航空模型基础知识
- 格式:ppt
- 大小:2.50 MB
- 文档页数:11
1、模型飞机各部件的名称是什么?翼尖、副翼、座舱、水平尾翼、垂直尾翼、垂直安定面、方向舵、升降舵、水平安定面、整流罩、螺旋桨、发动机、机身、翼根、机翼2、什么叫机翼的翼型、翼弦、翼展、前缘、后缘、展弦比。
●翼型:机翼的剖面形状。
它是决定机翼性能的重要因素。
●翼弦:翼型前缘与后缘的连线,弦长就是机翼的宽度。
●前缘:机翼的前边缘。
●后缘:机翼的后边缘。
●翼展:机翼的展开,即机翼左右翼尖之间的连线。
●展弦比:翼展与翼弦的比值。
3、飞机为什么会飞飞机之所以会飞是因为机翼在飞行时产生“升力”。
升力克服了重力,飞机就飞起来了。
4、机翼为什么会产生升力飞行时,机翼下面空气的压强较大,上面的压强较小,机翼上下空气的压加差形成了升力。
5、升力的大小取决于哪些因素升力公式:Y=C Y1/2ρV2S式中:Y—升力C Y—升力系数ρ—空气密度V—气流速度S—机翼面积6、模型飞机飞行时为什么会产生阻力主要原因有两个:●摩擦阻力(表面阻力)模型表面与空气摩擦产生的阻力。
●形状阻力(压差阻力)模型迎面阻碍气流形成阻力。
●另处还有诱导阻力、干扰阻力等对模型的性能也有很大的影响。
7、什么叫升阻比即升力和阻力的比值:k=y/x式中:y—升力x—阻力对于模型飞机的性能来说,当然升力越大,阻力越小越好。
一般情况下,升阻比较大时,模型的性能较好。
力矩平衡方面1、什么叫力矩平衡,它和飞行有什么关系有了升力飞机就可以离开地面,但不一定能够正常飞行。
实现正常飞行还必须保持力矩平衡,即作用在飞机上的力矩互相抵消。
2、重心和三轴飞机和模型飞机在空中没有支点,重心就是转动中心。
在轴互相垂直相交于重心。
贯穿飞机前后的叫纵轴。
贯穿飞机左右的叫横轴,贯穿飞机上下的叫立轴。
3、俯仰平衡:横轴的力矩平衡。
4、横侧平衡:纵轴的力矩平衡。
5、方向平衡:立轴的力矩平衡。
模型飞机的安定性1、什么叫安定性外来干扰破坏平衡后,能够自动恢复平衡,这种特性叫安定性2、什么叫俯仰安定性指当俯仰平衡被破坏后,能够自动恢复平衡的特性。
航模基础知识要点航模基础知识要点一、航模的组成航模一般由动力源、螺旋桨、安定器、电池、遥控器等其他配件组成。
1、动力源:航模的动力源主要分为两种,一种是燃油发动机,一种是电动机。
燃油发动机航模的优点是马力大,不需要电源,飞行时间长,但需要燃烧汽油,有污染。
电动机航模的优点是噪音小,马力大,环保,但飞行时间短。
2、螺旋桨:螺旋桨是航模飞行的直接动力部分,通过旋转产生升力,推动航模飞行。
根据飞行需要,可选择不同规格的螺旋桨。
3、安定器:安定器是航模的重要配件,主要作用是稳定航模飞行,减少航模的摇晃和旋转。
4、电池:电池是航模的能源来源,一般使用聚合物锂电池。
电池的容量和放电倍率会影响航模的飞行时间和性能。
5、遥控器:遥控器是操纵航模的设备,通过遥控器上的操纵杆和控制按钮,飞行员可以控制航模的飞行方向、高度、速度等。
二、航模的性能航模的性能主要分为三种:最大飞行速度、最大爬升率、最大下降率。
1、最大飞行速度:指航模在正常飞行条件下所能达到的最大速度。
2、最大爬升率:指航模在最大推力条件下所能达到的最大爬升速度。
3、最大下降率:指航模在最大推力条件下所能达到的最大下降速度。
三、航模的飞行环境航模的飞行环境对其飞行性能有很大影响,因此飞行员需要了解航模的最佳飞行环境。
1、高度:航模的飞行高度受到空气密度、温度、气压等因素的影响,一般适合在1000米以下飞行。
2、气象条件:航模一般适合在晴朗、无风的天气飞行,风速一般不超过10米/秒。
大风、暴雨、雷电等恶劣天气不适合飞行。
3、地形:航模的飞行场地需要选择平坦、开阔、无障碍物的地形,以保证航模的安全飞行。
