新北师大版七年级数学下册第四章全等三角形测试题
- 格式:doc
- 大小:156.50 KB
- 文档页数:4
全等三角形综合训练一、选择题1. 在如图所示的三角形中,与图中的△ABC全等的是()2. 如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D.若PD=2,则点P到边OA的距离是()A. 1B. 2C. 3D. 43. 如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加一个条件是()A.∠A=∠C B.∠D=∠BC.AD∥BC D.DF∥BE4. 如图,已知∠1=∠2,欲证△ABD≌△ACD,还需从下列条件中补选一个,则错误的选项是()A.∠ADB=∠ADC B.∠B=∠CC.DB=DC D.AB=AC5. 如图,AO是∠BAC的平分线,OM⊥AC于点M,ON⊥AB于点N.若ON=8 cm,则OM的长为()A.4 cm B.5 cm C.8 cm D.20 cm6. 如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带哪一块去()A. ①B. ②C. ③D. ①和②7. 已知△ABC的六个元素,下列甲、乙、丙三个三角形中标出了某些元素,则与△ABC全等的三角形是()A.只有乙B.只有丙C.甲和乙D.乙和丙8. 如图,在Rt△ABC中,∠C=90°,AD是角平分线,若BC=10 cm,BD CD=3 2,则点D到AB的距离是()A.6 cmB.5 cmC.4 cmD.3 cm9. 如图,OP平分∠AOB,点P到OA的距离为3,N是OB上的任意一点,则线段PN 的长度的取值范围为()A.PN<3B.PN>3C.PN≥3D.PN≤310. (2019•陕西)如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC 于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为A.2+2B.23+C.32+D.3二、填空题11. 如图,已知△ABC≌△ADE,若∠B=42°,∠C=90°,∠EAB=40°,则∠BAD =________°.12. 如图,在△ABC中,两条外角平分线交于点P,PM⊥AC交AC的延长线于点M.若PM=6 cm,则点P到AB的距离为.13. 如图,△ABC≌△DEF,根据图中提供的信息,得x=________.14. 如图,在△ABC中,AD⊥BC于点D,要使△ABD≌△ACD,若根据“HL”判定,还需要添加条件:____________.15. 如图,已知∠C=90°,AD平分∠BAC交BC于点D,BD=2CD,DE⊥AB于点E.若DE=5 cm,则BC=________cm.16. 如图,已知AC=FE,BC=DE,点A,D,B,F在同一直线上,要使△ABC≌△FDE,还需添加一个..条件,这个条件可以是__________(填一个即可).17. (2019•襄阳)如图,已知ABC DCB∠=∠,添加下列条件中的一个:①A D∠=∠,②AC DB=,③AB DC=,其中不能确定ABC△≌△DCB△的是_ _________(只填序号).18. 如图,在Rt ABC△中,90C∠=︒,以顶点B为圆心,适当长度为半径画弧,分别交AB BC,于点M N,,再分别以点M N,为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.若30A∠=︒,则BCDABDSS=△△______ ____.三、解答题19. 如图,已知△ABC≌△DBE,点D在AC上,BC与DE交于点P,AD=DC =2.4,BC=4.1.(1)若∠ABE=150°,∠DBC=30°,求∠CBE的度数;(2)求△DCP与△BPE的周长和.20. 如图,AB=AD,BC=DC,点E在AC上.求证:(1)AC平分∠BAD;(2)BE=DE.21. 如图,一艘轮船沿AC方向航行,轮船在点A时测得航线两侧的两个灯塔与航线的夹角相等,当轮船到达点B时测得这两个灯塔与航线的夹角仍然相等,这时轮船与两个灯塔的距离是否相等?为什么?22. 如图,在Rt△ABC中,∠ACB=90°,∠B=60°,AD,CE是角平分线,AD 与CE相交于点F,FM⊥AB,FN⊥BC,垂足分别为M,N.求证:FE=FD.23. 如图①,点A,B,C,D在同一直线上,AB=CD,作EC⊥AD于点C,FB ⊥AD于点B,且AE=DF.(1)求证:EF平分线段BC;(2)若将△BFD沿AD方向平移得到图②,其他条件不变,(1)中的结论是否仍成立?请说明理由.全等三角形综合训练-答案一、选择题1. 【答案】C2. 【答案】B【解析】如解图,过点P作PG⊥OA于点G,根据角平分线上的点到角的两边距离相等可得,PG=PD=2.3. 【答案】B[解析] 在△ADF和△CBE中,由AD=BC,∠D=∠B,DF=BE,根据两边和它们的夹角分别相等的两个三角形全等,可以得到△ADF≌△CBE.故选B.4. 【答案】C[解析] 当添加条件A时,可用“ASA”证明△ABD≌△ACD;当添加条件B时,可用“AAS”证明△ABD≌△ACD;当添加条件D时,可用“SAS”证明△ABD≌△ACD;当添加条件C时,不能证明△ABD≌△ACD.5. 【答案】C6. 【答案】C7. 【答案】D8. 