北师大版七年级下册数学《认识三角形》第一课时参考课件教材
- 格式:ppt
- 大小:2.06 MB
- 文档页数:47
1认识三角形第1课时三角形的内角和【知识与技能】进一步认识三角形的有关概念及其根本要素,掌握三角形内角和定理和直角三角形中两锐角的关系。
【过程与方法】通过观察、操作、讨论等活动,培养学生的动手实践能力和语言表达能力;通过小组合作学习,培养集体协作学习的能力及概括能力。
【情感态度】让学生在自主参与、合作交流的活动中,体验成功的喜悦,树立自信,激发学习数学的兴趣。
【教学重点】三角形的相关概念;内角和定理;直角三角形两锐角关系的探究和归纳。
【教学难点】三角形角之间的关系的应用.一、情景导入,初步认知1。
如何表示线段、射线和直线?2。
如何表示一个角?【教学说明】复习与回忆学生以前学习的几何图形的概念、线段及角的表示法、线段的测量等知识,为认识三角形概念、表示法、三要素、边的关系的学习奠定了根底。
二、思考探究,获取新知探究1:三角形的相关概念。
1。
能从下列图中找出4个不同的三角形吗?2.与同伴交流各自找到的三角形.3。
这些三角形有什么共同的特点?【归纳结论】三角形定义:由不在同一直线上的三条线段,首尾顺次相接所组成的图形叫做三角形.4.三角形包含哪些元素呢?这些元素如何表示呢?5.我们在前面学习了角、平行等,为了书写方便,使用了角、平行的符号。
那么三角形可以用什么样的符号表示呢?【归纳结论】三角形的三要素:边:〔如图〕三边AB、BC、AC,也可以用a、b、c来表示。
顶点:〔如图)三个顶点,顶点A,顶点B,顶点C.内角:(如图〕三个内角,∠A,∠B,∠C.6.三角形的表示法:“三角形"用符号“△",如图的三角形记作:△ABC(或△BCA或△CBA等〕.注:顶点字母与顺序无关【教学说明】在提问学生的根底上,得出三角形的定义,培养学生的语言表达能力;在学生操作及交流的根底上,得出三角形的三要素及三角形的表示法。
探究2:三角形的内角和定理每个学生画出一个三角形,并将它的内角剪下,分小组做拼角实验,能否拼出一个或几个角的和为180°.为什么是180°.通过小组合作交流,讨论有几种拼合方法?开展小组竞赛(看哪个小组发现多?说理清楚。
第五届全国北师大版初中数学优质课评比与观摩活动作品欣赏认识三角形第1课时一、教材分析三角形是最简单的多边形,它是研究其它多边形的基础,而且在解决实际问题的过程中也有着广泛的应用。
探索和掌握三角形的基本性质对学生更好地认识现实世界﹑发展空间观念和推理能力有着重要的作用。
本节课是北师大版七年级下册第四章第一节“认识三角形” 第一课时,是小学学习的三角形相关知识的延展,是后续多边形的学习的基础。
通过本节课的学习使学生经历直观观察、实物操作、探索、归纳等活动,积累数学活动经验,发展合情推理能力,让学生对发现的结论进行说理和简单推理,体会数学知识间的内在联系,以及研究图形性质的一般方法。
二、学情分析学生在小学阶段结合生活中的实例对三角形已经有了感性的认识,但是对三角形的概念及相关的性质缺乏较为系统的、深刻的、抽象化的理解。
学生在第二章学习“相交线与平行线”的过程中,积累了一些初步的数学活动经验,空间观念、几何直观与推理能力得到了初步的培养,为三角形的学习提供了有利的条件。
但是七年级学生的抽象思维能力、演绎推理能力及使用数学语言、符号表达思维对象和思维结果的能力还未达到一定的水平,需要逐步地、渐进地、耐心地培养。
三、教学目标1.结合具体实例,认识三角形的概念及其基本要素,掌握三角形的三个内角间的关系,会将三角形分类。
2.通过观察、操作、想象、推理“三角形内角和等于180°”的活动过程中,体会研究图形性质的一般方法,发展空间观念,推理能力和有条理地表达能力。
3.在探究“三角形内角和等于180°”的过程中形成严谨求实的科学态度。
四、教学重、难点验证“三角形内角和等于180°”过程中,体会研究图形性质的一般方法,发展空间观念,推理能力和有条理地表达能力。
