不同形貌的纳米氧化锌
- 格式:ppt
- 大小:13.32 MB
- 文档页数:19
水热法制备不同形貌的氧化锌纳米结构李琛;周明;沈坚【摘要】The hydrothermal method was developed here to prepare ZnO nano-structure with different morphology on different seed layer.The substrates include silicon wafer,silicon wafer deposited with ZnO thin film,silicon wafer deposited with ITO thin film,etc.We investigated the influence of different seed layer on the morphology of ZnO nano-structure.We also prepared ZnO nano-structure on ZnO seed layer and ITO seed layer under different temperature to study the influence of temperature and seed layer on the length of nano-rod.Scanning electron microscopy(SEM) and X-ray diffraction(XRD) were developed to characterize the samples.The results showed that seed layer,reaction time,growth temperature and methanamide concentration had a great influence on the morphology of nano-structure.Nano-rod formed on ITO seed layer is shorter than prepared on the ZnO seed layer.From the SEM picture it also would be seen that the diameter and length of nano-rod increased as temperature goes high.X-ray diffraction peak at 34.6℃ had a strong(002) wurtzite peaks,which showed a high degree of c-axis oriented nanorod arrays and good crystalline quality.%采用水热法,用甲酰胺水溶液和锌片建立反应体系,在不同种晶层上制备出不同形貌的ZnO纳米结构,所用基底有Si片、镀有ZnO薄膜的Si片、镀有ITO薄膜的Si片、涂有ZnO粉末的Si片等,研究了不同的种晶层对ZnO纳米结构的形貌的影响。
不同形貌ZnO@PANI纳米复合材料的制备及光催化性质吴振玉;李奉杰;李村;朱维菊;方敏【摘要】采用直接沉淀法和水热合成法制备出形貌和尺寸比较均一的颗粒状、棒状和球形花状的纳米ZnO.使用硅烷偶联剂KH-42(苯胺甲基三乙氧基硅烷,C6H5-NH-CH2-Si(OCH3)3)对所得纳米ZnO进行表面化学修饰,修饰后的纳米ZnO(m-ZnO),经由皮克林乳液聚合法使苯胺单体在其表面聚合,形成聚苯胺(PANI)包覆的氧化锌纳米复合材料(m-ZnO@PANI),采用XRD、SEM、HRTEM、FTIR、UV-Vis、TG等对样品进行表征;研究了m-ZnO@PANI纳米复合材料对亚甲基蓝(MB)的光催化性能.结果表明,复合材料对可见光也有较强的吸收,在紫外、可见光照射下都有较好的光催化降解效率.其中,棒状ZnO纳米复合材料的光催化降解性能最好,它的紫外-可见光和可见光光催化降解率分别达到98.2%和97.1%,而且复合材料的光催化性能稳定,二次循环的紫外-可见光催化降解率仍达到96.0%.【期刊名称】《无机化学学报》【年(卷),期】2013(029)010【总页数】8页(P2091-2098)【关键词】纳米氧化锌;聚苯胺;复合材料;光催化【作者】吴振玉;李奉杰;李村;朱维菊;方敏【作者单位】安徽大学化学化工学院,合肥230601;安徽大学化学化工学院,合肥230601;安徽大学化学化工学院,合肥230601;安徽大学化学化工学院,合肥230601;安徽大学化学化工学院,合肥230601【正文语种】中文【中图分类】O643.360 引言近年来,随着环境污染的加剧,控制污染、保护环境,实现可持续发展是人们的共同愿望。
半导体光催化成为污染控制化学研究的一个热点,是一种具有广阔应用背景的绿色环境治理技术,其中光催化降解是指半导体光催化剂在光照条件下可以产生具有强氧化性的OH·自由基氧化分解各种有机污染物。
纳米氧化锌的形貌特征纳米氧化锌是一种具有广泛应用前景的纳米材料,其形貌特征对其性能和应用具有重要影响。
本文将从纳米氧化锌的形貌特征入手,探讨其在不同领域的应用。
一、纳米氧化锌的形貌特征纳米氧化锌的形貌特征主要包括粒径、形状、表面结构等方面。
其中,粒径是影响纳米氧化锌性能的重要因素。
一般来说,纳米氧化锌的粒径越小,比表面积越大,表面活性位点越多,其催化、光催化、光电性能等就越好。
此外,纳米氧化锌的形状也对其性能有影响。
不同形状的纳米氧化锌具有不同的表面能和晶面结构,从而影响其光学、电学、磁学等性质。
例如,球形纳米氧化锌具有较高的比表面积和光吸收能力,适用于光催化和光电转换等领域;棒状纳米氧化锌则具有较好的电学性能,适用于传感器和电子器件等领域。
二、纳米氧化锌在催化领域的应用纳米氧化锌在催化领域的应用主要体现在光催化和催化剂两个方面。
光催化是指利用光能激发纳米氧化锌表面的电子,从而促进化学反应的进行。
纳米氧化锌具有较高的光吸收能力和光催化活性,可用于水处理、空气净化、有机废气处理等领域。
催化剂是指在化学反应中起催化作用的物质,纳米氧化锌作为一种催化剂,具有较高的催化活性和选择性,可用于有机合成、氧化还原反应等领域。
三、纳米氧化锌在光电领域的应用纳米氧化锌在光电领域的应用主要体现在太阳能电池、光电传感器、光电器件等方面。
太阳能电池是指利用光能转化为电能的装置,纳米氧化锌作为一种光电转换材料,具有较高的光吸收能力和光电转换效率,可用于太阳能电池的制备。
光电传感器是指利用光电效应将光信号转化为电信号的装置,纳米氧化锌作为一种光敏材料,具有较高的光电响应能力和灵敏度,可用于光电传感器的制备。
光电器件是指利用光电效应实现电子器件功能的装置,纳米氧化锌作为一种光电转换材料,可用于制备光电晶体管、光电场效应晶体管等器件。
四、纳米氧化锌在生物医学领域的应用纳米氧化锌在生物医学领域的应用主要体现在生物成像、药物传递、抗菌等方面。