均数是一个随机变量,其概率分布叫做样本平均数的抽样分布。
由样本平均数x 所构成的总体称为样本平均数的抽样总体。
它具有参数μx 和σ2x ,其中μx 为样本平均数抽样总体的平均数,σ2x 为样本平均数抽样总体的方差,σx 为样本平均数的标准差,简称标准误。
统计学上可以证明x 总体的两个参数 μx 和σ2x 与X 总体的两个参数μ和σ2有如下关系:μx = μ σ2x = σ2 /n由中心极限定理可以证明,无论总体是什么分布,如果总体的平均值μ和σ2都存在,当样本足够大时(n>30),样本平均值x 分布总是趋近于N (μ,n2)分布。
但在实际工作中,总体标准差σ往往是未知的,此时可用样本标准差S 估计σ。
于是,以nS估计σx ,记为X S ,称为样本标准误或均数标准误。
样本平均数差数的抽样分布:二、正态分布2.1 正态分布的定义:若连续型随机变量X 的概率密度函数是⎪⎭⎫ ⎝⎛--=σμπσx ex f 22121)( (-∞<x <+∞)则称随机变量X 服从平均数为μ、方差为σ2的正态分布,记作X~N (μ,σ2)。
相应的随机变量X 概率分布函数为 F (x )=⎰∞-x dx x f )(它反映了随机变量X 取值落在区间(-∞,x )的概率。
2.2 标准正态分布当正态分布的参数μ=0,σ2=1时,称随机变量X 服从标准正态分布,记作X~N (0,1)。
统计学原理教案中的抽样与抽样分布揭示学生如何进行抽样和利用抽样分布进行推断统计学是一门研究收集、分析和解释数据的学科,而抽样和抽样分布则是统计学中至关重要的概念。
本文将探讨统计学原理教案中的抽样和抽样分布,以揭示学生如何进行抽样和利用抽样分布进行推断。
首先,我们来理解抽样的概念。
在统计学中,抽样是指从总体中选择一部分个体进行观察和研究。
总体是指我们感兴趣的整体,而样本则是从总体中选取的一部分个体。
通过抽样,我们可以通过研究样本来推断总体的特征,这是由于抽样的随机性能够保证样本与总体的代表性。
接下来,让我们了解抽样的方法。
常见的抽样方法包括简单随机抽样、系统抽样、分层抽样和整群抽样等。
每种抽样方法都有其特点和适用范围。
简单随机抽样是一种随机选择样本的方法,每个个体被选择的概率相同。
系统抽样是按照一定的规律选择样本,例如每隔一定数量选择一个个体。
分层抽样是将总体分成若干层次,然后从每个层次中抽取样本。
整群抽样则是将总体分成若干群体,然后随机选择一些群体并全面调查其中的个体。
选择合适的抽样方法可以更好地保证样本的代表性和可靠性。
抽样之后,我们需要了解抽样分布的概念。
在统计学中,抽样分布是指根据大量抽样的结果所得到的分布。
常见的抽样分布包括正态分布、t分布和F分布等。
其中,正态分布是抽样分布的重要特例,它在许多情况下都可以作为近似的抽样分布来使用。
t分布则用于小样本情况下的推断,它相比于正态分布更为宽阔且更适用于样本数据较少的情况。
F分布常用于分析方差比较和回归模型中的显著性分析。
抽样分布的重要性在于它可以帮助我们进行推断。
根据抽样分布的性质,我们可以利用统计推断方法进行参数估计和假设检验。
参数估计是根据样本的统计量来估计总体的参数值,例如通过样本均值估计总体均值。
假设检验是用来判断总体参数是否在某个范围内或是否相等的统计方法。
通过抽样分布的理论知识,我们可以进行参数估计和假设检验,并对总体进行推断。
在统计学原理教案中,抽样和抽样分布是学生学习的重点内容。
第四章理论分布和抽样分布在上章样本分布及其特征的基础上本章将讨论总体的分布及其特征。
首先介绍间断性变数总体的理论分布,包括二项分布和泊松分布;其次介绍连续性变数总体的理论分布,即正态分布;最后介绍从这两类理论分布中抽出的样本统计数的分布,即抽样分布。
为了说明这些理论分布,必须首先了解概率的基本概念和计算法则。
第一节事件、概率和随机变量一、事件和事件发生的概率在自然界中一种事物,常存在几种可能出现的情况,每一种可能出现的情况称为事件,而每一个事件出现的可能性称为该事件的概率(probability)。
