3(实验报告模板)算法实验
- 格式:docx
- 大小:14.34 KB
- 文档页数:6
实验一分治与递归算法的应用一、实验目的1.掌握分治算法的基本思想(分-治-合)、技巧和效率分析方法。
2.熟练掌握用递归设计分治算法的基本步骤(基准与递归方程)。
3.学会利用分治算法解决实际问题。
二 . 实验内容金块问题老板有一袋金块(共n块,n是2的幂(n≥2)),最优秀的雇员得到其中最重的一块,最差的雇员得到其中最轻的一块。
假设有一台比较重量的仪器,希望用最少的比较次数找出最重和最轻的金块。
并对自己的程序进行复杂性分析。
三.问题分析:一般思路:假设袋中有n 个金块。
可以用函数M a x(程序1 - 3 1)通过n-1次比较找到最重的金块。
找到最重的金块后,可以从余下的n-1个金块中用类似法通过n-2次比较找出最轻的金块。
这样,比较的总次数为2n-3。
分治法:当n很小时,比如说,n≤2,识别出最重和最轻的金块,一次比较就足够了。
当n 较大时(n>2),第一步,把这袋金块平分成两个小袋A和B。
第二步,分别找出在A和B中最重和最轻的金块。
设A中最重和最轻的金块分别为HA 与LA,以此类推,B中最重和最轻的金块分别为HB 和LB。
第三步,通过比较HA 和HB,可以找到所有金块中最重的;通过比较LA 和LB,可以找到所有金块中最轻的。
在第二步中,若n>2,则递归地应用分而治之方法程序设计据上述步骤,可以得出程序1 4 - 1的非递归代码。
该程序用于寻找到数组w [ 0 : n - 1 ]中的最小数和最大数,若n < 1,则程序返回f a l s e,否则返回t r u e。
当n≥1时,程序1 4 - 1给M i n和M a x置初值以使w [ M i n ]是最小的重量,w [ M a x ]为最大的重量。
首先处理n≤1的情况。
若n>1且为奇数,第一个重量w [ 0 ]将成为最小值和最大值的候选值,因此将有偶,数个重量值w [ 1 : n - 1 ]参与f o r循环。
当n 是偶数时,首先将两个重量值放在for 循环外进行比较,较小和较大的重量值分别置为Min和Max,因此也有偶数个重量值w[2:n-1]参与for循环。
算法实验报告算法实验报告引言:算法是计算机科学的核心内容之一,它是解决问题的方法和步骤的描述。
算法的设计和分析是计算机科学与工程中的重要研究方向之一。
本实验旨在通过对算法的实际应用和实验验证,深入理解算法的性能和效果。
实验一:排序算法的比较在本实验中,我们将比较三种常见的排序算法:冒泡排序、插入排序和快速排序。
我们将通过对不同规模的随机数组进行排序,并记录每种算法所需的时间和比较次数,以评估它们的性能。
实验结果显示,快速排序是最快的排序算法,其时间复杂度为O(nlogn),比较次数也相对较少。
插入排序的时间复杂度为O(n^2),比较次数较多,但对于小规模的数组排序效果较好。
而冒泡排序的时间复杂度也为O(n^2),但比较次数更多,效率相对较低。
实验二:图的最短路径算法在图的最短路径问题中,我们将比较Dijkstra算法和Floyd-Warshall算法的效率和准确性。
我们将使用一个带权有向图,并计算从一个顶点到其他所有顶点的最短路径。
实验结果表明,Dijkstra算法适用于单源最短路径问题,其时间复杂度为O(V^2),其中V为顶点数。
而Floyd-Warshall算法适用于多源最短路径问题,其时间复杂度为O(V^3)。
两种算法在准确性上没有明显差异,但在处理大规模图时,Floyd-Warshall算法的效率较低。
实验三:动态规划算法动态规划是一种通过将问题分解成子问题并记录子问题的解来解决复杂问题的方法。
在本实验中,我们将比较两种动态规划算法:0-1背包问题和最长公共子序列问题。
实验结果显示,0-1背包问题的动态规划算法可以有效地找到最优解,其时间复杂度为O(nW),其中n为物品个数,W为背包容量。
最长公共子序列问题的动态规划算法可以找到两个序列的最长公共子序列,其时间复杂度为O(mn),其中m和n分别为两个序列的长度。
结论:通过本次实验,我们对不同算法的性能和效果有了更深入的了解。
排序算法中,快速排序是最快且效率最高的;在图的最短路径问题中,Dijkstra算法和Floyd-Warshall算法分别适用于不同的场景;动态规划算法可以解决复杂的问题,并找到最优解。
第1篇一、实验目的1. 理解数值计算的基本概念和常用算法;2. 掌握Python编程语言进行数值计算的基本操作;3. 熟悉科学计算库NumPy和SciPy的使用;4. 分析算法的数值稳定性和误差分析。
二、实验内容1. 实验环境操作系统:Windows 10编程语言:Python 3.8科学计算库:NumPy 1.19.2,SciPy 1.5.02. 实验步骤(1)Python编程基础1)变量与数据类型2)运算符与表达式3)控制流4)函数与模块(2)NumPy库1)数组的创建与操作2)数组运算3)矩阵运算(3)SciPy库1)求解线性方程组2)插值与拟合3)数值积分(4)误差分析1)舍入误差2)截断误差3)数值稳定性三、实验结果与分析1. 实验一:Python编程基础(1)变量与数据类型通过实验,掌握了Python中变量与数据类型的定义方法,包括整数、浮点数、字符串、列表、元组、字典和集合等。
(2)运算符与表达式实验验证了Python中的算术运算、关系运算、逻辑运算等运算符,并学习了如何使用表达式进行计算。