五、教学过程第一环节:感知现象、抽象模型问题:欣赏摄影小组提供的一组图片,在这些图片中有一种共同的平面图形,你发现了吗?引入课题:认识三角形(第一课时)【设计意图】通过欣赏图片,创设一种宽松、和谐的学习氛围,让学生以轻松、愉快的心态进入探究新知的过程;通过寻找三角形图形的过程使学生经历从实际问题中抽象出几何模型的过程,同时也能感受到数学来源于生活。
1认识三角形第1课时三角形的内角和教学目标一、基本目标1.通过具体实例,认识三角形的概念及其基本要素,会将三角形按角分类.2.掌握“三角形三个内角的和等于180°”,能应用三角形内角和解决一些简单的求三角形内角的度数问题,能发现“直角三角形的两个锐角互余”并会利用.3.通过观察、操作、想象、推理“三角形三个内角的和等于180°”的活动过程,发展空间观念、推理能力和有条理的表达能力.二、重难点目标【教学重点】三角形三个内角的和等于180°;直角三角形的两个锐角互余.【教学难点】探究、发现和验证“三角形三个内角的和等于180°”.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P81~P84的内容,完成下面练习.【3 min反馈】(一)三角形1.由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.“三角形”可以用符号“△”表示,如图中顶点是A、B、C的三角形,记作△ABC.△ABC的三边,有时也用a、b、c来表示,如图中,顶点A所对的边BC用a表示,边AC、AB分别用b、c来表示.(二)三角形的内角和1.利用三角板的三个角之和为多少度来探索三角形三个内角的和.图1图2图1:30°+60°+90°=180°;图2:45°+45°+90°=180°.2.探索任意三角形三个内角的和都等于180°.(1)如图,剪一张三角形的纸片,它的三个内角分别为∠1、∠2和∠3;(2)将∠1、∠2撕下,按图所示将这两个角拼在第三个角的顶点处,用量角器量出∠BCD 的度数,可得到∠A+∠B+∠ACB=180°;(3)将∠2、∠3撕下,按下图拼在一起,用量角器量一量∠MAN的度数,可得到∠BAC +∠B+∠C=180°;(4)三角形内角和定理:三角形三个内角的和等于180°.(三)三角形的分类1.三角形按内角大小可以分为三类:锐角三角形、直角三角形、钝角三角形.2.(1)通常,我们用符号“Rt△ABC”表示“直角三角形ABC”.把直角所对的边称为直角三角形的斜边,夹直角的两条边称为直角边,如图;(2)直角三角形的两个锐角互余,即上图中∠A+∠B=90°.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,DF⊥AB,∠A=40°,∠D=43°,则∠ACD的度数是________.【互动探索】(引发学生思考)DF⊥AB,∠A=40°→∠AEF=50°(直角三角形两锐角互余)→∠CED=50°(对顶角相等),由∠D=43°→∠ACD=87°(三角形内角和定理).【答案】87°【互动总结】(学生总结,老师点评)“直角三角形的两个锐角互余”常常和三角形内角和定理综合起来求角的度数.【例2】如图是A、B、C三岛的平面图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向.从B岛看A、C两岛的视角∠ABC是多少度?从C岛看A、B两岛的视角∠ACB是多少度?【互动探索】(引发学生思考)(方法一)A、B、C三岛的连线构成△ABC,所求的∠ACB 是△ABC的一个内角,如果能求出∠CAB、∠ABC,就能求出∠ACB;(方法二)过点C作AD 的垂线,求∠ACB的度数可转化为利用平角为180°来求解.【解答】(方法一)根据题意,得∠CAB=∠BAD-∠CAD=80°-50°=30°.因为AD∥BE,所以∠BAD+∠ABE=180°,所以∠ABE=180°-∠BAD=180°-80°=100°,所以∠ABC=∠ABE-∠EBC=100°-40°=60°,所以∠ACB=180°-∠ABC-∠CAB=180°-60°-30°=90°.即从B岛看A、C两岛的视角∠ABC是60°,从C岛看A、B两岛的视角∠ACB是90°.(方法二)∠ABC的求法同“方法一”中的求法.如图,过点C作CF⊥AD于点F,延长FC交BE于点H,则CH⊥BE.