【答案】C[解析] ∵BC=10 cm,BD CD=3 2,∴CD=×10=4(cm).∵AD是角平分线,∴点D到AB的距离等于CD,即点D到AB的距离为4 cm.故选C.9. 【答案】C[解析] 作PM⊥OB于点M.∵OP平分∠AOB,PE⊥OA,PM⊥OB,∴PM=PE=3.∴PN≥3.10. 【答案】A【解析】如图,过点D作DF⊥AC于F,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DF=DE=1,在Rt△BED中,∠B=30°,∴BD=2DE=2,在Rt △CDF 中,∠C=45°,∴△CDF 为等腰直角三角形,∴CF=DF=1,∴∴BC=BD+CD=2A .二、填空题11. 【答案】88[解析] 因为△ABC ≌△ADE ,所以∠D =∠B =42°.又∠C =90°,所以∠E =90°,所以∠EAD =180°-42°-90°=48°.这时∠BAD =∠EAB +∠EAD =40°+48°=88°.12. 【答案】6 cm[解析] 如图,过点P 作PN ⊥BC 于点N ,PQ ⊥AB 交AB 的延长线于点Q.∵BP ,CP 是两条外角的平分线,PM ⊥AC ,∴PN=PM ,PQ=PN.∴PQ=PM.∵PM=6 cm,∴PQ=6 cm,即点P 到AB 的距离为6 cm .13. 【答案】2014. 【答案】AB =AC15. 【答案】15[解析] ∵AD 平分∠BAC ,∠C =90°,DE ⊥AB ,∴DC =DE =5cm.∴BD =2CD =10 cm ,则BC =CD +BD =15 cm.16. 【答案】答案不唯一,如∠C =∠E 或AB =FD 等17. 【答案】②【解析】∵已知ABC DCB ∠=∠,且BC CB =,∴若添加①A D ∠=∠,则可由AAS 判定ABC △≌DCB △;若添加②AC DB =,则属于边边角的顺序,不能判定ABC △≌DCB △; 若添加③AB DC =,则属于边角边的顺序,可以判定ABC △≌DCB △. 故答案为:②.18. 【答案】12【解析】由作法得BD 平分ABC ∠, ∵90C =︒∠,30A ∠=︒,∴60ABC ∠=︒,∴30ABD CBD ∠=∠=︒,∴DA DB =, 在Rt BCD △中,2BD CD =,∴2AD CD =,∴12BCD ABD S S =△△.故答案为:12.三、解答题19. 【答案】解:(1)∵∠ABE =150°,∠DBC =30°, ∴∠ABD +∠CBE =120°.∵△ABC ≌△DBE ,∴∠ABC =∠DBE.∵∠ABD =∠ABC -∠DBC ,∠CBE =∠DBE -∠DBC , ∴∠ABD =∠CBE =60°, 即∠CBE 的度数为60°. (2)∵△ABC ≌△DBE ,∴DE =AC =AD +DC =4.8,BE =BC =4.1.∴△DCP 与△BPE 的周长和=DC +DP +BP +CP +PE +BE =DC +DE +BC +BE =15.4.20. 【答案】证明:(1)在△ABC 与△ADC 中,⎩⎨⎧AB =AD ,AC =AC ,BC =DC ,∴△ABC ≌△ADC(SSS). ∴∠BAC =∠DAC , 即AC 平分∠BAD. (2)由(1)知∠BAE =∠DAE.在△BAE 与△DAE 中,⎩⎨⎧AB =AD ,∠BAE =∠DAE ,AE =AE ,∴△BAE ≌△DAE(SAS). ∴BE =DE.21. 【答案】解:当轮船到达点B 时,与两个灯塔的距离相等. 理由如下:如图,根据题意,得∠DAB =∠EAB ,∠1=∠2. ∵∠1+∠3=180°,∠2+∠4=180°, ∴∠3=∠4.在△ABD 与△ABE 中,⎩⎨⎧∠DAB =∠EAB ,AB =AB ,∠3=∠4,∴△ABD ≌△ABE(ASA). ∴BD =BE ,即当轮船到达点B 时,与两个灯塔的距离相等.22. 【答案】证明:如图,连接BF.∵F 是△ABC 的角平分线AD ,CE 的交点, ∴BF 平分∠ABC. ∵FM ⊥AB ,FN ⊥BC ,∴FM =FN ,∠DNF =∠EMF =90°.∵在Rt △ABC 中,∠ACB =90°,∠ABC =60°, ∴∠BAC =30°.∵AD 平分∠BAC ,∴∠DAC =12∠BAC =15°. ∴∠CDA =75°.∵CE 平分∠ACB ,∠ACB =90°, ∴∠ACE =45°.∴∠MEF =75°=∠NDF.在△DNF 和△EMF 中,⎩⎨⎧∠DNF =∠EMF ,∠NDF =∠MEF ,FN =FM ,∴△DNF ≌△EMF(AAS).∴FE =FD.23. 【答案】解:(1)证明:∵EC ⊥AD ,FB ⊥AD , ∴∠ACE=∠DBF=90°.∵AB=CD ,∴AB+BC=BC+CD , 即AC=DB.在Rt △ACE 和Rt △DBF 中, ∴Rt △ACE ≌Rt △DBF (HL).∴EC=FB. 在△CEG 和△BFG 中,∴△CEG ≌△BFG (AAS).∴CG=BG ,即EF 平分线段BC.(2)EF 平分线段BC 仍成立.理由:∵EC ⊥AD ,FB ⊥AD ,∴∠ACE=∠DBF=90°.∵AB=CD ,∴AB-BC=CD-BC ,即AC=DB.在Rt △ACE 和Rt △DBF 中, ∴Rt △ACE ≌Rt △DBF (HL).∴EC=FB.在△CEG和△BFG中,∴△CEG≌△BFG(AAS).∴CG=BG,即EF平分线段BC.。