四、航模的操纵技巧操纵航模需要有一定的技巧和经验,以下是几个重要的操纵技巧:1、控制油门:油门是控制发动机或电机的转速,通过控制油门的大小,可以控制航模的飞行速度和高度。
2、控制姿态:通过控制遥控器的操纵杆,可以控制航模的姿态,如俯冲、爬升、侧滑等。
3、调整重心:航模的重心位置会影响航模的稳定性和操纵性,通过调整配重,可以调整航模的重心位置。
(1)伯努利原理如果两手各拿一张薄纸,使它们之间的距离大约4~6厘米。
然后用嘴向这两张纸中间吹气,你会看到,这两张纸不但没有分开,反而相互靠近了,而且用最吹出的气体速度越大,两张纸就越靠近。
从这个现象可以看出,当两纸中间有空气流过时,压强变小了,纸外压强比纸内大,内外的压强差就把两纸往中间压去。
中间空气流动的速度越快,纸内外的压强差也就越大。
(2)机翼升力原理飞机机翼地翼剖面又叫做翼型,一般翼型的前端圆钝、后端尖锐,上表面拱起、下表面较平,呈鱼侧形。
前端点叫做前缘,后端点叫做后缘,两点之间的连线叫做翼弦。
当气流迎面流过机翼时,由于机翼地插入,被分成上下两股。
通过机翼后,在后缘又重合成一股。
由于机翼上表面拱起,是上方的那股气流的通道变窄。
根据气流的连续性原理和伯努利定理可以得知,机翼上方的压强比机翼下方的压强小,也就是说,机翼下表面受到向上的压力比机翼上表面受到向下的压力要大,这个压力差就是机翼产生的升力。
(3)失速原理在机翼迎角较小的范围内,升力随着迎角的加大而增大。
但是,当迎角加大到某个值时,升力就不再增加了。
这时候的迎角叫做临界迎角。
当超过临界迎角后,迎角再加大,阻力增加,升力反而减小。
这现象就叫做失速。
产生失速的原因是:由于迎角的增加,机翼上表面从前缘到最高点压强减小和从最高点到后缘压强增大的情况更加突出。
当超过临界迎角以后,气流在流过机翼的最高点不多远,就从翼表面上分离;了,在翼面后半部分产生很大的涡流,造成阻力增加,升力减小。
(4)人工扰流方案要推迟失速的发生,就要想办法使气流晚些从机翼上分离。
机翼表面如果是层流边界层,气流比较容易分离;如果是絮流边界层,气流比较难分离。
也就是说,为了推迟失速,在机翼表面要造成絮流边界层。
一般来说,雷诺数增大,机翼表面的层流边界层容易变成絮流边界层。
但是,模型飞机的速度很低,翼弦很小,所以雷诺数不可能增大很大。
要推迟模型飞机失速的发生,就必须要想别的办法。
一、什么叫航空模型二、在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。
其技术要求是:三、最大飞行重量同燃料在内为五千克;四、最大升力面积一百五十平方分米;五、最大的翼载荷100克/平方分米;六、活塞式发动机最大工作容积10亳升。
七、1、什么叫飞机模型八、一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。
九、2、什么叫模型飞机十、一般称能在空中飞行的模型为模型飞机,叫航空模型。
十一、二、模型飞机的组成十二、模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。
十三、1、机翼——是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞机飞行时的横侧安定。
十四、2、尾翼——包括水平尾翼和垂直尾翼两部分。
水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。
水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。
十五、3、机身——将模型的各部分联结成一个整体的主干部分叫机身。