因为∠ACF=180°-∠F AC-∠AFC=180°-50°-90°=40°,∠BCH=180°-∠CBH-∠CHB=180°-40°-90°=50°,所以∠ACB=180°-∠ACF-∠BCH=180°-40°-50°=90°.即从B岛看A、C两岛的视角∠ABC是60°,从C岛看A、B两岛的视角∠ACB是90°.【互动总结】(学生总结,老师点评)由平行线的性质把已知角与三角形的内角相联系,进而利用三角形内角和定理可求出有关角的度数.活动2巩固练习(学生独学)1.已知一个三角形中一个角是锐角,那么这个三角形是(D)A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能2.在△ABC中,BC边的对应角是(A)A.∠A B.∠BC.∠C D.∠D3.在△ABC中,已知∠A=80°,∠B=∠C,则∠C=50°.4.已知三角形三个内角的度数之比为1∶3∶5,则这三个内角的度数分别为20°,60°,100°.5.如图,在Rt△ABC中,∠ACB=90°,∠1=∠B,∠2=∠3,则图中共有5个直角三角形.6.如图,D是△ABC中BC边延长线上一点,DF⊥AB交AB于点F,交AC于点E.若∠A=46°,∠D=50°,求∠ACB的度数.解:因为DF⊥AB,所以∠DFB=90°.又在△DFB中,∠D=50°,所以∠B=180°-∠DFB-∠D=40°.又在△ABC中,∠A=46°,所以∠ACB=180°-∠A-∠B=94°.活动3拓展延伸(学生对学)【例3】探究与发现:如图1,有一块直角三角板DEF放置在△ABC上,三角板DEF 的两条直角边DE、DF恰好分别经过点B、C.请写出∠BDC与∠A+∠ABD+∠ACD之间的数量关系,并说明理由.应用:某零件如图2所示,图纸要求∠A=90°,∠B=32°,∠C=21°,当检验员量得∠BDC=145°,就断定这个零件不合格,你能说出其中的道理吗?图1图2【互动探索】根据三角形内角和定理探究∠BDC 与∠A +∠ABD +∠ACD 之间的数量关系,然后利用得到的关系求解应用的问题.【解答】探究与发现:∠BDC =∠A +∠ABD +∠ACD .理由如下:因为∠BDC +∠DBC +∠DCB =180°,∠A +∠ABC +∠ACB =∠A +∠ABD +∠ACD +∠DBC +∠DCB =180°,所以∠BDC =∠A +∠ABD +∠ACD . 应用:能,连结BC .因为∠A =90°,∠ABD =32°,∠ACD =21°,所以由上述结论,得∠BDC =∠A +∠ABD +∠ACD =143°. 因为检验员量得∠BDC =145°≠143°, 所以这个零件不合格.【互动总结】(学生总结,老师点评)本题考查了三角形的内角和定理,能灵活运用定理进行推理是解此题的关键.环节3 课堂小结,当堂达标 (学生总结,老师点评) 1.三角形的定义由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 2.三角形内角和定理 三角形三个内角的和等于180°. 3.三角形按角分类 三角形⎩⎪⎨⎪⎧锐角三角形钝角三角形直角三角形4.直角三角形的性质 直角三角形的两个锐角互余.练习设计请完成本课时对应练习!第2课时 三角形的三边关系教学目标一、基本目标1.结合具体实例,认识等腰三角形和等边三角形的概念及基本要素.2.在度量三角形边长的实践活动中理解三角形三边的不等关系.3.掌握三角形的三边的不等关系,并能解决相关问题.4.经历观察、操作、推理、交流等活动,进一步发展推理能力和有条理的表达能力.二、重难点目标【教学重点】三角形的三边关系.【教学难点】探究三角形的三边关系及灵活应用三边关系解决生活中的实际问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P85~P86的内容,完成下面练习.【3 min反馈】1.有两边相等的三角形叫做等腰三角形;三边都相等的三角形叫做等边三角形.2.三角形的三边关系:三角形任意两边之和大于第三边;三角形任意两边之差小于第三边.3.下列长度的三条线段能否组成三角形?