北师大版七年级下册数学第四章三角形含答案一、单选题(共15题,共计45分)1、如图,一定全等的两个三角形是()A.①与②B.①与③C.②与③D.以上答案都不对2、如图所示,一扇窗户打开后,用窗钩AB即可固定,这里所用的几何原理是()A.两点之间线段最短B.垂线段最短.C.两定确定一条直线D.三角形具有稳定性3、如图,△ABC≌△AED,点 E 在线段 BC 上,∠1=48º,则∠AED 的度数是()A.66°B.65°C.62°D.60°4、下列命题中,真命题是()A.周长相等的锐角三角形都全等B.周长相等的直角三角形都全等C.周长相等的钝角三角形都全等D.周长相等的等腰直角三角形都全等5、如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,下列结论:①tan∠AEC=;②四边形CGMH是矩形;③△EGM≌△MHA;④S△ABC +S△CDE≥S△ACE;⑤图中的相似三角形有10对.正确结论是()A.①②③④B.①②③⑤C.①③④D.①③⑤6、下列条件中,不能判定△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.∠A ∠B= ∠CC.∠B=50°,∠C=40°D.a=5,b=12,c=137、以下列各组线段长为边,能组成三角形的是( )A.1cm,2cm,3cmB.2cm,3cm,8cmC.5cm,12cm,6cm D.4cm,6cm,9cm8、如图,在等边中,,点在上,且,点是上一动点,连结,将线段绕点逆时针旋转得到线段.要使点恰好落在上,则的长是()A. B. C. D.9、若△ABC∽△A'B'C',∠A=30°,∠C=110°,则∠B'的度数为()A.30°B.50°C.40°D.70°10、如图,中,于D,下列条件中:① ;②;③ ;④ ;⑤,⑥ ,一定能确定为直角三角形的条件的个数是()A.1B.2C.3D.411、如图,,,,,则A.27°B.54°C.30°D.55°12、如图,在△ABC中,∠C=40 ° ,按图中虚线将∠C剪去后,∠1+∠2等于().A.140°B.210°C.220°D.320°13、已知m是整数,以4m+5、2m-1、20-m这三个数作为同一个三角形三边的长,则满足条件的三角形个数有()A.0个B.1个C.2个D.无数个14、如图,矩形ABCD中,AB=3,AD=9,点E在边AD上,AE=1,过E、D两点的圆的圆心O在边AD的上方,直线BO交AD于点F,作DG⊥BO,垂足为G.当△ABF与△DFG全等时,⊙O的半径为()A. B. C. D.15、如图所示,在中,,于,,则线段的长是()A.3B.4C.8D.1二、填空题(共10题,共计30分)16、下列关于两个三角形全等的说法:①面积相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和其中一个角的对边对应相等的两个三角形全等;④有两边和一个角对应相等的两个三角形全等;⑤腰相等的两个等腰三角形一定全等.其中说法正确的是________.(填写序号)17、如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠ADE=________°.18、如图,AB=AC,AD=AE,∠BAC=∠DAE,点D在线段BE上.若,∠2=30°,∠3=55°则∠1=________.19、已知等腰三角形的周长为20,腰长为x,则x的取值范围是________ .20、如图,中有6个条形方格图,图上由实线围成的图形是全等形的有哪几对________21、如图,△ABD与△AEC都是等边三角形,AB≠AC.下列结论中,正确的是________.①BE=CD;②∠BOD=60º;③△BOD∽△COE.22、已知,如图,AC=AE,∠1=∠2,AB=AD,若∠D=25°,则∠B的度数为________.23、若等腰三角形的两边长为3cm和7cm,则该等腰三角形的周长为________ cm.24、如图,在△ABC中,已知D,E,F分别为边BC,AD,CE的中点,且,则阴影部分的面积为________ cm2.25、三角形的一边是5,另一边是1,第三边如果是整数,则第三边是________.三、解答题(共5题,共计25分)26、如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.27、如图,△ABC中,∠ACB=90°,AC=6,BC=8。
一、选择题1.如图,,,AB AD CB CD AC BD ==、相交于点O ,则下列说法中正确的个数是( ) ①OD OB =;②点O 到CB CD 、的距离相等;③BDA BDC ∠=∠;④BD AC ⊥A .4B .3C .2D .12.如图,在ABC 中,AB AC =,点D ,E 在BC 上,连接AD ,AE ,若只添加一个条件使DAB EAC ∠=∠,则添加的条件不能为( )A .BD CE =B .AD AE =C .BE CD = D .DA DE = 3.如图,ABD △与AEC 都是等边三角形,AB AC ≠.下列结论中,①BE CD =;②60BOD ∠=︒;③BDO CEO ∠=∠.其中正确的有( ).A .0个B .1个C .2个D .3个4.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒ 5.