(3)控制流实验学习了if-else、for、while等控制流语句,掌握了条件判断、循环控制等编程技巧。
(4)函数与模块实验介绍了Python中函数的定义、调用、参数传递和返回值,并学习了如何使用模块进行代码复用。
2. 实验二:NumPy库(1)数组的创建与操作通过实验,掌握了NumPy数组的基本操作,包括创建数组、索引、切片、排序等。
(2)数组运算实验验证了NumPy数组在数学运算方面的优势,包括加、减、乘、除、幂运算等。
(3)矩阵运算实验学习了NumPy中矩阵的创建、操作和运算,包括矩阵乘法、求逆、行列式等。
3. 实验三:SciPy库(1)求解线性方程组实验使用了SciPy库中的线性代数模块,通过高斯消元法、LU分解等方法求解线性方程组。
(2)插值与拟合实验使用了SciPy库中的插值和拟合模块,实现了对数据的插值和拟合,并分析了拟合效果。
第1篇一、实验目的1. 了解现代密码学的基本原理和数论基础知识;2. 掌握非对称密码体制的著名代表RSA加密算法的工作原理和流程;3. 设计实现一个简单的密钥系统;4. 掌握常用加密算法AES和DES的原理及实现。
二、实验内容1. RSA加密算法实验2. AES加密算法实验3. DES加密算法实验三、实验原理1. RSA加密算法RSA算法是一种非对称加密算法,由罗纳德·李维斯特、阿迪·沙米尔和伦纳德·阿德曼三位密码学家于1977年提出。
其基本原理是选择两个大质数p和q,计算它们的乘积n=pq,并计算欧拉函数φ(n)=(p-1)(q-1)。
选择一个整数e,满足1<e<φ(n)且e与φ(n)互质。
计算e关于φ(n)的模逆元d。
公开密钥为(e,n),私有密钥为(d,n)。
加密过程为C=Me mod n,解密过程为M=Cd mod n。
2. AES加密算法AES(Advanced Encryption Standard)是一种分组加密算法,采用128位分组大小和128、192或256位密钥长度。
AES算法主要分为四个阶段:初始轮、密钥扩展、中间轮和最终轮。
每个轮包括字节替换、行移位、列混淆和轮密钥加。
3. DES加密算法DES(Data Encryption Standard)是一种分组加密算法,采用64位分组大小和56位密钥长度。
DES算法主要分为16轮,每轮包括置换、置换-置换、S盒替换和密钥加。
四、实验步骤及内容1. RSA加密算法实验(1)选择两个大质数p和q,计算n=pq和φ(n)=(p-1)(q-1);(2)选择一个整数e,满足1<e<φ(n)且e与φ(n)互质,计算e关于φ(n)的模逆元d;(3)生成公开密钥(e,n)和私有密钥(d,n);(4)用公钥对明文进行加密,用私钥对密文进行解密。
2. AES加密算法实验(1)选择一个128、192或256位密钥;(2)初始化初始轮密钥;(3)进行16轮加密操作,包括字节替换、行移位、列混淆和轮密钥加;(4)输出加密后的密文。
第1篇一、实验背景与目的随着计算机技术的飞速发展,算法在计算机科学中扮演着至关重要的角色。
为了加深对算法设计与分析的理解,提高实际应用能力,本实验课程设计旨在通过实际操作,让学生掌握算法设计与分析的基本方法,学会运用所学知识解决实际问题。
二、实验内容与步骤本次实验共分为三个部分,分别为排序算法、贪心算法和动态规划算法的设计与实现。
1. 排序算法(1)实验目的:熟悉常见的排序算法,理解其原理,比较其优缺点,并实现至少三种排序算法。
(2)实验内容:- 实现冒泡排序、快速排序和归并排序三种算法。
- 对每种算法进行时间复杂度和空间复杂度的分析。
- 编写测试程序,对算法进行性能测试,比较不同算法的优劣。
(3)实验步骤:- 分析冒泡排序、快速排序和归并排序的原理。
- 编写三种排序算法的代码。
- 分析代码的时间复杂度和空间复杂度。
- 编写测试程序,生成随机测试数据,测试三种算法的性能。
- 比较三种算法的运行时间和内存占用。
2. 贪心算法(1)实验目的:理解贪心算法的基本思想,掌握贪心算法的解题步骤,并实现一个贪心算法问题。
(2)实验内容:- 实现一个贪心算法问题,如活动选择问题。
- 分析贪心算法的正确性,并证明其最优性。
(3)实验步骤:- 分析活动选择问题的贪心策略。
- 编写贪心算法的代码。
- 分析贪心算法的正确性,并证明其最优性。
- 编写测试程序,验证贪心算法的正确性。
3. 动态规划算法(1)实验目的:理解动态规划算法的基本思想,掌握动态规划算法的解题步骤,并实现一个动态规划算法问题。
(2)实验内容:- 实现一个动态规划算法问题,如背包问题。
- 分析动态规划算法的正确性,并证明其最优性。
(3)实验步骤:- 分析背包问题的动态规划策略。
- 编写动态规划算法的代码。
- 分析动态规划算法的正确性,并证明其最优性。
- 编写测试程序,验证动态规划算法的正确性。
三、实验结果与分析1. 排序算法实验结果:- 冒泡排序:时间复杂度O(n^2),空间复杂度O(1)。
第1篇一、实验目的本次实验旨在通过实现冒泡排序算法,加深对排序算法原理的理解,掌握冒泡排序的基本操作,并分析其性能特点。
二、实验内容1. 冒泡排序原理冒泡排序是一种简单的排序算法,它重复地遍历要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。
遍历数列的工作是重复地进行,直到没有再需要交换,也就是说该数列已经排序完成。
2. 实验步骤(1)设计一个冒泡排序函数,输入为待排序的数组,输出为排序后的数组。
(2)编写一个主函数,用于测试冒泡排序函数的正确性和性能。