(1)3,4,8;(不能)(2)2,5,6;(能)(3)5,6,10;(能)(4)5,6,11.(不能)环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】以下列各组线段为边,能组成三角形的是()A.2,3,5B.4,7,10C.1,1,3D.3,4,9【互动探索】(引发学生思考)根据“三角形任意两边之和大于第三边”逐项判断即可.A中,2+3=5,不能组成三角形;B中,4+7>10,能组成三角形;C中,1+1<3,不能组成三角形;D中,3+4<9,不能组成三角形.【答案】B【互动总结】(学生总结,老师点评)判定三条线段能否组成三角形,只要判定两条较短线段长度之和大于第三条线段的长度即可.【例2】用一根长为18厘米的细铁丝围成一个等腰三角形.(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边的长为4厘米的等腰三角形吗?【互动探索】(引发学生思考)(1)理解题意,得出等腰三角形的周长是18厘米→列方程求解;(2)等腰三角形的周长为18厘米→已知边是腰还是底边→分类讨论→得三角形另外两边长→利用三角形三边关系进行判断→得出结论.【解答】(1)设底边长为x厘米,则腰长为2x厘米.根据题意,得x+2x+2x=18,解得x=3.6.所以三边长分别为3.6厘米、7.2厘米、7.2厘米.(2)分情况讨论:①当4厘米长为底边时,设腰长为x厘米,则4+2x=18,解得x=7.所以等腰三角形的三边长为7厘米、7厘米、4厘米.②当4厘米长为腰长时,设底边长为x厘米,则4×2+x=18,解得x=10.此时三边长为4厘米、4厘米、10厘米.而4+4<10,所以此时不能构成三角形.故能围成底边长为4厘米,腰长为7厘米的等腰三角形.【互动总结】(学生总结,老师点评)当已知等腰三角形的周长和一边长时,需要分类讨论已知的一边长是腰还是底边,再解决问题.活动2巩固练习(学生独学)1.下列说法:①等边三角形是等腰三角形;②三角形任意两边的和大于第三边;③三角形按边分类可分为等腰三角形、等边三角形和不等边三角形;④三角形按角分类应分为锐角三角形、直角三角形和钝角三角形.其中正确的有(C)A.1个B.2个C.3个D.4个2.已知a、b、c为三角形的三边,则|a+b-c|-|b-c-a|的化简结果是(D)A.2a B.-2bC .2a +2bD .2b -2c3.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( C ) A .1 B .2 C .8D .114.已知等腰三角形的两边长分别为4 cm 和6 cm ,且它的周长大于14 cm ,则第三边长为6 cm.5.已知三角形的三边长是三个连续的自然数,且三角形的周长小于20,求三边的长. 解:设三角形三边的长分别为x -1,x ,x +1.根据三角形的三边关系,得x -1+x >x +1,解得x >2. 因为三角形的周长小于20,所以x -1+x +x +1<20,解得x <203.所以2<x <203且x 为整数,所以x 为3,4,5,6.当x =3时,三角形三边长分别为2,3,4; 当x =4时,三角形三边长分别为3,4,5; 当x =5时,三角形三边长分别为4,5,6; 当x =6时,三角形三边长分别为5,6,7. 环节3 课堂小结,当堂达标 (学生总结,老师点评)1.等腰三角形:有两边相等的三角形. 2.等边三角形:三边都相等的三角形.3.三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.练习设计请完成本课时对应练习!第3课时 三角形的中线、角平分线教学目标一、基本目标1.理解并掌握三角形的中线、角平分线的定义,认识三角形的重心. 2.能准确画出三角形的中线、角平分线. 3.理解并掌握三角形中线、角平分线的性质. 二、重难点目标【教学重点】三角形的中线、角平分线的定义及其性质. 【教学难点】三角形的中线、角平分线的画法及应用.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P87~P88的内容,完成下面练习. 