28.1锐角三角函数(2)PPT课件
- 格式:pptx
- 大小:398.47 KB
- 文档页数:3
28.1锐角三角函数第2课时 余弦函数和正切函数1.理解余弦、正切的概念;(重点)2.熟练运用锐角三角函数的概念进行有关计算.(重点)一、情境导入教师提问:我们是怎样定义直角三角形中一个锐角的正弦的?为什么可以这样定义?学生回答后教师提出新问题:在上一节课中我们知道,如图所示,在Rt △ABC 中,∠C =90°,当锐角∠A 确定时,∠A 的对边与斜边的比就随之确定了.现在我们要问:其他边之间的比是否也确定了呢?为什么?二、合作探究探究点一:余弦函数和正切函数的定义 【类型一】利用余弦的定义求三角函数值在Rt △ABC 中,∠C =90°,AB =13,AC =12,则cos A =( )A.513B.512C.1213D.125解析:∵Rt △ABC 中,∠C =90°,AB =13,AC =12,∴cos A =AC AB =1213.故选C. 方法总结:在直角三角形中,锐角的余弦等于这个角的邻边与斜边的比值. 变式训练:见《学练优》本课时练习“课堂达标训练” 第2题 【类型二】利用正切的定义求三角函数值如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan A =( )A.35B.45C.34D.43解析:在直角△ABC 中,∵∠ABC =90°,∴tan A =BC AB =43.故选D. 方法总结:在直角三角形中,锐角的正切等于它的对边与邻边的比值. 变式训练:见《学练优》本课时练习“课堂达标训练” 第5题探究点二:三角函数的增减性【类型一】判断三角形函数的增减性随着锐角α的增大,cos α的值( ) A .增大 B .减小 C .不变 D .不确定 解析:当角度在0°~90°之间变化时,余弦值随着角度的增大而减小,故选B.方法总结:当0°<α<90°时,cos α的值随着角度的增大(或减小)而减小(或增大). 【类型二】比较三角函数的大小sin70°,cos70°,tan70°的大小关系是( ) A .tan70°<cos70°<sin70° B .cos70°<tan70°<sin70° C .sin70°<cos70°<tan70° D .cos70°<sin70°<tan70°解析:根据锐角三角函数的概念,知sin70°<1,cos70°<1,tan70°>1.又∵cos70°=sin20°,正弦值随着角的增大而增大,∴sin70°>cos70°=sin20°.故选D.方法总结:当角度在0°≤∠A ≤90°之间变化时,0≤sin A ≤1,0≤cos A ≤1,tan A ≥0. 探究点三:求三角函数值【类型一】三角函数与圆的综合如图所示,△ABC 内接于⊙O ,AB 是⊙O 的直径,点D 在⊙O 上,过点C 的切线交AD 的延长线于点E ,且AE ⊥CE ,连接CD .(1)求证:DC =BC ;(2)若AB =5,AC =4,求tan ∠DCE 的值.解析:(1)连接OC ,求证DC =BC 可以先证明∠CAD =∠BAC ,进而证明DC ︵=BC ︵;(2)由AB =5,AC =4,可根据勾股定理得到BC =3,易证△ACE ∽△ABC ,可以求出CE 、DE 的长,在Rt △CDE 中根据三角函数的定义就可以求出tan ∠DCE 的值.(1)证明:连接OC .∵OA =OC ,∴∠OAC =∠OCA .∵CE 是⊙O 的切线,∴∠OCE =90°.∵AE ⊥CE ,∴∠AEC =∠OCE =90°,∴OC ∥AE ,∴∠OCA =∠CAD ,∴∠CAD =∠BAC ,∴DC ︵=BC ︵.∴DC =BC ;(2)解:∵AB 是⊙O 的直径,∴∠ACB =90°,∴BC =AB 2-AC 2=52-42=3.∵∠CAE =∠BAC ,∠AEC =∠ACB =90°,∴△ACE ∽△ABC ,∴EC BC =AC AB ,即EC 3=45,EC =125.∵DC =BC =3,∴ED =DC 2-CE 2=32-(125)2=95,∴tan ∠DCE =ED EC =95125=34.方法总结:证明圆的弦相等可以转化为证明弦所对的弧相等.利用圆的有关性质,寻找或构造直角三角形来求三角函数值,遇到比较复杂的问题时,可通过全等或相似将线段进行转化.变式训练:见《学练优》本课时练习“课后巩固提升” 第5题 【类型二】利用三角形的边角关系求三角函数值如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC =14,AD =12,tan ∠BAD =34,求sin C 的值.解析:根据tan ∠BAD =34,求得BD 的长.在直角△ACD 中由勾股定理可求AC 的长,然后利用正弦的定义求解.解:∵在直角△ABD 中,tan ∠BAD =BD AD =34,∴BD =AD ·tan ∠BAD =12×34=9,∴CD =BC -BD =14-9=5,∴AC =AD 2+CD 2=122+52=13,∴sin C =AD AC =1213.方法总结:在不同的直角三角形中,要根据三角函数的定义,分清它们的边角关系,结合勾股定理是解答此类问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升”第9题 三、板书设计1.余弦函数的定义; 2.正切函数的定义;3.锐角三角函数的增减性.在数学学习中,有一些学生往往不注重基本概念、基础知识,认为只要会做题就可以了,结果往往失分于选择题、填空题等一些概念性较强的题目.通过引导学生进行知识梳理,教会学生如何进行知识的归纳、总结,进一步帮助学生理解、掌握基本概念和基础知识.。