有下列长度的三条线段,能组成三角形的是( )A .2cm ,3cm ,4cmB .1cm ,4cm ,2cmC .1cm ,2cm ,3cmD .6cm ,2cm ,3cm 6.如图,在△ABC 中,已知点D ,E ,F 分别为边AC ,BD ,CE 的中点,且阴影部分图形面积等于4平方厘米,则△ABC 的面积为( )平方厘米A .8B .12C .16D .187.如图,点C ,D 分别在线段OA ,OB 上,AD 与BC 相交于点E ,若OC OD =,A B ∠=∠,则图中全等三角形的对数为( )A .5对B .4对C .3对D .2对8.如图,两座建筑物AB ,CD 相距160km ,小月从点B 沿BC 走向点C ,行走ts 后她到达点E ,此时她仰望两座建筑物的顶点A 和D ,两条视线的夹角正好为90︒,且EA ED =.已知建筑物AB 的高为60m ,小月行走的速度为1/m s ,则小月行走的时间t 的值为( )A .100B .80C .60D .509.如图,四边形ABCD 是长方形,点F 是DA 长线上一点,G 是CF 上一点,并且ACG AGC ∠=∠,GAF F ∠=∠.若15ECB ∠=︒,则ACF ∠的度数是( )A .15︒B .20︒C .30D .45︒10.如图,已知AOB ∠,观察图中尺规作图的痕迹,可以判定111COD C O D ≌,其判定的依据是( )A .SSSB .SASC .ASAD .AAS 11.下列四个图形中,有两个全等的图形,它们是( )A .①和②B .①和③C .②和④D .③和④ 12.如图,已知ABC ADE △≌△,若70E ∠=︒,30D ∠=︒,则BAC ∠的度数是( )A .80︒B .70︒C .40︒D .30二、填空题13.如图,在△ABC 中E 是BC 上的一点,BC =3BE ,点D 是AC 的中点,设△ABC ,△ADF ,△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF ﹣S △BEF =____.14.如图,AC=BC ,请你添加一个条件,使AE=BD .你添加的条件是:________.15.如果三角形的三边长分别为5,8,a ,那么a 的取值范围为__.16.如图,AB 与CD 相交于点O ,OC =OD .若要得到△AOC ≌△BOD ,则应添加的条件是__________.(写出一种情况即可)17.如图,已知△ABC 的面积为18,BP 平分∠ABC ,且AP ⊥BP 于点P ,则△BPC 的面积是_____.18.如图,已知四边形ABCD 中,10AB =厘米,8BC =厘米,12CD =厘米,B C ∠=∠,点E 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上由C 点向D 点运动.当点Q 的运动速度为______厘米/秒时,能够使BEP △与CPQ 全等.19.如图,在ABC 中,AD BC ⊥,CE AB ⊥,垂足分别为D ,E ,AD ,CE 交于点F .请你添加一个适当的条件,使AEF ≌CEB △.添加的条件是:____.(写出一个即可)20.如图,点E ,F 在线段AD 上,且AE DF =,//AB DC ,AB DC =,连接BE ,BF ,CE ,CF ,则图中共有_____对全等三角形.三、解答题21.作图题(1)如图,已知线段m ,n .求作△ABC ,请在右面的空白处作△ABC ,作∠ACB =90°,AC =m ,AB =n (尺规作图,不写作法,保留作图痕迹).(2)婷婷将(1)中自己画的△ABC 剪下来,放在同桌悦悦所画的△ABC 上,发现两三角形完全重合,这一过程验证了三角形全等的哪一种判定定理: (直接写出答案,不写过程).22.如图,所有小正方形的边长都为1个单位,A 、B 、C 均在格点上.(1)过点A 画线段BC 的垂线,垂足为E ;(2)过点A 画线段AB 的垂线,交线段CB 的延长线于点F ;(3)线段BE 的长度是点 到直线 的距离;(4)线段AE 、BF 、AF 的大小关系是 .(用“<”连接)23.如图,已知在ABC 中,AB AC =,90BAC ∠=︒,别过B 、C 两点向过A 的直线作垂线,垂足分别为E 、F .求证:EF BE CF =+.24.已知:D ,A ,E 三点都在直线m 上,在直线m 的同一侧作ABC ,使AB AC =,连接BD ,CE .(1)如图①,若90BAC ∠=︒,BD m ⊥,CE m ⊥,求证ABD ACE ≅;(2)如图②,若BDA AEC BAC ∠=∠=∠,请判断BD ,CE ,DE 三条线段之间的数量关系,并说明理由.25.已知ACE △和DBF 中,AE FD =,//AE FD ,AB DC =,请判断CE 与BF 的位置关系,并说明理由.26.已知22a m n =+,2b m =,c mn =,且m >n >0.(1)比较a ,b ,c 的大小;(2)请说明以a ,b ,c 为边长的三角形一定存在.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先根据全等三角形的判定定理得出△ACD ≌△ACB ,△ABO ≌△ADO ,再根据全等三角形的性质即可得出结论.【详解】解:在△ABC 和△ADC 中,∵AB AD BC CD AC AC ⎧⎪⎨⎪⎩===,∴△ABC ≌△ADC (SSS ),∴∠BAC=∠DAC , ∠DCA=∠BCA∴点O 到CB 、CD 的距离相等.