【3 min 反馈】 (一)三角形的中线1.在三角形中,连结一个顶点与它对边中点的线段,叫做这个三角形的中线.三角形的三条中线交于一点,这点称为三角形的重心.2.如图,点D 、E 、F 分别是边BC 、AC 、AB 上的中点.(1)AB 边上的中线是CF ,BC 边上的中线是AD ,AC 边上的中线是BE ; (2)因为BE 是△ABC 中AC 边上的中线, 所以AE =CE =12AC .因为CF 是△ABC 中AB 边上的中线, 所以AB =2AF =2BF . (二)三角形的角平分线1.在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.三角形的角平分线交于一点.2.(1)因为BE 是△ABC 的角平分线, 所以∠ABE =∠CBE =12∠ABC ;(2)因为CF 是△ABC 的角平分线, 所以∠ACB =2∠ACF =2∠BCF .环节2 合作探究,解决问题活动1小组讨论(师生互学)(一)画三角形的中线如图,线段AD是△ABC中BC边上的中线.讨论1:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的中线,观察中线与三角形的位置关系.作图:结论:由作图可得:(1)三角形的三条中线相交于一点;(2)锐角三角形、直角三角形、钝角三角形的三条中线都相交于三角形的内部.(二)画三角形的角平分线如图,线段AD是△ABC的一条角平分线,图中∠BAD=∠CAD.讨论2:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的角平分线,观察角平分线与三角形的位置关系.作图:结论:由作图可得:(1)三角形的三条角平分线相交于一点;(2)锐角三角形、直角三角形、钝角三角形的三条角平分线都相交于三角形的内部.活动2巩固练习(学生独学)1.如图,在△ABC中有四条线段DE、BE、EG、FG,其中有一条线段是△ABC的中线,则该线段是(B)A.线段DE B.线段BEC.线段EG D.线段FG2.如图,DE∥BC,CD是∠ACB的平分线,∠ACB=60°,那么∠EDC=30度.3.如图,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3 cm,BC =8 cm,求边AC的长.解:因为CD为△ABC的AB边上的中线,所以AD=BD.因为△BCD的周长比△ACD的周长大3 cm,所以(BC+BD+CD)-(AC+AD+CD)=3 cm,所以BC-AC=3 cm.因为BC=8 cm,所以AC=5 cm.环节3课堂小结,当堂达标(学生总结,老师点评)三角形的中线:(1)定义;(2)画法;(3)三角形重心的定义.三角形的角平分线:(1)定义;(2)画法;(3)三角形的三条角平分线交于一点.练习设计请完成本课时对应练习!第4课时三角形的高教学目标一、基本目标1.认识三角形的高线,会画任意三角形的高线,了解三角形的三条高所在的直线交于一点.2.通过折纸、画图等活动,培养学生的动手能力,提高学生的识图技能,使学生的思维变得更灵活.二、重难点目标【教学重点】三角形高线的定义,会画任意三角形的高.【教学难点】画钝角三角形夹钝角的两边上的高和三角形高的应用.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P89~P90的内容,完成下面练习.【3 min反馈】1.从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.2.三角形的三条高所在的直线交于一点.3.分别指出下图中△ABC的三条高.图1图2(1)图1中,直角边BC上的高是AB,直角边AB上的高是BC,斜边AC上的高是BD;(2)图2中,AB边上的高是CE,BC边上的高是AD,AC边上的高是BF.环节2合作探究,解决问题活动1小组讨论(师生互学)用工具准确画出三角形的高如图,线段AD是△ABC中BC边上的高.注意:标明垂直的记号和垂足的字母.教师点拨:回忆并演示“过一点画已知直线的垂线”的画法.