例如种子可能发芽,也可能不发芽,这就是两种事件,而发芽的可能性和不发芽的可能性就是对应于两种事件的概率。
若某特定事件只是可能发生的几种事件中的一种,这种事件称为随机事件(random event),例如抽取一粒种子,它可能发芽也可能不发芽,这决定于发芽与不发芽的机会(概率),发芽与不发芽这两种可能性均存在,出现的是这两种可能性中的一种。
事件发生的可能性(概率)是在大量的实验中观察得到的,例如棉田发生盲蝽象为害的情况,并不是所有的棉株都受害,随着观察的次数增多,我们对棉株受害可能性程度大小的把握越准确、越稳定。
这里将一个调查结果列于表4.1。
调查5株时,有2株受害,受害株的频率为40%,调查25株时受害频率为48%,调查100株时受害频率为33%。
可以看出三次调查结果有差异,说明受害频率有波动、不稳定。
而当进一步扩大调查的单株数时,发现频率比较稳定了,调查500株到2000株的结果是受害棉株稳定在35%左右。
表4.1 在相同条件下盲蝽象在某棉田危害程度的调查结果调查株数(n) 5 25 50 100 200 500 1000 1500 2000 受害株数(a) 2 12 15 33 72 177 351 525 704 棉株受害频率(a/n)0.40 0.48 0.30 0.33 0.36 0.354 0.351 0.350 0.352现以n代表调查株数,以a代表受害株数,那么可以计算出受害频率p=a/n。
抽样检验的基本概念与抽样方案引言在统计学中,抽样检验是一种用于判断总体参数假设的统计推断方法。
通过对样本数据进行分析,我们可以对总体参数的假设提出合理的推断,从而做出一些决策或得出结论。
在进行抽样检验时,我们需要制定一个合适的抽样方案,以确保所得到的样本数据能够准确反映总体的特征。
本文将深入介绍抽样检验的基本概念以及常用的抽样方案。
抽样检验的基本概念总体和样本在进行抽样检验之前,我们首先需要明确总体和样本的概念。
总体是我们想要进行推断的对象,它可以是一个人群、一批产品或者某种现象的全部观察值。
样本是从总体中抽取的部分观察值,用来作为总体属性的代表。
抽样分布在抽样检验中,我们通常关心的是样本统计量的分布情况,即抽样分布。
样本统计量是对总体参数的估计量,比如样本均值、样本比例等。
通过对样本统计量的抽样分布进行分析,我们可以得到关于总体参数的推断。
假设检验假设检验是抽样检验的基本方法之一。
在假设检验中,我们提出一个关于总体参数的假设(称为原假设),并根据样本数据来判断原假设是否可接受。
通常,原假设是指没有变化或者没有效应的假设,而备择假设则是指存在变化或者存在效应的假设。
通过计算样本数据的抽样统计量,并计算统计量的概率值(P值),我们可以判断原假设在给定显著水平下是否可接受。
为了确保抽样数据能够准确反映总体的特征,我们需要设计合适的抽样方案。
以下是一些常用的抽样方案:简单随机抽样简单随机抽样是最基本的抽样方案之一,它要求从总体中随机地抽取若干观察值作为样本,且每个观察值被选中的概率相等。
简单随机抽样可以保证样本的代表性和独立性,从而使得样本数据能够有效地反映总体的特征。
分层抽样分层抽样是一种将总体划分为若干个层次,并从每个层次中进行独立的随机抽样的抽样方案。
通过分层抽样,我们可以在保证总体全面性的同时,对不同层次的单位进行独立的分析和推断。
系统抽样是一种按照一定的规则从总体中选取样本的抽样方案。
它要求事先确定一个固定的抽样间隔,然后从总体中随机选择一个起始点,之后每隔固定间隔选择一个观察值作为样本。
抽样检验和抽样分布1. 引言抽样是统计学中非常重要的概念,通过对总体的一局部样本进行研究和分析,可以得出关于总体的推断和结论。
抽样检验是统计推断的一种方法,用于判断样本与总体之间是否存在显著差异。
抽样分布是抽样统计量的概率分布,是基于样本的随机变量,用于进行统计推断和估计。
2. 抽样检验抽样检验是统计推断的一种方法,用于判断样本与总体之间是否存在显著差异。
在抽样检验中,我们首先提出一个原假设和一个备择假设,然后通过计算样本统计量的概率来判断原假设是否成立。