(3)通过不同的数据规模和初始顺序,分析冒泡排序的性能特点。
3. 实验环境(1)编程语言:C语言(2)开发环境:Visual Studio Code(3)测试数据:随机生成的数组、有序数组、逆序数组三、实验过程1. 冒泡排序函数设计```cvoid bubbleSort(int arr[], int n) {int i, j, temp;for (i = 0; i < n - 1; i++) {for (j = 0; j < n - i - 1; j++) {if (arr[j] > arr[j + 1]) {temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;}}}}```2. 主函数设计```cinclude <stdio.h>include <stdlib.h>include <time.h>int main() {int n;printf("请输入数组长度:");scanf("%d", &n);int arr = (int )malloc(n sizeof(int)); if (arr == NULL) {printf("内存分配失败\n");return 1;}// 生成随机数组srand((unsigned)time(NULL));for (int i = 0; i < n; i++) {arr[i] = rand() % 100;}// 冒泡排序bubbleSort(arr, n);// 打印排序结果printf("排序结果:\n");for (int i = 0; i < n; i++) {printf("%d ", arr[i]);}printf("\n");// 释放内存free(arr);return 0;}```3. 性能分析(1)对于随机生成的数组,冒泡排序的平均性能较好,时间复杂度为O(n^2)。
第1篇一、实验背景随着信息技术的飞速发展,计算课已成为现代教育中不可或缺的一部分。
通过计算课的学习,学生可以掌握计算机基本操作、编程语言以及算法设计等知识,为今后从事相关工作奠定基础。
本次实验旨在通过实际操作,加深对所学知识的理解,提高动手能力和团队协作能力。
二、实验目的1. 熟悉计算机基本操作,掌握常用软件的使用方法;2. 学习一种编程语言,理解编程思想,实现基本算法;3. 培养团队协作精神,提高动手实践能力;4. 提高对计算课重要性的认识,激发学习兴趣。
三、实验内容本次实验主要包括以下内容:1. 计算机基本操作:熟练使用计算机操作系统,掌握文件管理、系统设置等基本操作;2. 编程语言学习:选择一种编程语言(如Python、Java等),学习基本语法、数据结构、算法等知识;3. 算法实现:设计并实现一个简单算法,如排序、查找等;4. 项目实践:分组完成一个小型项目,如制作一个简单的网页、编写一个计算器程序等。
四、实验过程1. 实验准备:了解实验内容,预习相关理论知识,准备好实验所需的计算机和软件;2. 实验操作:按照实验指导书进行操作,记录实验步骤和结果;3. 团队协作:分组讨论,分工合作,共同完成实验任务;4. 结果分析:对实验结果进行分析,总结经验教训。
五、实验结果与分析1. 计算机基本操作:通过实验,掌握了计算机基本操作,如文件管理、系统设置等,提高了计算机应用能力;2. 编程语言学习:学习了所选编程语言的基本语法、数据结构、算法等知识,为今后深入学习打下了基础;3. 算法实现:实现了排序、查找等基本算法,加深了对算法原理的理解;4. 项目实践:分组完成了一个小型项目,如制作了一个简单的网页、编写了一个计算器程序等,提高了团队协作能力和动手实践能力。
六、实验总结1. 计算课实验对提高学生计算机应用能力具有重要意义,有助于培养学生动手实践能力和团队协作精神;2. 实验过程中,要注重理论与实践相结合,不断总结经验教训,提高实验效果;3. 在今后的学习中,要继续努力,深入学习计算课相关知识,为将来从事相关工作打下坚实基础。
实验一找最大和最小元素与归并分类算法实现(用分治法)一、实验目的1.掌握能用分治法求解的问题应满足的条件;2.加深对分治法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。
二、实验内容1、找最大和最小元素输入n 个数,找出最大和最小数的问题。
2、归并分类将一个含有n个元素的集合,按非降的次序分类(排序)。
三、实验要求(1)用分治法求解问题(2)上机实现所设计的算法;四、实验过程设计(算法设计过程)1、找最大和最小元素采用分治法,将数组不断划分,进行递归。
递归结束的条件为划分到最后若为一个元素则max和min都是这个元素,若为两个取大值赋给max,小值给min。
否则就继续进行划分,找到两个子问题的最大和最小值后,比较这两个最大值和最小值找到解。
2、归并分类使用分治的策略来将一个待排序的数组分成两个子数组,然后递归地对子数组进行排序,最后将排序好的子数组合并成一个有序的数组。
在合并过程中,比较两个子数组的首个元素,将较小的元素放入辅助数组,并指针向后移动,直到将所有元素都合并到辅助数组中。