讨论:分别在下列锐角三角形、直角三角形、钝角三角形中画出所有的高,观察高与三角形的位置关系.作图:结论:由作图可得:(1)三角形的三条高线所在的直线相交于一点;(2)锐角三角形的三条高线相交于三角形的内部;(3)直角三角形的三条高线相交于三角形的直角顶点;(4)钝角三角形的三条高线所在的直线相交于三角形的外部.活动2 巩固练习(学生独学)1.如图,在△ABC 中,EF ∥AC ,BD ⊥AC 于点D ,交EF 于点G ,则下列说法错误的是( C )A .BD 是△ABC 的高B .CD 是△BCD 的高C .EG 是△ABD 的高D .BG 是△BEF 的高2.如图,CD 、CE 、CF 分别是△ABC 的高、角平分线、中线,则下列各式中错误的是( C )A .AB =2BF B .∠ACE =12∠ACBC .AE =BED .CD ⊥BE3.如图,在△ABC 中,AB 边上的高是CE ,BC 边上的高是AD ;在△BCF 中,CF 边上的高是BC .4.若一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是直角三角形.5.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=130°,∠C=30°,则∠DAE的度数是5°.环节3课堂小结,当堂达标(学生总结,老师点评)1.三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段.2.三角形的三条高所在的直线交于一点.三角形的三条高的特性:锐角三角形直角三角形钝角三角形三角形内部高的数量31 1三条高是否相交是是否三条高所在直线的交点位置三角形内部直角顶点三角形外部练习设计请完成本课时对应练习!。
第四章三角形4.1.1 认识三角形〖教学目标〗1.了解三角形的概念。
2.掌握一类图形中的三角形计数方法,渗透分类思想。
3.掌握三角形的内角和规律及其应用。
4.培养分析、归纳问题和逻辑推理能力,激发学生的创造思维和探索精神。
〖教材分析〗教材从观察小木屋屋顶框架图入手,要求学生找出四个不同的三角形,并说明这些图形有什么共同点。
考虑到学生的认知水平,设计用动画“画”三角形,学生“观察”,总结、归纳出三角形定义。
本课时内容是在学生已了解三角形内角和知识的基础上学习的,主要引导学生参与探索发现三角形的内角和规律,为灵活运用三角形内角和规律打下坚实的基础。
整个教学内容力图让学生通过“感知―概括―应用”的思维过程去发现知识、掌握规律,并通过师生间和生生间的多层次、多通道的主体信息交流,发展学生的逻辑推理能力。
〖教学设计〗三角形是生活中常见的几何图形,学生都认识,但是对定义的理解不够准确。
为加深学生的理解,教学中让学生从自己的认识出发,教师给予引导、明晰,再得到定义。
“三角形的计数”是本节难点,为让每个学生都得到经历数学思考的体验,采用小组活动的方式,使每个学生都得到训练,发展个性化的学习。
同时,结合学生的认知水平,制作课件,生动、形象地帮助学生学习,降低学习难度。
(一)创设情境,引入新课师:同学们认识三角形吗?生:认识。
师:在生活中见过应用三角形的例子吗?生:见过。
师:哪一位同学能举一些例子?生1:三角形的屋顶。
生2:自行车的三角架。
师:很好。
老师也给同学们准备了一些生活中应用三角形的例子,我们一起来看看。
(屏幕显示一组图片。
)师:这些例子说明了三角形在我们的生活中随处可见。
为什么三角形具有这么多应用呢?等我们学完这一章后,同学们就会有更深的理解。
下面我们一起来认识三角形。
(二)得出三角形定义师:请同学们观察屏幕上动画画三角形的过程,然后用自己的语言来描述怎么样的图形叫做三角形。
屏幕显示三角形:图1师:哪一位同学能根据自己的观察说一下什么样的图形叫三角形?生3:由三条线段组成的图形叫三角形。
北师大版数学七年级下册4.1《认识三角形》说课稿3一. 教材分析北师大版数学七年级下册4.1《认识三角形》这一节的内容是在学生已经掌握了三角形的基本概念和性质的基础上进行进一步的学习。
本节课的主要内容是让学生了解并掌握三角形的分类,包括锐角三角形、直角三角形和钝角三角形,以及三角形的内角和定理。
