光分组交换技术在未来通信网中的应用
- 格式:pdf
- 大小:225.37 KB
- 文档页数:3
OTN与PTN、SDH技术在电力通信网的应用陈红艳;袁辉;张向东【摘要】以淄博悦庄220 kV配套通信工程为例,介绍了山东电力光通信网的发展情况,提出了一种借助省级OTN(光传送网)电路与地区SDH(同步数字体系)和PTN(分组传送网)电路相结合的通信应用方案,解决了变电站信息传输通道薄弱问题.【期刊名称】《光通信研究》【年(卷),期】2013(000)004【总页数】4页(P24-27)【关键词】IP业务;分组传送网;光传送网;同步数字体系【作者】陈红艳;袁辉;张向东【作者单位】国核电力规划设计研究院,北京 100095;国核电力规划设计研究院,北京 100095;国核电力规划设计研究院,北京 100095【正文语种】中文【中图分类】TN9150 引言电力通信网作为行业内的专用通信网,需要传送大量的电力生产、管理和调度信息。
不仅包括传统的行政调度电话、自动化远动和生产MIS(管理信息系统)业务等数据,还包括电话会议、视频、广播、OA(办公自动化)和IP(网际协议)电话等多媒体业务。
随着国家电网三集五大体系建设和构建统一坚强智能电网的全面展开,电力业务IP化、宽带化的发展趋势日益明显。
传送网的带宽要求越来越高,以往64kbit/s、2 Mbit/s的业务将逐渐转变成GE(千兆以太网)、10 GE(万兆以太网)等高带宽的IP业务,电力传送网承载的IP业务会越来越多,因此只有建设一个高速、宽带、多功能、大容量和智能化的IP通信网络,才能满足电力系统现代化运行和管理的需要,为三集五大体系和坚强智能电网建设提供有力支撑。
1 山东电力通信网现状目前,山东电力省级传输网已组建了以500 kV OPGW(光纤复合架空地线)光缆为主要传输载体、容量为2.5 Gbit/s+10 Gbit/s的基于SDH(同步数字体系)的MSTP(多业务传输平台)省主干光通信网A和B。
地区级传输网以500和220 kV 变电站为骨干节点,已建成以OPGW为主、ADSS(全介质自承式)光缆及其他型式光缆为辅的MSTP地区级光通信网络,电路容量为2.5 Gbit/s/622 Mbit/s/155 Mbit/s。
___________________________________________信息记录材料2021年5月第22卷第5期(信息:理论与观点〕浅谈MS-OTN的技术特点及组网优势曾雅宁(75841部队90分队广东湛江524094)【摘要】信息化需求的快速增长和不断变化,使得传统的通信光传输系统已很难适应多样化的业务接入需求。
MS-OTN技术是一种能够同时支持OTN、VC和PKT交换的光传输技术,满足多业务承载、长距离传输、智能化调度等传输要求,是顺应传送网络发展趋势的产物。
本文分析了当前传送网络面临的技术挑战以及MS-OTN的技术特点,对MS-OTN技术在通信组网中的应用优势进行了探讨。
【关键词1MS-OTN;组网;光传送网【中图分类号1TN929.11【文献标识码】A【文章编号】1009-5624(2021)05-0041-021引言随着通信网络业务从TDM向分组化方向的发展,尤其是IP业务的快速增长以及新型业务接口技术的涌现,传统光传输网络对以数据为主的多样化业务支持出现瓶颈。
MS-OT N技术可实现多种业务信号的统一接入、统一交叉和统一传送,实现统一维护的功能,能够满足当前绝大部分大颗粒业务的承载接入传输要求,弥补了传统传输网络的不足。
MS-OTN技术的出现是当前光传输业务发展趋势的体现,能够更好地满足传送网络发展需求,是构建面向未来传送网络的理想选择。