常用的抽样检验方法包括:2.1 单样本 t 检验单样本 t 检验用于判断一个样本的均值是否与总体均值存在显著差异。
通过计算样本的 t 统计量来进行判断,如果 t 统计量的值较大,说明样本均值与总体均值之间存在显著差异。
2.2 双样本 t 检验双样本 t 检验用于判断两个样本的均值是否存在显著差异。
通过计算两个样本的 t 统计量来进行判断,如果 t 统计量的值较大,说明两个样本的均值之间存在显著差异。
2.3 卡方检验卡方检验用于判断两个或多个分类变量之间是否存在关联性。
通过计算卡方统计量来进行判断,如果卡方统计量的值较大,说明分类变量之间存在关联性。
2.4 方差分析方差分析用于判断一个因变量在不同组之间是否存在显著差异。
通过计算方差比率统计量来进行判断,如果方差比率统计量的值较大,说明不同组之间的因变量存在显著差异。
3. 抽样分布抽样分布是抽样统计量的概率分布,是基于样本的随机变量,用于进行统计推断和估计。
常用的抽样分布包括:3.1 正态分布在很多情况下,当样本容量足够大时,抽样分布可以近似地认为是正态分布。
正态分布是一种对称的连续概率分布,其概率密度函数可由均值和标准差完全描述。
3.2 学生 t 分布学生 t 分布是在样本容量较小、总体标准差未知的情况下使用的抽样分布。
学生 t 分布相比于正态分布,具有更宽的尾部,适用于小样本量的情况。
3.3 卡方分布卡方分布是基于正态分布的样本推断中经常使用的一种抽样分布。
统计学中的抽样分布理论统计学是一门深奥而又广泛应用的学科,其中抽样分布理论是其中一个重要支柱。
本文将从抽样、样本统计量和抽样分布三个方面进行论述,以便更好的理解其理论和应用。
一、抽样与样本统计量统计学的基本任务之一是推断总体特征。
但由于总体数据规模庞大,难以全面观察和分析,因此我们通常采用小样本的方式来代表总体。
这就是抽样的概念。
抽样是指从总体中随机抽取一部分数据,用这一部分数据代表总体,以此估计总体的特征。
常用的抽样包括简单随机抽样、分层抽样、整群抽样等。
在抽样中,一个样本统计量的重要性凸显出来,因为它可以帮助我们更好的估计总体的特征。
比如,一个数据集的均值和标准差就是两个重要的样本统计量。
二、抽样分布抽样分布是指在所有可能的样本中,某个样本统计量的分布情况。
这里需要区分参数(population)和统计量(sample statistic)之间的关系。
参数是总体参数,是我们想要研究的总体特征,比如总体均值、总体方差等。
统计量是在样本中计算出来的数值,比如样本均值、样本方差等。
样本统计量是对总体参数的估计,不同的样本统计量可能对总体参数的估计存在一定的差异。
抽样分布不同于总体分布。
总体分布是指总体中所有变量的分布,而抽样分布是指在所有可能的样本中,某个样本统计量的分布。
抽样分布是一个特殊的概率分布,其形状和参数取决于总体分布和样本大小。
这是因为在计算样本统计量时,会受到样本数量和样本变异的影响。
在实际使用中,我们通过抽样分布来推断总体参数。
具体方法是:首先,通过采样方法得到一个样本,计算该样本统计量的值。
然后,通过数学公式推算样本统计量的抽样分布,从而得到一个概率区间。
若该样本统计量恰好位于这个区间内,则认为该样本统计量的估计值与总体参数的差异可以用统计学上的概率来表示。
这个概率就是所谓的显著性水平(signicance level)。
三、中心极限定理中心极限定理是抽样分布理论中最为重要的定理之一。
抽样分布和样本分布你们知道抽样分布和样本分布各是什么吗?以下是有店铺为大家整理的抽样分布和样本分布,希望能帮到你。
抽样分布:从已知的总体中以一定的样本容量进行随机抽样,由样本的统计数所对应的概率分布称为抽样分布。
抽样分布是统计推断的理论基础。
如果从容量为的有限总体抽样,若每次抽取容量为的样本,那么一共可以得到N取n的组合个样本(所有可能的样本个数)。
抽样所得到的每一个样本可以计算一个平均数,全部可能的样本都被抽取后可以得到许多平均数。
如果将抽样所得到的所有可能的样本平均数集合起来便构成一个新的总体,平均数就成为这个新总体的变量。
由平均数构成的新总体的分布,称为平均数的抽样分布。