通过本节课的学习,学生能够进一步深化对三角形的认识,为后续学习三角形的相关知识打下坚实的基础。
二. 学情分析在开始本节课的学习之前,学生已经对三角形有了初步的认识,掌握了三角形的基本概念和性质。
但是,对于三角形的分类和内角和定理,学生可能还比较陌生。
因此,在教学过程中,我将会以引导为主,通过具体的例子和实际操作,帮助学生理解和掌握三角形的分类和内角和定理。
三. 说教学目标1.知识与技能目标:学生能够了解并掌握三角形的分类,包括锐角三角形、直角三角形和钝角三角形,以及三角形的内角和定理。
2.过程与方法目标:通过观察、操作和思考,学生能够培养自己的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:学生能够积极参与课堂学习,克服困难,体验成功的喜悦,增强对数学学习的兴趣和信心。
四. 说教学重难点1.教学重点:三角形的分类和内角和定理。
2.教学难点:三角形分类的判断和内角和定理的理解。
五. 说教学方法与手段在本节课的教学过程中,我将采用问题驱动法和小组合作学习法。
问题驱动法能够激发学生的思考,培养学生的逻辑思维能力;小组合作学习法能够培养学生的团队合作精神,提高学生的交流和表达能力。
此外,我还会利用多媒体课件和实物模型等教学手段,帮助学生更好地理解和掌握知识。
六. 说教学过程1.导入:通过一个实际问题,引出三角形的分类和内角和定理的概念。
2.新课导入:介绍三角形的分类,包括锐角三角形、直角三角形和钝角三角形,并通过具体的例子进行解释。
3.内角和定理:通过实际操作和思考,引导学生发现三角形的内角和等于180度的规律。
第四章三角形1认识三角形(第1课时)保定市第二十三中学冯彦敏一学生起点分析学生的知识技能基础:学生在小学已经学习了有关三角形的一些初步知识,能在生活中抽象出三角形的几何图形,并能给出三角形的简单概念及一些相关概念.但不够严密,教师要在教学中指出,并要相对严密地给出概念.学生在第二章对两直线平行的条件以及平行线的特征进行了探索,使学生具备了利用平行线的结论得出三角形内角和的结论的基本知识和基本技能.学生的活动经验基础:学生在以前的几何学习过程中,已对图形的概念、线段及角的表示法、线段的测量等有了一定的认识,为认识三角形概念、表示法的学习奠定了基础.在小学学习三角形的内角和的结论时是通过撕、拼的方法得到的,具备了直观操作的经验,同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力.二教学任务分析让学生掌握三角形的概念,能指出三角形的顶点、边、角等基本元素,能用适当的符号表示三角形以及这些基本元素;经历探索、验证“三角形内角和等于180°”的活动过程,获得一定的推理活动经验;能应用三角形内角和定理解决一些简单的问题;能运用直角三角形两锐角互余的性质解决简单的问题;会按角的大小关系对三角形分类,能判断出给定三角形的形状.基于此,本节课的教学目标是:(1)知识与技能:通过观察、操作、想象、推理“三角形内角和等于180°”的活动过程,发展空间观念,推理能力和有条理地表达能力.(2)过程与方法:让学生在数学活动中通过相互间的合作与交流,培养学生的相互协作意识及数学表达能力.(3)情感与态度:在探究学习中体会数学的现实意义,培养学习数学的信心,体验解决问题方法的多样性.三教学设计分析本节课设计了七个教学环节:第一环节:情境引入;第二环节:概念讲解;第三环节:合作学习;第四环节:猜角游戏;第五环节:练习提高;第六环节:课堂小结;第七环节:布置作业.第一环节 情境引入活动内容: 让学生收集生活中有关三角形的图片,课上让学生举例,并观察图片.活动目的: 使学生能从生活中抽象出几何图形 ,感受到我们生活在几何图形的世界之中. 培养学生善于观察生活、乐于探索研究的学习品质,在课堂上用源于学生收集的图片展开教学,从而更大地激发学生学习数学的兴趣.大屏幕展示生活中的三角形的实例,如教师用的三角板、人字架房屋、自行车的大梁、埃及金字塔等,激发学生走进生活、感受数学的高涨热情.第二环节 概念讲解活动内容 :参照教材提供的屋顶框架图,提出问题(1)你能从中找出四个不同的三角形吗?