故②正确在△ABO 与△ADO 中AB AD BAC DAC OA OA ⎧⎪∠∠⎨⎪⎩===,∴△ABO ≌△ADO (SAS ),∴BO=DO ,∠BOA=∠DOA∵∠BOA+∠DOA=180°∴∠BOA=∠DOA=90°,即BD AC ⊥故①④正确;∵AD≠CD∴BDA BDC ∠≠∠,故③错误所以,正确的结论是①②④,共3个,故选:B .【点睛】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法是解题的关键. 2.D解析:D【分析】根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.【详解】解:A 、添加BD =CE ,可以利用“边角边”证明△ABD 和△ACE 全等,再根据全等三角形对应角相等得到∠DAB =∠EAC ,故本选项不符合题意;B 、添加AD =AE ,根据等边对等角可得∠ADE =∠AED ,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB =∠EAC ,故本选项不符合题意;C 、添加BE =CD 可以利用“边角边”证明△ABE 和△ACD 全等,再根据全等三角形对应角相等得到∠BAE=∠CAD ,可得∠DAB =∠EAC ,故本选项不符合题意;D 、添加DA =DE 无法求出∠DAB =∠EAC ,故本选项符合题意.故选:D .【点睛】本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.3.C解析:C【分析】利用SAS 证明△DAC ≌△BAE ,利用三角形内角和定理计算∠BOD 的大小即可.【详解】△与AEC都是等边三角形,∵ABD∴AD=AB,AC=AE,∠DAB=∠EAC=60°,∴∠DAB+∠CAB =∠EAC+∠CAB,∴∠DAC =∠BAE,∴△DAC≌△BAE,∴BE=CD,∴结论①正确;∵△DAC≌△BAE,∴∠ADC =∠ABE,∴∠BOD=180°-(∠BDO+∠DBO),∵∠BDO+∠DBO=60°-∠ADC +60°+∠ABE=120°,∴∠BOD=180°-120°=60°,∴结论②正确;∠=∠,无法证明BDO CEO∴结论③错误;故选C.【点睛】本题考查了等边三角形的性质,全等三角形的证明和性质,三角形内角和定理,熟练运用等边三角形的性质证明三角形的全等是解题的关键.4.D解析:D【分析】利用构成三角形的条件,以及全等三角形的判定得解.【详解】+=,不满足三边关系,不能画出三角形,故选项错误;解:A,AB BC CAB,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;C,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;D,可以利用直角三角形全等判定定理HL证明三角形全等,故选项正确.故选:D【点睛】本题考查三角形全等的判定以及构成三角形的条件,解题的关键是熟练掌握全等三角形的判定方法.5.A解析:A【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的之差一定小于第三边;进行解答即可.【详解】A 、2+3>4,能围成三角形;B 、1+2<4,所以不能围成三角形;C 、1+2=3,不能围成三角形;D 、2+3<6,所以不能围成三角形;故选:A .【点睛】本题主要考查了三角形的三边关系的应用,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.6.C解析:C【分析】根据三角形的中线将三角形分成面积相等的两个三角形进行解答即可.【详解】解:∵F 是EC 的中点, ∴142AEF AFC AEC S S S ∆∆∆===, ∴8AEC S ∆=,∵ E 是BD 的中点 ,∴ABE AED S S ∆∆=,BEC ECD S S ∆∆=,∵8AED ECD AEC S S S ∆∆∆+==,∴8ABE BEC AEC S S S ∆∆∆+==,∴228=16ABC ABE BEC AEC AEC S S S S S ∆∆∆∆∆=++==⨯,故选:C .【点睛】本题考查了三角形的中线与三角形的面积关系,熟练掌握三角形的中线将三角形分成面积相等的两个三角形是解答的关键. 7.B解析:B【分析】由条件可证△AOD ≌△BOC ,可得OA=OB ,则可证明△ACE ≌△BDE ,可得AE=BE ,则可证明△AOE ≌△BOE ,可得∠COE=∠DOE ,可证△COE ≌△DOE ,可求得答案.【详解】解:在△AOD和△BOC中OC=OD∠AOD=∠BOC∠=∠A B∴△AOD≌△BOC(SAS)∴OA=OB∵OC=OD,OA=OB,∴AC=BD,在△ACE和△BDE中∠A=∠B∠AEC=∠BEDAC=BD∴△ACE≌△BDE(AAS),∴AE=BE∴AE=BE,在△AOE和△BOE中OA=OB∠A=∠BAE=BE∴△AOE≌△BOE(SAS),∴∠COE=∠DOE,在△COE和△DOE中OC=OD∠COE=∠DOEOE=OE∴△COE≌△DOE(SAS),故全等的三角形有4对.故选:B.【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AA和HL.8.A解析:A【分析】首先证明∠A=∠DEC,然后可利用AAS判定△ABE≌△ECD,进而可得EC=AB=60m,再求出BE的长,然后利用路程除以速度可得时间.