2传送网络的发展趋势与面临挑战2.1大颗粒及多类型业务需求增多当前是传送网络转型发展的阶段,也是业务承载网络多样化发展的阶段,业务颗粒巨大化、业务类型多样化已成为当前通信发展的主要特点。
视频业务的快速增长,物联网、大数据与云计算等新型业务的快速兴起以及移动互联网业务的飞速发展,使人们对于宽带的需求呈现爆炸式增长趋势,对网络的大流量性、高稳定性和低时延性提出了更高的要求。
云数据中心、IP等业务产生的各种业务接口需求,如存储业务的FC接口、数据业务的10GBit以太网接口、基于OTN专线业务的OTN接口等大容量业务需求逐步上升,进一步增加了网络新应用对传输网通道的要求,使传输系统呈现出多承载、大容量和长距离传输的趋势。
光纤通信技术发展的现状与前景【摘要】文章针对光纤通信的发展现状作一简要总结与分析,并对未来的可能发展趋势作了展望,显示了光纤通信技术良好的发展趋势。
【关键词】光纤通信;全光网络;波分复用技术光纤通信技术是指通过光学纤维传输信息的技术。
在发信端,信息被转换成电信号,电信号控制光源,使发出的光信号具有所要传输的信号的特点,从而实现信号的电一光转换。
发信端发出的信号,通过光纤传输到远方的收信端,经光一电转换成电信号,再经过处理和转换而恢复为与原发信端相同的信息,光纤通信技术尚有很大的发展空间。
1.光纤通信系统简介光纤通信是一种利用光波作为载波来传送信息,用光纤作为传输介质的通信方式,其工作频段属于近红外光段,常用的通信窗口有0.85um,1.31um,1.55um。
光纤多采用石英,而常用的光源有半导体激光器和发光二级管等。
1.1基本的光纤通信系统组成包括三大部分:光发射、光纤传输和光接收光纤通信系统既可以传输数字信号,也可以传输模拟信号,并且可以将多种不同类型的信号在一起传输,如话音,图像,数据,多媒体信息等。
1.2光纤通信的优点例如光纤所采用的石英材料是一种电绝缘体,因此不受各种电磁z因此不受各种电磁场的干扰和闪电雷击的损坏,并且适合在易燃易爆环境中使用,光纤的重量很轻,中心折射率略高的纤芯和外围折射率稍低的包层组成同轴圆柱形的结构,直径一般只有125um,即使外层经过环氧树脂或硅橡胶的涂敷,并制作成8芯的光缆,也只占同样芯数的电缆重量的1/15;此外光纤的损耗很小,容许频带宽,因此可以进行大容量长距离的传输。
2.光纤通信系统中的新技术目前,光纤通信技术在通信网,广播电视网与计算机网,以及其他数据传输系统中,都已经得到广泛应用,新技术也不断涌现,提高了通信能力,拥有很大的需求和市场。
2.1光纤通信的发展趋势光纤到家庭(ftth)的发展。
ftth可向用户提供极丰富的带宽,所以一直被认为是理想的接入方式,对于实现信息社会有重要作用,还需要大规模推广和建设。
通信工程中的光通信与光网络技术在当今信息时代,通信技术的飞速发展极大地改变了人们的生活和工作方式。
其中,光通信与光网络技术作为通信工程领域的重要组成部分,凭借其高速、大容量、低损耗等优势,成为了现代通信的核心支撑。
光通信,简单来说,就是以光作为信息载体,通过光纤等介质进行信息传输的通信方式。
与传统的电通信相比,光通信具有诸多显著的优点。
首先,光在光纤中的传输损耗极低,这使得信号能够在长距离传输过程中保持较好的质量,减少了中继站的设置,降低了成本。
其次,光通信的带宽极大,可以实现高速率的数据传输,满足人们对大容量信息传输的需求。
此外,光通信还具有抗电磁干扰能力强、保密性好等优点,在军事、金融等对信息安全要求较高的领域发挥着重要作用。