随机样本的任何一种统计数都可以是一个变量,这种变量的分布称为统计数的抽样分布。
样本分布:总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目样本分布是用来估计总体分布的。
样本分布有区别于总体分布,它是从总体中按一定的分组标志选出来的部分样本容量。
实际中很多不确定现象都可以用随机变量描述,而应用中的一个十分重要的问题是找到随机变量的分布或其数字特征。
例如:某进出口贸易公司进口了10万台微型计算器,按产品技术规定,使用寿命小于4000小时即为次品,且次品率大于1% 就不接受这批产品。
如何得知这批产品的次品率呢?是否要测量每一台计算器呢?显然,这是不现实的,解决这个问题的好办法就是随机抽样,然后根据抽样检验得到的次品率来估计整批产品的次品率。
也就是从10万台产品中按随机原则,抽取一部分(假如100件)产品组成一个样本,由样本(100件产品)次品率推断整批产品的次品率。
这里,我们把被观察对象的全体(本例中的10万台计算器)称作总体,把从总体中随机抽取的(被抽中的100台计算器)小群体称作样本,而样本中所包含的个体单位数目称为样本容量(100个)。
对于这批计算器,我们关心的是它的使用寿命(低于4000小时的比例有多少)的分布,设X表示“任一台计算器的使用寿命”,它是一个随机变量,我们把随机抽中的100件产品看作是100个随机变量X1,X2……,X100,每一个计算器的使用寿命都是一个随机变量,一旦测试完毕,测试的结果就是100个观测值x1,x2,……x100, 统计抽样的任务就是根据测试结果x1,x2,……x100来估计总体X的分布情况。
(标准抽样检验)理论分布和抽样分布第四章理论分布和抽样分布在上章样本分布及其特征的基础上本章将讨论总体的分布及其特征。
首先介绍间断性变数总体的理论分布,包括二项分布和泊松分布;其次介绍连续性变数总体的理论分布,即正态分布;最后介绍从这两类理论分布中抽出的样本统计数的分布,即抽样分布。
为了说明这些理论分布,必须首先了解概率的基本概念和计算法则。
第一节事件、概率和随机变量一、事件和事件发生的概率在自然界中一种事物,常存在几种可能出现的情况,每一种可能出现的情况称为事件,而每一个事件出现的可能性称为该事件的概率(probability)。
例如种子可能发芽,也可能不发芽,这就是两种事件,而发芽的可能性和不发芽的可能性就是对应于两种事件的概率。
若某特定事件只是可能发生的几种事件中的一种,这种事件称为随机事件(randomevent),例如抽取一粒种子,它可能发芽也可能不发芽,这决定于发芽与不发芽的机会(概率),发芽与不发芽这两种可能性均存在,出现的是这两种可能性中的一种。
事件发生的可能性(概率)是在大量的实验中观察得到的,例如棉田发生盲蝽象为害的情况,并不是所有的棉株都受害,随着观察的次数增多,我们对棉株受害可能性程度大小的把握越准确、越稳定。
这里将一个调查结果列于表4.1。
调查5株时,有2株受害,受害株的频率为40%,调查25株时受害频率为48%,调查100株时受害频率为33%。
可以看出三次调查结果有差异,说明受害频率有波动、不稳定。
而当进一步扩大调查的单株数时,发现频率比较稳定了,调查500株到2000株的结果是受害棉株稳定在35%左右。
表4.1在相同条件下盲蝽象在某棉田危害程度的调查结果调查株数(n) 5 25 50 100 200 500 1000 1500 2000受害株数(a) 2 12 15 33 72 177 351 525 704棉株受害频率(a/n) 0.40 0.48 0.30 0.33 0.36 0.354 0.351 0.350 0.352现以n代表调查株数,以a代表受害株数,那么可以计算出受害频率p=a/n。
从棉株受害情况调查结果看,频率在n取不同的值时,尽管调查田块是相同的,频率p却不同,只有在n 很大时频率才比较稳定一致。
因而,调查株数n较多时的稳定频率才能较好地代表棉株受害的可能性。
统计学上用n较大时稳定的p近似代表概率。