【详解】解:∵∠AED=90°,∴∠AEB+∠DEC=90°,∵∠ABE=90°,∴∠A+∠AEB=90°,∴∠A=∠DEC ,在△ABE 和△DCE 中B C A DEC AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ECD (AAS ),∴EC=AB=60m ,∵BC=160m ,∴BE=100m ,∴小华走的时间是100÷1=100(s ),故选:A .【点睛】本题主要考查了全等三角形的应用,关键是正确判定△ABE ≌△ECD .9.C解析:C【分析】根据矩形的性质得到AD ∥BC ,∠DCB =90°,根据平行线的性质得到∠F =∠ECB =15°,根据三角形的外角的性质得到∠ACF =∠AGC =∠GAF +∠F =2∠F ,于是得到结论.【详解】解:∵四边形ABCD 是矩形,∴AD ∥BC ,∠DCB =90°,∴∠F =∠ECB =15°,∴∠GAF =∠F =15°,∴∠ACF =∠AGC =∠GAF +∠F =2∠F =30°,故选C .【点睛】本题考查了矩形的性质,用到的知识点为:矩形的对边平行;两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和.10.A解析:A【分析】由作法易得OD =O 1D 1,OC =O 1C 1,CD =C 1D 1,根据SSS 得到三角形全等.【详解】解:在△COD 和△C 1O 1D 1中,111111CO C O DO D O CD C D =⎧⎪=⎨⎪=⎩,∴111COD C O D ≌(SSS ).故选:A .【点睛】本题考查了全等三角形的判定方法SSS 的运用,熟练掌握三角形全等的判定是正确解答本题的关键.11.B解析:B【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.【详解】解:①和③可以完全重合,因此全等的图形是①和③.故选:B .【点睛】此题主要考查了全等图形,关键是掌握全等图形的概念.12.A解析:A【分析】由全等三角形的性质可得到∠BAC=∠EAD ,在△ADE 中可求得∠EAD ,则可求得∠BAC .【详解】解:∵∠E=70°,∠D=30°,∴∠EAD=180°-∠E-∠D=180°-70°-30°=80°,∵△ABC ≌△ADE ,∴∠BAC=∠EAD=80°,故选:A .【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.二、填空题13.2【分析】S △ADF-S △BEF=S △ABD-S △ABE 所以求出三角形ABD 的面积和三角形ABE 的面积即可因为BC=3BE 点D 是AC 的中点且S △ABC=12就可以求出三角形ABD 的面积和三角形ABE解析:2【分析】S △ADF -S △BEF =S △ABD -S △ABE ,所以求出三角形ABD 的面积和三角形ABE 的面积即可,因为BC=3BE ,点D 是AC 的中点,且S △ABC =12,就可以求出三角形ABD 的面积和三角形ABE 的面积.【详解】解:∵点D是AC的中点,∴AD=12AC,∵S△ABC=12,∴S△ABD=12S△ABC=12×12=6.∵BC=3BE,∴S△ABE=13S△ABC=13×12=4,∵S△ABD-S△ABE=(S△ADF+S△ABF)-(S△ABF+S△BEF)=S△ADF-S△BEF,即S△ADF-S△BEF=S△ABD-S△ABE=6-4=2,故答案为:2.【点睛】本题考查三角形的面积,解题的关键是要能根据已知条件求出三角形的面积并对要求的两个三角形的面积之差进行变化.14.∠A=∠B或CD=CEAD=BE∠AEC=∠BDC等【分析】根据全等三角形的判定解答即可【详解】解:因为AC=BC∠C=∠C所以添加∠A=∠B或CD=CEAD=BE∠AEC=∠BDC可得△ADC与△解析:∠A=∠B或CD=CE、AD=BE、∠AEC=∠BDC等【分析】根据全等三角形的判定解答即可.【详解】解:因为AC=BC,∠C=∠C,所以添加∠A=∠B或CD=CE、AD=BE、∠AEC=∠BDC,可得△ADC与△BEC全等,利用全等三角形的性质得出AD=BE,故答案为:∠A=∠B或CD=CE、AD=BE、∠AEC=∠BDC.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.3<a<13【分析】根据三角形的三边关系解答【详解】由题意得:8-5<a<8+5∴3<a<13故答案为:3<a<13【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边解析:3<a<13【分析】根据三角形的三边关系解答.【详解】由题意得:8-5<a<8+5,∴3<a<13,故答案为:3<a<13.【点睛】此题考查三角形的三边关系:三角形任意两边的和大于第三边.16.OA=OB (答案不唯一)【分析】全等三角形的判定方法有SASASAAASSSS 只要添加一个符合的条件即可【详解】解:OA=OB 理由是:在△AOC 和△BOD 中∴△AOC ≌△BOD (SAS )故答案为:O解析:OA=OB .(答案不唯一)【分析】全等三角形的判定方法有SAS ,ASA ,AAS ,SSS ,只要添加一个符合的条件即可.