光网络技术则是在光通信的基础上发展起来的,它是构建现代通信网络的关键技术之一。
光网络可以实现灵活的光路连接和资源分配,提高网络的可靠性和灵活性。
其中,波分复用(WDM)技术是光网络中的一项重要技术。
通过将不同波长的光信号复用到一根光纤中进行传输,大大提高了光纤的传输容量。
例如,一根光纤中可以同时传输几十甚至上百个波长的光信号,每个波长都可以承载大量的数据。
另外,光交换技术也是光网络中的关键技术之一。
传统的电交换技术在处理高速光信号时存在速度瓶颈,而光交换技术能够直接在光域中完成信号的交换,大大提高了交换速度和效率。
光交换技术包括光路交换和光分组交换等。
光路交换适用于大容量、长时间持续的数据传输,而光分组交换则更适合于突发、短时间的数据传输。
随着技术的不断进步,智能光网络技术逐渐崭露头角。
智能光网络能够根据网络的实时状态和业务需求,自动进行光路的建立、拆除和资源的分配,实现网络的智能化管理和优化。
这不仅提高了网络的资源利用率,还增强了网络的服务质量和可靠性。
在实际应用中,光通信与光网络技术已经广泛渗透到各个领域。
在长途通信领域,海底光缆系统通过光通信技术实现了跨越大洋的高速信息传输,连接了世界各地。
接入系统采用全分组光纤传送技术-PTN技术的内置传输组建成千兆光纤自愈环网,为接入网提供千兆PTN光纤网络,为高速公路各类业务提供丰富的传输带宽。
3)远端接入系统远端接入系统采用无源光网络PON系统设备组成,主要解决高速公路收费站和高速公路沿途的视频、监控数据等业务的传输和接入。
PON系统由局端设备与多个用户端设备之间通过无源的光缆、光分/合路器等组成的光分配网连接。
现在某些厂家可将PON系统的局端设备内置到综合业务接入网ONU或者OLT设备内,使远端接入系统与综合业务接入系统融为一体,并能够由一个网络管理系统进行管理和维护,使得高速公路的通信网络系统能够延伸到外场各个监控点,大大提高了高速公路监控系统网络的安全性和可靠性,并减轻了高速公路监控系统的管理和维护压力。
远端接入系统组网示意图如下图2所示。
高速公路沿线监控数据和收费站监控收费数据采用EPON组网,外场监控摄像机接入前端编码器,多个编码器通过一根EPON光纤接入到通信设备上,布线方便节省光纤资源。
同时EPON设备可以接入IP报警电话方便公路报警。
还可以传输可变信号板和气象站等外场设备的数据,实现一个网络全面接入各种外场设备,这样整体提高了高速公路监控网络的安全性。
无源光网络支持话音业务、数据业务和视频业务三网合一的接入,提供良好的组播与动态带宽调度能力,支持大带宽的数据和互联网接入业务、VoIP业务、IPTV、CATV视频业务和L2VPN业务的开展,有效支撑广播式与交互式的VOD/IPTV/SDTV/HDTV等新兴高宽带业务的接入需求,并提供良好的QoS与安全性保障。
图 24高速公路PTN+PON解决方案特点本解决方案具有如下特点:4.1技术先进、是高速公路通信网络未来发展的一种趋势全IP传输网络:从传统SDH系统的接口IP、内核电路交换升级到PTN系统的接口和内核均IP化,实现了接入网的全IP传输,并且前端PON设备也是以IP方式接入,因此实现了整个通信系统的IP化传输和接入。
分享全光网络的创新及应用全光网络是一种利用光信号传输数据的新型网络体系结构,它具有高存储和传输容量、低延迟、低消耗和高可靠性等优点,可以应用于各种领域,如通信、物联网、云计算、医疗和科学研究等。
下面,我将重点介绍全光网络的创新及应用。
一、全光网络的创新1. 光信号传输技术利用光信号传输数据是全光网络最重要的创新之一。