然而,正如此试验中出现的情况,尽管频率比较稳定,但仍有较小的数值波动,说明观察的频率只是对棉株受害这个事件的概率的估计。
统计学上通过大量实验而估计的概率称为实验概率或统计概率,以表示。
此处P代表概率,P(A)代表事件A的概率,P(A)变化的范围为0~1,即0≤P(A)≤1。
随机事件的概率表现了事件的客观统计规律性,它反映了事件在一次试验中发生可能性的大小,概率大表示事件发生的可能性大,概率小表示事件发生的可能性小。
若事件A发生的概率较小,如小于0.05或0.01,则认为事件A在一次试验中不太可能发生,这称为小概率事件实际不可能性原理,简称小概率原理。
这里的0.05或0.01称为小概率标准,农业试验研究中通常使用这两个小概率标准。
除了随机事件外,还有必然事件和不可能事件,它们是随机事件的特例。
对于一类事件来说,如在同一组条件的实现之下必然要发生的,称为必然事件;例如,水在标准大气压下加热到100℃必然沸腾。
相反,如果在同一组条件的实现之下必然不发生的,称为不可能事件。
例如,水在标准大气压下温度低于100℃时,不可能沸腾。
必然事件和不可能事件发生的概率为1和0。
二、事件间的关系在实际问题中,不只研究一个随机事件,而是要研究多个随机事件,这些事件之间又有一定的联系。
例如,在种子发芽试验中,显然“发芽”和“不发芽”之间是有一定联系的。
为了表述类似上述事件之间的联系,下面说明事件之间的几种主要关系。
(一)和事件事件A和B至少有一个发生而构成的新事件称为事件A和B的和事件,记为A+B,读作“或A发生,或B发生”。
例如,有一批种子,包含有能发芽的和不能发芽的。
若A为“取到能发芽种子”,B为“取到不能发芽种子”,则A+B为“或者取到能发芽种子或者取到不能发芽种子”。
事件间的和事件可以推广到多个事件:事件A1、A2、…、A n至少有一发生而构成的新事件称为事件A1、A2、…、A n的和事件,记为A1+A2+…+A n=。
(二)积事件事件A和B同时发生所构成的新事件称为事件A和B的积事件,记作AB,读作“A和B 同时发生或相继发生”。
事件间的积事件也可以推广到多个事件:事件A1、A2、…、A n同时发生所构成的新事件称为这n个事件的积事件,记作A1A2…A n=。
(三)互斥事件事件A和B不可能同时发生,即AB为不可能事件,记作A·B=V,称事件A和B互斥或互不相容。
例如,有一袋种子,按种皮分黄色和白色。
若记A为“取到黄色”,B为“取到白色”,显然A和B不可能同时发生,即一粒种子不可能既为黄色又为白色,说明事件A和B互斥。
这一定义也可以推广到n个事件。
(四)对立事件事件A和B不可能同时发生,但必发生其一,即A+B为必然事件(记为A+B=U),AB为不可能事件(记为A·B=V),则称事件B为事件A的对立事件,并记B为。
例如,上面A为“取到黄色”,B为“取到白色”,A与B不可能同时发生,但是,任意抽取一粒种子,其皮色不是黄色就是白色,即A和B必发生其一,因此,A和B互为对立事件。
(五)完全事件系若事件A1、A2、…、A n两两互斥,且每次试验结果必发生其一,则称A1、A2、…、A n为完全事件系。
例如,仅有三类花色:黄色、白色和红色,则取一朵花,“取到黄色”、“取到白色”和“取到红色”就构成完全事件系。
(六)事件的独立性若事件A发生与否不影响事件B发生的可能性,则称事件A和事件B相互独立。
例如,事件A为“花的颜色为黄色”,事件B为“产量高”,显然如果花的颜色与产量无关,则事件A与事件B相互独立。
三、计算事件概率的法则(一)互斥事件的加法假定两互斥事件A和B的概率分别为P(A)和P(B)。
则事件A与B的和事件的概率等于事件A的概率与事件B的概率之和,即P(A+B)=P(A)+P(B)。
加法定理对于多个两两互斥的事件也成立:假定A1、A2、…、A n n个事件彼此间均是两两互斥的事件,其概率依次为P(A1),P(A2),…,P(A n),则A1,A2到A n和事件的概率P(A1+A2+…+A n)等于P(A1),P(A2),…,P(A n)之和,即P(A1+A2+…+A n)=P(A1)+P(A2)+…+P(A n)。