五、源代码1、找最大和最小元素#include<iostream>using namespace std;void MAXMIN(int num[], int left, int right, int& fmax, int& fmin); int main() {int n;int left=0, right;int fmax, fmin;int num[100];cout<<"请输入数字个数:";cin >> n;right = n-1;cout << "输入数字:";for (int i = 0; i < n; i++) {cin >> num[i];}MAXMIN(num, left, right, fmax, fmin);cout << "最大值为:";cout << fmax << endl;cout << "最小值为:";cout << fmin << endl;return 0;}void MAXMIN(int num[], int left, int right, int& fmax, int& fmin) { int mid;int lmax, lmin;int rmax, rmin;if (left == right) {fmax = num[left];fmin = num[left];}else if (right - left == 1) {if (num[right] > num[left]) {fmax = num[right];fmin = num[left];}else {fmax = num[left];fmin = num[right];}}else {mid = left + (right - left) / 2;MAXMIN(num, left, mid, lmax, lmin);MAXMIN(num, mid+1, right, rmax, rmin);fmax = max(lmax, rmax);fmin = min(lmin, rmin);}}2、归并分类#include<iostream>using namespace std;int num[100];int n;void merge(int left, int mid, int right) { int a[100];int i, j,k,m;i = left;j = mid+1;k = left;while (i <= mid && j <= right) {if (num[i] < num[j]) {a[k] = num[i++];}else {a[k] = num[j++];}k++;}if (i <= mid) {for (m = i; m <= mid; m++) {a[k++] = num[i++];}}else {for (m = j; m <= right; m++) {a[k++] = num[j++];}}for (i = left; i <= right; i++) { num[i] = a[i];}}void mergesort(int left, int right) { int mid;if (left < right) {mid = left + (right - left) / 2;mergesort(left, mid);mergesort(mid + 1, right);merge(left, mid, right);}}int main() {int left=0,right;int i;cout << "请输入数字个数:";cin >> n;right = n - 1;cout << "输入数字:";for (i = 0; i < n; i++) {cin >> num[i];}mergesort(left,right);for (i = 0; i < n; i++) {cout<< num[i];}return 0;}六、运行结果和算法复杂度分析1、找最大和最小元素图1-1 找最大和最小元素结果算法复杂度为O(logn)2、归并分类图1-2 归并分类结果算法复杂度为O(nlogn)实验二背包问题和最小生成树算法实现(用贪心法)一、实验目的1.掌握能用贪心法求解的问题应满足的条件;2.加深对贪心法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。
第1篇一、实验目的通过本次实验,掌握常见算法的设计原理、实现方法以及性能分析。
通过实际编程,加深对算法的理解,提高编程能力,并学会运用算法解决实际问题。
二、实验内容本次实验选择了以下常见算法进行设计和实现:1. 排序算法:冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序。
2. 查找算法:顺序查找、二分查找。
3. 图算法:深度优先搜索(DFS)、广度优先搜索(BFS)、最小生成树(Prim算法、Kruskal算法)。
4. 动态规划算法:0-1背包问题。
三、实验原理1. 排序算法:排序算法的主要目的是将一组数据按照一定的顺序排列。
常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序和堆排序等。
2. 查找算法:查找算法用于在数据集中查找特定的元素。
常见的查找算法包括顺序查找和二分查找。
3. 图算法:图算法用于处理图结构的数据。
常见的图算法包括深度优先搜索(DFS)、广度优先搜索(BFS)、最小生成树(Prim算法、Kruskal算法)等。
4. 动态规划算法:动态规划算法是一种将复杂问题分解为子问题,通过求解子问题来求解原问题的算法。
常见的动态规划算法包括0-1背包问题。
四、实验过程1. 排序算法(1)冒泡排序:通过比较相邻元素,如果顺序错误则交换,重复此过程,直到没有需要交换的元素。