其传输速度可达数百Gbps、数Tbps,能够满足大规模数据通信要求,同时减少带宽拥塞和信噪比失真等问题。
2. 波分复用技术波分复用技术是全光网络的另一个重要创新。
通过使用不同波长的光信号传输数据,可以实现高效的频谱利用。
此外,波分复用技术还可以实现多信道复用,提高了全光网络的容量和灵活性。
3. 分组光交换技术分组光交换技术是实现全光网络数据交换的一种新型技术。
它可以实现接近无延迟的数据交换,提高了网络的响应速度和实时性。
与传统的电力交换网络相比,分组光交换技术还具有更低的延迟和更高的可靠性。
4. 全光纤接入技术全光纤接入技术是实现全光网络构建的一种新型技术,它可以实现家庭、企业和机构等不同用户之间的高速数据交换。
相比传统的电力线接入方式,全光纤接入技术具有更高的容量和更高的速度,同时也具有更低的信道噪声。
二、全光网络的应用1. 通信全光网络作为高速数据传输的新型体系结构,可以广泛应用于通信领域。
在数据中心通信中,全光网络可以实现高带宽、低延迟的数据传输,同时实现多虚拟网络之间的高效划分。
在郊区或乡村地区的通信中,全光网络可以实现真正的光纤接入,提高了数据传输速度。
2. 云计算在云计算中,全光网络可以实现高速计算、高效存储和数据交换,提高了计算效率、可扩展性和安全性。
另外,全光网络还可以应用于云计算的数据备份、恢复和管理等领域,提高了数据安全性和可靠性。
3. 物联网在物联网中,全光网络可以实现智能物体之间的高速数据交换和通信。
全光网络可以提高智能终端设备的响应速度和处理能力,使智能物体之间的数据传输实现高效和顺畅。
光通信技术在现代通信中的应用随着现代通信的快速发展,光通信技术在其中扮演着越来越重要的角色。
光通信技术的出现,使得传输速度大为提升,传输距离也得到了极大的延长,同时能够支持更多的数据传输。
目前,光通信技术已经被广泛应用于各种场景,如光纤通信、光网络通信、光存储等。
本文将从多个角度探讨光通信技术在现代通信中的应用。
一、光通信技术概述光通信技术是一种使用光信号进行信息传输的通信技术,传输介质通常是光纤,通过调制、放大和解调等技术,实现信息的传输。
相比传统的电信传输方式,光通信技术具有更高的带宽和更大的传输距离,能够支持更多的信息传输和更高的数据传输速率,因此已经成为现代通信的重要手段。
二、光通信技术在光纤通信中的应用光纤通信是一种使用光信号进行信息传输的通信方式,通过光纤传输大量的数据,能够使得数据传输更加快速。
在光纤通信中,光通信技术被广泛应用,如调制解调技术、光放大技术、光纤耦合技术等。
光通信技术的应用,使得光纤通信能够实现更快的传输速度,更高的频带利用率,以及更长的传输距离,为现代通信的高速发展提供了强有力的支撑。
三、光通信技术在光网络通信中的应用光网络通信是一种使用光信号进行信息传输的通信方式,相比传统的电信网络,光网络通信具有更快的传输速度、更高的带宽、更低的延迟和更大的传输能力,因此被广泛用于数据中心、互联网骨干网、移动通信等领域。
在光网络通信中,光通信技术的应用十分广泛,如波分复用技术、光路交换技术、光分组交换技术等,这些技术的应用能够使得光网络通信更加高效、快速、稳定,推动着现代通信的不断发展。
四、光通信技术在光存储中的应用光存储是指使用激光或其它光源进行信息存储的存储方式。
在光存储中,光通信技术被广泛应用,如光盘存储、数码相机等。
通过光通信技术,信息可以以光的形式记录,光盘的存储容量也能够得到大幅度提升,数码相机的拍摄质量也得到大幅度提高。
光通信技术在光存储中的应用,为信息存储和传输提供了更加高效、方便、快速的方式,促进了现代通信的更新迭代。