【详解】解:OA=OB ,理由是:在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD (SAS ).故答案为:OA=OB .(答案不唯一)【点睛】本题考查了全等三角形的判定的应用,通过做此题培养了学生的发散思维能力和对全等三角形的判定方法的灵活运用能力,题目答案不唯一,是一道比较好的题目.17.9【分析】根据已知条件证得△ABP ≌△DBP 根据全等三角形的性质得到AP =PD 得出S △ABP =S △DBPS △ACP =S △DCP 推出S △PBC =S △ABC 代入求出即可【详解】解:如图延长AP 交BC 于点解析:9【分析】根据已知条件证得△ABP ≌△DBP ,根据全等三角形的性质得到AP =PD ,得出S △ABP =S △DBP ,S △ACP =S △DCP ,推出S △PBC=12S △ABC ,代入求出即可. 【详解】解:如图,延长AP 交BC 于点D ,∵BP 平分∠ABC∴∠ABP =∠DBP ,且BP =BP ,∠APB =∠DPB∴△ABP ≌△DBP (ASA )∴AP=PD,∴S△ABP=S△BPD,S△APC=S△CDP,∴S△PBC=12S△ABC=9,故答案为:9.【点睛】本题考查了全等三角形的性质和判定,三角形的面积的应用,注意:等底等高的三角形的面积相等.18.3或【分析】分两种情况讨论依据全等三角形的对应边相等即可得到点Q 的运动速度【详解】解:设点P运动的时间为t秒则BP=3tCP=8-3t∵点为的中点厘米∴AE=BE=5厘米∵∠B=∠C∴①当BE=CP解析:3或15 4【分析】分两种情况讨论,依据全等三角形的对应边相等,即可得到点Q的运动速度.【详解】解:设点P运动的时间为t秒,则BP=3t,CP=8-3t,∵点E为AB的中点,10AB 厘米,∴AE=BE=5厘米,∵∠B=∠C,∴①当BE=CP=5,BP=CQ时,△BPE与△CQP全等,此时,5=8-3t,解得t=1,∴BP=CQ=3,此时,点Q的运动速度为3÷1=3厘米/秒;②当BE=CQ=5,BP=CP时,△BPE与△CQP全等,此时,3t=8-3t,解得t=43,∴点Q的运动速度为5÷43=154厘米/秒;故答案为:3厘米/秒或154厘米/秒.【点睛】本题考查了全等三角形的性质和判定的应用,解决问题的关键是掌握全等三角形的对应边相等.19.AF=CB或EF=EB或AE=CE【分析】根据垂直关系可以判断△AEF与△CEB有两对对应角相等就只需要找它们的一对对应边相等就可以了【详解】∵AD⊥BCCE⊥AB垂足分别为DE∴∠BEC=∠AEC解析:AF=CB或EF=EB或AE=CE【分析】根据垂直关系,可以判断△AEF与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【详解】∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=∠ADB=∠ADC=90°,∵∠B+∠BAD=90°,∠B+∠BCE =90°,∴∠BAD=∠BCE,所以根据AAS添加AF=CB或EF=EB;根据ASA添加AE=CE.可证△AEF≌△CEB.故答案为:AF=CB或EF=EB或AE=CE.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.20.3【分析】易证△ABE≌△DCF从而可得出△ABF≌△DCE进而可得出△BEF≌△CFE【详解】∵AB∥DC∴∠A=∠D∵AB=CDAE=DF∴△ABE≌△DCF(SAS)∴AE=DFBE=CF∴A解析:3【分析】易证△ABE≌△DCF,从而可得出△ABF≌△DCE,进而可得出△BEF≌△CFE.【详解】∵AB∥DC∴∠A=∠D∵AB=CD,AE=DF∴△ABE≌△DCF(SAS)∴AE=DF,BE=CF∴AF=ED∴△ABF≌△DCE(SAS)∴BF=EC∵EF=EF∴△BEF≌△CFE(SSS)故答案为:3.【点睛】本题考查三角形全等的证明,需要注意SSA是不能证明全等的.三、解答题21.(1)见解析;(2)HL【分析】(1)①用直尺任意画一条线,用圆规的两脚量取等于m 长度的线段,交直线与A 、C 两点;②以C 为圆心,任意长半径作圆;③分别以圆与直线的交点为圆心,画两个等圆,连接两个等圆的交点,可作出直线的垂线;④以A 为圆心,线段n 长为半径作圆,交垂线于点B ;⑤连接AB 即可(2)根据两个直角三角形对应的斜边和一条直角边相等即可得到结论【详解】(1)如图,步骤①用直尺任意画一条线,用圆规的两脚量取等于m 长度的线段,交直线与A 、C 两点;②以C 为圆心,任意长半径作圆;③分别以圆与直线的交点为圆心,画两个等圆,连接两个等圆的交点,可作出直线的垂线;④以A 为圆心,线段n 长为半径作圆,交垂线于点B ;⑤连接AB 即可(2)90ACB ∠=︒,在Rt ACB 中,直角边AC m =,斜边AB n =∴在两个直角三角形中,斜边和一条直角边对应相等∴可用HL 证明两个三角形全等【点睛】本题考查了复杂作图,以及全等三角形的判定,解题关键是掌握垂线的画法,以及全等三角形的判定定理.22.(1)见解析;(2)见解析;(3)B ,AE ;(4)AE <AF <BF【分析】(1)根据垂线的做法画出图象;(2)根据垂线的做法画出图象;(3)根据点到直线距离的定义填空;(4)利用直角三角形的斜边和直角边的大小关系,得出结果.