例如,一捆花中红、黄、白花的概率分别为0.2、0.3、0.5,那么我们随机抽取一朵非白色花的概率为0.5(=0.2+0.3),这只是由加法定理得到的两个事件概率之和。
(二)独立事件的乘法假定P(A)和P(B)是两个独立事件A与B各自出现的概率,则事件A与B同时出现的概率等于两独立事件出现概率P(A)与P(B)的乘积,即P(AB)=P(A)P(B)乘法定理对于n个相互独立的事件也成立。
假定P(A1),P(A2),…,P(A n)是n个相互独立事件各自出现的概率,则该n个事件同时出现的概率P(A1A2…A n)等于各自出现概率之乘积,即P(A1A2…A n)=P(A1)P(A2)…P(A n)。
现有4粒种子,其中3粒为黄色、1粒为白色,采用复置抽样。
试求下列两事件的概率:(A)第一次抽到黄色、第二次抽到白色;(B)两次都抽到黄色。
由于采用复置抽样(即每一次抽出观察结果后又放回再进行下一次抽样),所以第一次和第二次的抽样结果间是相互独立的。
采用概率的古典定义,可以求出抽到黄色种子的概率为0.75,抽到白色种子的概率为0.25。
因此,有P(A)=P(第一次抽到黄色种子)P(第二次抽到白色种子)=0.25×0.75=0.1875,P(B)=P(第一次黄色种子)P(第二次黄色种子)=0.75×0.75=0.5625。
(三)对立事件的概率若事件A的概率为P(A),那么其对立事件的概率为:(四)完全事件系的概率例如“从10个数字中随机抽得任何一个数字都可以”这样一个事件是完全事件系,其概率为1。
(五)非独立事件的乘法如果事件A和B是非独立的,那么事件A与B同时发生的概率为事件A的概率P(A)乘以事件A发生的情况下事件B发生的概率P(B|A),即:P(AB)=P(A)P(B|A)四、随机变量随机变量是指随机变数所取的某一个实数值。
用抛硬币试验作例子,硬币落地后只有两种可能结果:币值面向上和国徽面向上,用数“1”表示“币值面向上”,用数“0”表示“国徽面向上”。
把0,1作为变量y的取值。
在讨论试验结果时,就可以简单地把抛硬币试验用取值为0,1的变量来表示。
P(y=1)=0.5,P(y=0)=0.5同理,用“1”表示“能发芽种子”,其概率为p;用“0”表示“不能发芽种子”,其概率为q。
显然p+q=1,则P(y=1)=p,P(y=0)=q=1-p。
用变量y表示水稻产量,若y大于500kg的概率为0.25,大于300kg且等于小于500kg的概率为0.65,等于小于300kg的概率为0.1。
则用变量y的取值范围来表示的试验结果为P(y ≤300)=0.10,P(300<y≤500)=0.65,P(y>500)=0.25。
对于前两个例子,当试验只有几个确定的结果,并可一一列出,变量y的取值可用实数表示,且y取某一值时,其概率是确定的,这种类型的变量称为离散型随机变量。
将这种变量的所有可能取值及其对应概率一一列出所形成的分布称为离散型随机变量的概率分布:变量y i y1y2y3…y n概率P1P2P3…P n也可用函数f(y)表述,称为概率函数。
对于上面水稻产量的例子,变量y的取值仅为一范围,且y在该范围内取值时,其概率是确定的。
此时取y为一固定值是无意义的,因为在连续尺度上一点的概率几乎为0。
这种类型的变量称为连续型随机变量。
对于随机变量,若存在非负可积函数f(y)(-∞<y<+∞),对任意a 和b(a<b)都有P(a≤y<b)=则称y为连续型随机变量(continuousrandomvariate),f(y)称为y的概率密度函数(probabilitydensityfunction)或分布密度(distributiondensity)。
因此,它的分布由密度函数所确定。
若已知密度函数,则通过定积分可求得连续型随机变量在某一区间的概率。
总之,随机变量可能取得的每一个实数值或某一范围的实数值是有一个相应概率的,这就是所要研究和掌握的规律,这规律称为随机变量的概率分布。
随机变量完整地描述了一个随机试验,它不仅告诉我们随机试验的所有可能结果,而且告诉我们随机试验各种结果出现的可能性大小。