同时机身内可以装载必要的控制机件,设备和燃料等。
十六、4、起落架——供模型飞机起飞、着陆和停放的装置。
前部一个起落架,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。
十七、5、发动机——它是模型飞机产生飞行动力的装置。
模型飞机常用的动力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。
十八、三、航空模型技术常用术语十九、1、翼展——机翼(尾翼)左右翼尖间的直线距离。
(穿过机身部分也计算在内)。
二十、2、机身全长——模型飞机最前端到最末端的直线距离。
二十一、3、重心——模型飞机各部分重力的合力作用点称为重心。
二十二、4、尾心臂——由重心到水平尾翼前缘四分之一弦长处的距离。
二十三、5、翼型——机翼或尾翼的横剖面形状。
二十四、6、前缘——翼型的最前端。
航模基础知识要点航模是指模仿真实飞机原理和结构,通过模型制作的飞行器。
它可以飞行、模拟飞行和进行相关实验,并在飞行过程中采集数据。
航模制作是一门综合性比较强的学科,需要涉及飞行原理、空气动力学、材料科学、机械工程等多个学科的知识。
下面是航模基础知识的要点介绍。
一、飞行原理:1.升力的产生:航模的飞行依靠翅膀产生的升力。
升力的产生与机翼的气动特性有关,如充气方式、翼型、机翼横断面、机翼悬挂方式等。
2.推力的产生:推力的产生与发动机和螺旋桨有关。
常见的推力方式有喷气推力和螺旋桨推力。
3.驱动方式:航模的驱动方式有遥控和自动驾驶两种。
遥控驱动需要通过遥控设备来控制航模的运动,而自动驾驶是指通过预设的程序或传感器来控制航模的运动。
二、材料科学:1.结构材料:航模的结构通常采用轻质材料,如碳纤维复合材料、玻璃纤维复合材料等,以实现轻量化和强度要求。
2.制造工艺:航模的制造工艺包括模具制作、材料选择、剪裁、分层和成型等。
模具的制作要求精度高,以保证航模的几何形状和表面光洁度。
3.节能材料:航模中还广泛应用了一些具有节能特性的材料,如空气动力学中的流线型设计、减阻材料等,以增加航模的飞行效率。
三、控制系统:1.操纵系统:航模的操纵系统包括遥控器、舵机、控制杆等。
通过操纵杆控制舵机的运动,进而控制航模的姿态。
2.自动控制系统:航模的自动控制系统通常包括航向控制、高度控制和速度控制等。
通过预设的程序或传感器来实现航模的自动控制。
四、空气动力学:1.升力与阻力:航模在飞行时会受到气流的作用,其中最重要的是升力和阻力。
升力使航模能够飞行,在设计航模时需要根据升力和重力平衡关系来确定机翼的形状和大小。
阻力会影响航模的速度和飞行续航能力,因此需要进行降低阻力的设计。
2.气动性能:航模的气动性能取决于机翼的几何形状、气动特性和航模的重量。
要提高航模的气动性能,需要注意机翼和机身的流线型设计,减小飞行阻力。
五、航模制作与调试:1.比例缩小:航模制作时需要考虑飞机模型与真实飞机的比例关系,以保证航模的结构和空气动力学特性与真实飞机相似。
航空模型基础知识教程(一)应大家的要求顶起来求精一、什么叫航空模型在国际航联制定的竞赛规则里明确规定“航空模型是一种重于空气的,有尺寸限制的,带有或不带有发动机的,不能载人的航空器,就叫航空模型。
其技术要求是:最大飞行重量同燃料在内为五千克;最大升力面积一百五十平方分米;最大的翼载荷100克/平方分米;活塞式发动机最大工作容积10亳升。
1、什么叫飞机模型一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞机模型。
2、什么叫模型飞机一般称能在空中飞行的模型为模型飞机,叫航空模型。