(2)选择排序:每次从剩余元素中选取最小(或最大)的元素,放到已排序序列的末尾。
(3)插入排序:将未排序的数据插入到已排序序列中适当的位置。
(4)快速排序:选择一个枢纽元素,将序列分为两部分,使左侧不大于枢纽,右侧不小于枢纽,然后递归地对两部分进行快速排序。
(5)归并排序:将序列分为两半,分别对两半进行归并排序,然后将排序好的两半合并。
(6)堆排序:将序列构建成最大堆,然后重复取出堆顶元素,并调整剩余元素,使剩余元素仍满足最大堆的性质。
2. 查找算法(1)顺序查找:从序列的第一个元素开始,依次比较,直到找到目标元素或遍历完整个序列。
第1篇一、实验目的1. 理解快速排序算法的基本原理和实现方法。
2. 掌握快速排序算法的时间复杂度和空间复杂度分析。
3. 通过实验验证快速排序算法的效率。
4. 提高编程能力和算法设计能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发工具:Visual Studio 2019三、实验原理快速排序算法是一种分而治之的排序算法,其基本思想是:选取一个基准元素,将待排序序列分为两个子序列,其中一个子序列的所有元素均小于基准元素,另一个子序列的所有元素均大于基准元素,然后递归地对这两个子序列进行快速排序。
快速排序算法的时间复杂度主要取决于基准元素的选取和划分过程。
在平均情况下,快速排序的时间复杂度为O(nlogn),但在最坏情况下,时间复杂度会退化到O(n^2)。
四、实验内容1. 快速排序算法的代码实现2. 快速排序算法的时间复杂度分析3. 快速排序算法的效率验证五、实验步骤1. 设计快速排序算法的C++代码实现,包括以下功能:- 选取基准元素- 划分序列- 递归排序2. 编写主函数,用于生成随机数组和测试快速排序算法。
3. 分析快速排序算法的时间复杂度。
4. 对不同规模的数据集进行测试,验证快速排序算法的效率。
六、实验结果与分析1. 快速排序算法的代码实现```cppinclude <iostream>include <vector>include <cstdlib>include <ctime>using namespace std;// 生成随机数组void generateRandomArray(vector<int>& arr, int n) {srand((unsigned)time(0));for (int i = 0; i < n; ++i) {arr.push_back(rand() % 1000);}}// 快速排序void quickSort(vector<int>& arr, int left, int right) { if (left >= right) {return;}int i = left;int j = right;int pivot = arr[(left + right) / 2]; // 选取中间元素作为基准 while (i <= j) {while (arr[i] < pivot) {i++;}while (arr[j] > pivot) {j--;}if (i <= j) {swap(arr[i], arr[j]);i++;j--;}}quickSort(arr, left, j);quickSort(arr, i, right);}int main() {int n = 10000; // 测试数据规模vector<int> arr;generateRandomArray(arr, n);clock_t start = clock();quickSort(arr, 0, n - 1);clock_t end = clock();cout << "排序用时:" << double(end - start) / CLOCKS_PER_SEC << "秒" << endl;return 0;}```2. 快速排序算法的时间复杂度分析根据实验结果,快速排序算法在平均情况下的时间复杂度为O(nlogn),在最坏情况下的时间复杂度为O(n^2)。
一、实验目的本次实验旨在帮助学生掌握算法的基本概念、设计方法和分析方法,通过实际操作加深对算法原理的理解,提高编程能力和问题解决能力。
二、实验内容1. 实验一:排序算法(1)实验目的:掌握常见的排序算法,如冒泡排序、选择排序、插入排序、快速排序等,并分析其时间复杂度和空间复杂度。
(2)实验内容:① 冒泡排序:通过相邻元素的比较和交换,将待排序序列变为有序序列。
② 选择排序:每次从待排序序列中选出最小(或最大)的元素,将其放到序列的起始位置。
③ 插入排序:将无序序列的元素逐个插入到已排序序列的合适位置。
④ 快速排序:通过一趟排序将待排序序列分为独立的两部分,其中一部分的所有元素均比另一部分的所有元素小。
(3)实验步骤:① 编写每个排序算法的代码;② 编写测试代码,验证排序算法的正确性;③ 分析每个排序算法的时间复杂度和空间复杂度。
2. 实验二:查找算法(1)实验目的:掌握常见的查找算法,如顺序查找、二分查找等,并分析其时间复杂度和空间复杂度。
(2)实验内容:① 顺序查找:从序列的起始位置逐个比较,找到待查找元素。
② 二分查找:对于有序序列,每次将待查找元素与序列中间的元素比较,缩小查找范围。
(3)实验步骤:① 编写每个查找算法的代码;② 编写测试代码,验证查找算法的正确性;③ 分析每个查找算法的时间复杂度和空间复杂度。
3. 实验三:图算法(1)实验目的:掌握常见的图算法,如深度优先搜索(DFS)、广度优先搜索(BFS)等,并分析其时间复杂度和空间复杂度。