(2)这些三角形有什么共同的特点?活动目的: 通过上题的分析引导学生归纳三角形的概念、基本要素(边、角、顶点),体会用符号表示三角形的必要性,培养学生观察分析能力及归纳总结的能力.第三环节 合作学习活动内容:以4人合作小组为单位,充分利用课前准备的任意三角形纸片,探索验证三角形内角和为180°的方法.然后各小组选派代表展示设计的方案并斜梁 斜梁横梁陈述理由.活动目的:学生在探究过程中,教师到各小组巡回指导,参与他们的讨论,鼓励他们提出疑问,但是并不急于评判他们的答案,而是有针对性的启发和指导,引导学生在操作中自觉思考:能否利用平行线的有关事实说明理由,让学生们主动思考,团结协作的释疑.在这一环节中一方面充分利用学生已有的知识和经验,另一方面使学生通过多角度思考、分析、说理、操作加深学生对三角形内角和为180°的理解,从而突出和解决了本节课的重点,同时在教学中注重在直观操作的基础上进行简单的推理,使学生学会用一定的方式有条理地表达推理过程,为今后的几何证明打下基础.附学生设计验证方法:第四环节猜角游戏活动内容:1、教师借助下图提出问题:(1)下面的图(1)、图(2)、图(3)中的三角形被遮住的两个内角是什么角?试着说明理由.(2)将图(3)的结果与图(1)、图(2)的结果进行比较,可以将三角形如何按角分类?2、进一步学习上述游戏活动中得出的直角三角形的相关知识——直角三角形的符号、斜边、直角边,并提出问题:直角三角形有许多性质,你能发现它的两个锐角之间有什么关系吗?从而引导学生发现直角三角形两个锐角互余.活动目的:通过第1个活动,使学生从游戏中归纳出根据三角形内角的大小只能把三角形分成三类.然后让学生任意说出三角形的两个内角的度数,请其他同学说出是什么三角形.通过对三角形分类的学习,使学生了解数学分类的基本思想.当只露出一个内角为锐角时,引导学生发现三种情况都是可以的,即两个锐角,一个锐角一个直角,一个钝角一个锐角,从而使学生初步体会反证法的思想,为后面进一步研究反证法奠定基础.第2个活动是学生在理解三角形内角和为180°之后的延伸——直角三角形的符号、斜边、直角边以及直角三角形两个锐角互余,培养学生良好的学习习惯,提高学生灵活运用所学知识的能力.第五环节练习提高活动内容:在这个环节设计了练一练、知识技能、想一想、实际问题练一练1、观察下面的三角形,并把它们的标号填入相应图内:⑦⑥⑤④③②①锐角三角形直角三角形钝角三角形知识技能1、已知∠A,∠B,∠C是△ABC的三个内角,∠A=70°,∠C=30 °,∠B=()2、直角三角形一个锐角为70°,另一个锐角()度.3、在△ABC中,∠A=80°,∠B=∠C,则∠C=()4、如果△ABC中,∠A∶∠B∶∠C=2∶3∶5,此三角形按角分类应为().想一想一个三角形中会有两个直角吗?可能两个内角是钝角或锐角吗?实际问题如图,一艘轮船按箭头所示方向行驶,C处有一灯塔,轮船行驶到哪一点时距离灯塔最近?当轮船从A点行驶到B点时,∠ACB的度数是多少?当轮船行驶到距离灯塔最近点时呢?活动目的:关于练习的安排是按照由易到难,由简到繁的学习心理和认知规律过程设计的,便于学生循序渐进地掌握知识.第六环节课堂小结活动内容:引导学生进行小结活动目的:鼓励学生结合本节课的学习谈自己的收获与感想,包括三角形的内角和为180°,直角三角形的表示法及有关概念,直角三角形两锐角互余,三角形按角分类.第七环节布置作业习题4.1 1,2(直接填写在教材上),3,4四、教学设计反思1、让学生体验“做数学”、“说数学”在教学过程中学生在教师创设的情境下,自己动手操作、动脑思考、动口表达、探索未知领域、寻找客观真理、成为发现者,学生自始自终地参与这一探索过程,发展了学生的创新精神和实践能力.通过有条理的表达三角形内角和为180°的推理过程,为今后的几何证明打下基础.2、教师应成为学生学习的促进者通过让学生剪、拼得到三角形内角和为180°,再请学生用所学知识推导出来,使学生的感性认识和理性认识都得到提高,而不是单纯的将问题的结论告诉学生.在备课时,更应思考的是学生怎么学,为了让学生学得更多、更好、更会学,身为教师应使自己从一个讲授者变成学生学习的促进者.。