二、模型飞机的组成模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。
1、机翼——是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞机飞行时的横侧安定。
2、尾翼——包括水平尾翼和垂直尾翼两部分。
水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时的方向安定。
水平尾翼上的升降舵能控制模型飞机的升降,垂直尾翼上的方向舵可控制模型飞机的飞行方向。
3、机身——将模型的各部分联结成一个整体的主干部分叫机身。
同时机身内可以装载必要的控制机件,设备和燃料等。
4、起落架——供模型飞机起飞、着陆和停放的装置。
前部一个起落架,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。
5、发动机——它是模型飞机产生飞行动力的装置。
模型飞机常用的动力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。
三、航空模型技术常用术语1、翼展——机翼(尾翼)左右翼尖间的直线距离。
(穿过机身部分也计算在内)。
2、机身全长——模型飞机最前端到最末端的直线距离。
3、重心——模型飞机各部分重力的合力作用点称为重心。
4、尾心臂——由重心到水平尾翼前缘四分之一弦长处的距离。
5、翼型——机翼或尾翼的横剖面形状。
6、前缘——翼型的最前端。
7、后缘——翼型的最后端。
8、翼弦——前后缘之间的连线。
9、展弦比——翼展与平均翼弦长度的比值。
航空模型基础知识航空模型是一种机型缩小版,通常由轻质材料制成,包括木材、泡沫、高强度轻金属及碳纤维等。
它们可以飞行并提供很大的乐趣和挑战。
航空模型种类航空模型有几种主要的种类,包括飞机、直升机、固定翼和无人机等。
这些种类通常通过它们的设计和功能来区分。
飞机类的航空模型通常被称为RC(遥控)飞机。
它们的设计和结构通常是基于现实生活中的飞机。
RC飞机可以飞行在内部或者室外,并能进行3D飞行,如升降、翻滚和翻转等动作,需要有高超的技术操作才能顺利完成。
直升机类的航空模型是比较困难的挑战,因为它们需要进行特殊的控制技能。
直升机航空模型具有在空中悬停的能力,因此在制作和设计过程中必须考虑到很多因素,如重量平衡、旋转速率、稳定性等。
固定翼航空模型通常是集群飞行,通常需要两个或多个人进行操作。
它们在高空进行飞行,需要高超的操作技术和良好的沟通能力。
固定翼航空模型通常是运动性和竞技性最为强烈的机型。
无人机航空模型是多功能的机型,它们适用于各种不同的领域,如灵敏度检测、农业和航拍等。
无论您是在小区,果园还是大农场里都可以找到无人机的踪迹。
无人机航空模型的优势在于可以进行高空拍摄、搭载传感器进行探测、自主导航、支持实时遥控等领域。
航空模型的控制方式航空模型的控制通常会使用遥控器。
目前市场上遥控器主要有4通道、6通道和8通道等不同型号。
4通道遥控器4通道遥控器通常用于最基本的飞行和控制,它能控制飞机的升降、角度和飞行方向等基本要素。
6通道遥控器6通道遥控器则更为高级,它可以控制飞机的航向、俯仰角、横滚角、升降、油门等所有要素,因此也适用于直升机和固定翼模型。
8通道遥控器8通道遥控器是最为高级的遥控器型号,它可以更加精确地控制飞机,包括航向、俯仰角、横滚角、油门、起落架、照明、道钉、电动机排队等等。
航空模型利用的动力机制航空模型的动力来源通常是电动机或油动发动机,也有少数航空模型使用弹弓或发射器等非电动发动机。
电动机使用电动机作为动力源是最为普遍的方法之一,它可以为模型信号源提供足够的能量,并且有很高的可靠性和稳定性。