(2)实验内容:① 深度优先搜索:从给定顶点开始,探索所有相邻顶点,直至所有可达顶点都被访问。
② 广度优先搜索:从给定顶点开始,按照顶点之间的距离顺序访问相邻顶点。
(3)实验步骤:① 编写每个图算法的代码;② 编写测试代码,验证图算法的正确性;③ 分析每个图算法的时间复杂度和空间复杂度。
三、实验结果与分析1. 实验一:排序算法(1)冒泡排序、选择排序、插入排序的时间复杂度均为O(n^2),空间复杂度均为O(1)。
第1篇一、实验名称:时域控制算法实验二、实验目的1. 理解时域控制算法的基本原理和设计方法。
2. 掌握常见时域控制算法(如PID控制、模糊控制等)的原理和实现。
3. 通过实验验证不同控制算法的性能,分析其优缺点。
4. 学会使用MATLAB等工具进行时域控制算法的仿真和分析。
三、实验原理时域控制算法是一种直接在系统的时间域内进行控制的算法,主要包括PID控制、模糊控制、自适应控制等。
本实验主要针对PID控制和模糊控制进行研究和分析。
四、实验内容1. PID控制(1)原理:PID控制是一种线性控制算法,其控制律为:$$u(t) = K_p e(t) + K_i \int_{0}^{t} e(\tau) d\tau + K_d\frac{de(t)}{dt}$$其中,$u(t)$为控制输出,$e(t)$为误差,$K_p$、$K_i$、$K_d$分别为比例、积分和微分系数。
(2)实验步骤:a. 在MATLAB中搭建被控对象模型。
b. 设计PID控制器参数,包括比例系数、积分系数和微分系数。
c. 在MATLAB中实现PID控制器,并添加到被控对象模型中。
d. 仿真控制系统,观察控制效果。
2. 模糊控制(1)原理:模糊控制是一种基于模糊逻辑的控制算法,其控制律为:$$u = F(e, e')$$其中,$u$为控制输出,$e$和$e'$分别为误差和误差变化率,$F$为模糊推理规则。
(2)实验步骤:a. 在MATLAB中搭建被控对象模型。
b. 设计模糊控制器参数,包括隶属度函数、模糊推理规则和去模糊化方法。
c. 在MATLAB中实现模糊控制器,并添加到被控对象模型中。
d. 仿真控制系统,观察控制效果。
五、实验结果与分析1. PID控制(1)实验结果:通过调整PID控制器参数,可以使系统达到较好的控制效果。
(2)分析:PID控制算法简单易实现,适用于各种被控对象。
但其参数调整较为复杂,且对被控对象的模型要求较高。
昆明理工大学信息工程与自动化学院学生实验报告( 2011 — 2012 学年 第 1 学期 )课程名称:算法设计与分析 开课实验室:信自楼机房444 2012 年12月 14日一、上机目的及内容1.上机内容给定有n 个整数(可能有负整数)组成的序列(a 1,a 2,…,a n ),求改序列形如∑=jk ka1的子段和的最大值,当所有整数均为负整数时,其最大子段和为0。
2.上机目的(1)复习数据结构课程的相关知识,实现课程间的平滑过渡; (2)掌握并应用算法的数学分析和后验分析方法;(3)理解这样一个观点:不同的算法能够解决相同的问题,这些算法的解题思路不同,复杂程度不同,解题效率也不同。
二、实验原理及基本技术路线图(方框原理图或程序流程图)(1)分别用蛮力法、分治法和动态规划法设计最大子段和问题的算法; 蛮力法设计原理:利用3个for 的嵌套(实现从第1个数开始计算子段长度为1,2,3…n 的子段和,同理计算出第2个数开始的长度为1,2,3…n-1的子段和,依次类推到第n 个数开始计算的长为1的子段和)和一个if (用来比较大小),将其所有子段的和计算出来并将最大子段和赋值给summax1。
用了3个for 嵌套所以时间复杂性为○(n 3);分治法设计原理:1)、划分:按照平衡子问题的原则,将序列(1a ,2a ,…,na )划分成长度相同的两个字序列(1a ,…,⎣⎦2/n a )和(⎣⎦12/+n a ,…,na )。
2)、求解子问题:对于划分阶段的情况分别的两段可用递归求解,如果最大子段和在两端之间需要分别计算s1=⎣⎦⎣⎦)2/1(max2/n i an ik k≤≤∑=,s2=⎣⎦⎣⎦)2/(max12/n j n ajn k k≤≤∑+=,则s1+s2为最大子段和。
若然只在左边或右边,那就好办了,前者视s1为summax2,后者视s2 o summax2。
3)、合并:比较在划分阶段的3种情况下的最大子段和,取三者之中的较大者为原问题的解。
【关键字】报告id3算法实验报告篇一:ID3算法实验报告一、实验原理决策树通过把实例从根节点排列到某个叶子节点来分类实例,叶子节点即为实例所属的分类。
树上的每一个节点说明了对实例的某个属性的尝试,并且该节点的每一个后继分支对应于该属性的一个可能值,例如下图。
构造好的决策树的关键在于如何选择好的逻辑判断或属性。
对于同样一组例子,可以有很多决策树能符合这组例子。
人们研究出,一般情况下或具有较大概率地说,树越小则树的预测能力越强。
要构造尽可能小的决策树,关键在于选择恰当的逻辑判断或属性。
由于构造最小的树是NP-难问题,因此只能采取用启发式策略选择好的逻辑判断或属性。
用信息增益度量期望熵最低,来选择分类属性。
公式为ID3算法创建树的Root结点如果Examples都为正,那么返回label=+中的单结点Root 如果Examples都为反,那么返回lable=-单结点树Root如果Attributes为空,那么返回单节点树Root,lable=Examples中最普遍的目标属性值否则开始A目标属性值lable=Examples中最普遍的否则在这个新分支下加一个子树ID3(example-vi,target-attribute,attributes-|A|)结束返回Root二、算法实现训练数据存放在Data.txt 中第一行为训练样本数量和每个样本中属性的数量第二行为每个属性取值的数量之后n行为所有样本节点数据结构struct DTNode{int name; //用1,2,3...表示选择的属性,0表示不用分类,即叶节点int data[D_MAX+1]; //表示此节点包含的数据,data[i]=1,表示包含二维数组data[][]中的第i条数据int leaf;//leaf=1 正例叶节点;leaf=2 反例叶节点;leaf=0不是节点int c; //c=1 正类;c=0 反类DTNode *child[P+1];//按属性值的个数建立子树};定义函数void Read_data() //从数据文件Data.txt中读入训练数据DT_pointer Create_DT(DT_pointer Tree,int name,int value)//创建决策树int chose(int *da)//选择分类属性float Gain(int *da,int p) //计算以p属性分类的期望熵float Entropy(int *da) //计算数据的熵int test_leaf(int *da) //尝试节点属性void Out_DT(DT_pointer Tree) //用线性表形式输出建立的决策树int Class(int *da) //对输入的尝试样本分类全局变量FILE *fp;int p_num; //属性的数量int pi[P_MAX+1]; //每个属性有几种取值int d_num;//数据的数量int data[P_MAX+1][D_MAX+1];//存储训练数据三、程序不足1.、默认训练数据是正确的,对是否发生错误不予考虑2、没有考虑训练数据可以包含缺少属性值的实例3、只能分正反两类四、程序源码#include#include#include#include#include#define P_MAX 10#define D_MAX 50#define P 5//一条数据包括所有属性的取值(1,2,3...)和分类的值(0或1)FILE *fp;int p_num; //属性的数量int pi[P_MAX+1]; //每个属性有几种取值int d_num;//数据的数量int data[P_MAX+1][D_MAX+1];//存储训练数据//定义结点类型struct DTNode{int name; //此节点分类属性的名称int data[D_MAX+1]; //表示此节点包含的数据int leaf; //leaf=1 正例叶节点;leaf=2 反例叶节点;叶节点int c; //c=1 正类;c=0 反类DTNode *child[P+1];//按属性值的个数建立子树};typedef struct DTNode *DT_pointer;DT_pointer DT = NULL;int root = 0;int test_leaf(int *da) leaf=0不是int i;int a,b;a = 0;// a=0表示没有0类a=1表示有0类for(i = 1; i { if(*(da+i) ==1 && data[i][0] == 0){a = 1;break;}}b = 0;//b=0表示没有1类b=1表示有1类for(i = 1;i { if(*(da+i) == 1 && data[i][0] == 1){b = 1;break;}}if(a == 0 && b == 1)return 1;//是1叶节点else if(a == 1 && b == 0)return 2;//是0叶节点else if(a == 0 && b == 0)return 2;//此节点无数据elsereturn 0;//不是叶节点}int test_c(int a) //给叶节点附属性值{if(a == 1)return 1;elsereturn 0;}float Entropy(int *da) //计算数据的熵{int i;篇二:ID3算法实验报告装订线:ID3算法分析与实现学院xxxxxxxxxxxxxxxxxxxx 专业xxxxxxxxxxxxxxxx 学号xxxxxxxxxxx 姓名xxxx 指导教师xxxxXX年x月xx日题目ID3算法分析与实现摘要:决策树是对数据进行分类,以此达到预测的目的。
实验报告格式模板5篇实验报告格式模板1一、实验报告知识述要实验报告是以实验本身为研究对象,或者以实验作为主要研究手段而得出科研成果后所写出的科研文书。
实验报告具有一般科研文书的科学性、实践性、规范性等特点。
(一)实验报告的概念和用途实验报告是实验者在某项科研活动或专业学习中,用简洁准确的语言完整真实地记录、描述某项实验过程和结果的书面材料,是对实验工作的总结和概括,是整个实验工作不可或缺的组成部分,也是实验成果的重要表现形式。
在科研活动中,实验是形成、发展和检验科学理论或假设的重要方法,而实验报告是实验环节的理吐升华,是实验工作的重要环节。
实验报告具有情报交流和资料保存的作用,有利于不断积累研究资料,总结研究成果,提高实验者的观察能力及分析问题和解决问题的能力,培养理论联系实际的学风和实事求是的科学态度。
在专业学习中,实验报告是学生对实验过程中的实验原理、操作步骤、原始数据、测试结果等汇总的文字记录,是学生对整个实验过程进行总结的一种方式,也是特定专业实验教学的基本要求和重要组成部分。
实验报告的写作可以激发学生的学习兴趣、端正学生的科研态度、培养学生独立分析和解决问题的能力、训练学生的综合思维能力和文字表达能力,是科学研究工作中撰写科研成果报告或科学论文的模拟训练,有益于学生今后的科学研究和实际工作。
(二)实验报告的特点1.科学性实验报告的科学性是指报告的材料真实、准确。
内容正确、客观,论证严密、充分,经得起重复和实践的检验,结论具有普遍性、客观性。
没有严格的科学性,实验报告也就失去了存在的价值和意义。
2.实践性实验报告的实践性是指实验报告来自于科学实验活动,是必须认真撰写的实验记录和总结,是特定专业实验实践课程的基本环节和要求,具有鲜明的针对胜、可操作性、可重复性。
3.规范性实验报告的规范性主要是指形式和规格上必须按照统一编排的标准来表达,这是科研活动自身的科学要求和信息时代发展的现实需要。
只有这样,才能实现实验报告高效统一的记录、整理、检索、评价以及传播、交流等。
第1篇一、实验目的本次实验旨在通过模拟操作系统中的进程调度过程,加深对进程调度算法的理解。
实验中,我们重点研究了先来先服务(FCFS)、时间片轮转(RR)和动态优先级调度(DP)三种常见的调度算法。
通过编写C语言程序模拟这些算法的运行,我们能够直观地观察到不同调度策略对进程调度效果的影响。
二、实验内容1. 数据结构设计在实验中,我们定义了进程控制块(PCB)作为进程的抽象表示。
PCB包含以下信息:- 进程编号- 到达时间- 运行时间- 优先级- 状态(就绪、运行、阻塞、完成)为了方便调度,我们使用链表来存储就绪队列,以便于按照不同的调度策略进行操作。
2. 算法实现与模拟(1)先来先服务(FCFS)调度算法FCFS算法按照进程到达就绪队列的顺序进行调度。
在模拟过程中,我们首先将所有进程按照到达时间排序,然后依次将它们从就绪队列中取出并分配CPU资源。
(2)时间片轮转(RR)调度算法RR算法将CPU时间划分为固定的时间片,并按照进程到达就绪队列的顺序轮流分配CPU资源。
当一个进程的时间片用完时,它将被放入就绪队列的末尾,等待下一次调度。
(3)动态优先级调度(DP)算法DP算法根据进程的优先级进行调度。
在模拟过程中,我们为每个进程分配一个优先级,并按照优先级从高到低的顺序进行调度。
3. 输出调度结果在模拟结束后,我们输出每个进程的调度结果,包括:- 进程编号- 到达时间- 运行时间- 等待时间- 周转时间同时,我们还计算了平均周转时间、平均等待时间和平均带权周转时间等性能指标。
三、实验结果与分析1. FCFS调度算法FCFS算法简单易实现,但可能会导致进程的响应时间较长,尤其是在存在大量短作业的情况下。
此外,FCFS算法可能导致某些进程长时间得不到调度,造成饥饿现象。
2. 时间片轮转(RR)调度算法RR算法能够有效地降低进程的响应时间,并提高系统的吞吐量。
然而,RR算法在进程数量较多时,可能会导致调度开销较大。
算法设计及实验报告实验报告1 递归算法一、实验目的掌握递归算法的基本思想;掌握该算法的时间复杂度分析;二、实验环境电脑一台,Turbo C 运行环境三、实验内容、步骤和结果分析以下是四个递归算法的应用例子:用C语言实现1.阶乘:main(){int i,k;scanf("%d\n",&i);k= factorial(i);printf("%d\n",k);}int factorial(int n){ int s;if(n==0) s=1;else s=n*factorial(n-1); //执行n-1次return s;}阶乘的递归式很快,是个线性时间,因此在最坏情况下时间复杂度为O(n)。
2.Fibonacci 数列:main(){int i,m;scanf("%d\n",&i);m=fb(i);printf("%d",m);}int fb(int n){int s;if(n<=1)return 1;else s=fb(n-1)+fb(n-2);return s;}Fibonacci数列则是T(n)=T(n-1)+T(n-2)+O(1)的操作,也就是T(n)=2T(n)+O(1),由递归方程式可以知道他的时间复杂度T(n)是O(2n),该数列的规律就是不停的赋值,使用的内存空间也随着函数调用栈的增长而增长。
3.二分查找(分治法)#include<stdio.h>#define const 8main(){int a[]={0,1,2,3,4,5,6,7,8,9};int n=sizeof(a);int s;s=BinSearch(a,const,n);printf("suo cha de shu shi di %d ge",s);}BinSearch(int a[],int x,int n){int left,right,middle=0;left=0;right=n-1;whlie(left<=right){middle=(left+right)/2;if(x==a[middle]) return middle;if(x>a[middle]) left=middle+1;else right=middle-1;}return -1;}二分搜索算法利用了元素间的次序关系,采用分治策略,由上程序可知,每执行一次while循环,数组大小减少一半,因此在最坏情况下,while循环被执行了O(logn)次。