【详解】(1)如图所示;(2)如图所示;(3) ∵BE AE ⊥,∴线段BE 的长度是点B 到直线AE 的距离,故答案是:B ,AE ;(4)∵AE 是直角三角形AEF 的直角边,AF 是直角三角形AEF 的斜边,∴AE AF <,∵BF 是直角三角形ABF 的斜边,AF 是直角三角形ABF 的直角边,∴AF BF <,∴AE AF BF <<,故答案是:AE AF BF <<.【点睛】本题考查作垂线和直角三角形的性质,解题的关键是掌握作垂线的方法和直角三角形的直角边和斜边的大小关系.23.见解析【分析】证明△BEA ≌△AFC ,得到AE=CF ,BE=AF ,即可得到结论.【详解】证明:BE EA ⊥,CF AF ⊥,90BAC BEA AFC ∴∠=∠=∠=︒,90EAB CAF ∴∠+∠=︒,90EBA EAB ∠+∠=︒,CAF EBA ∴∠=∠,在ABE △和AFC △中,BEA AFC EBA CAF AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)BEA AFC ∴△≌△.AE CF ∴=,BE AF =.EF AF AE BE CF ∴=+=+..【点睛】此题考查全等三角形的判定及性质,熟记三角形的判定定理是解题的关键.24.(1)见详解;(2)DE =BD +CE .理由见详解【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得∠BDA =∠CEA =90°,而∠BAC =90°,根据等角的余角相等,得∠CAE =∠ABD ,然后根据“AAS”可判断△ABD ≌△CAE ;(2)由∠BDA =∠AEC =∠BAC ,就可以求出∠BAD =∠ACE ,进而由ASA 就可以得出△ABD ≌△CAE ,就可以得出BD =AE ,DA =CE ,即可得出结论.【详解】(1)证明:如图①,∵D ,A ,E 三点都在直线m 上,∠BAC =90°,∴∠BAD +∠CAE =90°,∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠BAD +∠ABD =90°,∴∠ABD =∠CAE ,在△ABD 和△CAE 中,ADB AEC ABD CAE AB AC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CAE (AAS );(2)DE =BD +CE .理由如下:如图②,∵∠BDA =∠AEC =∠BAC ,∴由三角形内角和及平角性质,得:∠BAD +∠ABD =∠BAD +∠CAE =∠CAE +∠ACE ,∴∠ABD =∠CAE ,∠BAD =∠ACE ,在△ABD 和△CAE 中,ABD CAE AB ACBAD ACE ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABD ≌△CAE (ASA ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE .【点睛】本题考查了全等三角形的判定与性质以及三角形内角和定理的综合应用,解题的关键是熟练掌握全等三角形的判定方法,灵活运用所学知识解决问题.25.见详解【分析】先证明ACE △≅DBF ,从而得∠DBF=∠ACE ,进而即可得到结论.【详解】∵AB DC =,∴+AB BC DC BC =+,即:AC=DB ,∵//AE FD ,∴∠A=∠D ,又∵AE FD =,∴ACE △≅DBF (SAS ),∴∠DBF=∠ACE ,∴CE ∥BF .【点睛】本题主要考查全等三角形的判定和性质定理以及平行线的判定和性质定理,熟练掌握SAS 证明三角形全等,是解题的关键.26.(1)a >b >c ;(2)见解析【分析】(1)a 、b 、c 两两作差可得出a 、b 、c 之间的大小关系;(2)对于任意一个三角形的三边a ,b ,c ,满足任意两边之和大于第三边,任意两边之差小于第三边.【详解】(1)∵a -b =m 2+n 2-m 2=n 2>0;a -c =m 2+n 2-mn =(m -n )2+mn >0;b -c = m 2-mn =m (m -n )>0∴a >b >c ;(2)由(1)a >b >c 可得,a +b >c∵a -b = m 2+n 2-m 2=n 2<mn∴a -b <c∴以a 、b 、c 为边长的三角形一定存在.【点睛】本题主要考查了利用差比法比较代数式的大小和用三角形三边关系证明三角形的存在.。
北师大版七年级下册第4章《三角形》单元测试题(满分120分)班级:________姓名:________座位:________成绩:________一.选择题(共10小题,满分30分)1.一个三角形的两边长分别是2和4,则第三边的长可能是()A.1B.2C.4D.72.在△ABC中,作BC边上的高,以下作图正确的是()A.B.C.D.3.如图,已知BD=CD,则AD一定是△ABC的()A.角平分线B.高线C.中线D.无法确定4.如图,在△ABC中,点D在BC的延长线上,若∠A=60°,∠B=40°,则∠ACD的度数是()A.140°B.120°C.110°D.100°5.如图,在△ABC中,CD平分∠ACB,DE∥BC.已知∠A=74°,∠B=46°,则∠BDC 的度数为()A.104°B.106°C.134°D.136°6.如图,AB=AC,若要使△ABE≌△ACD.则添加的一个条件不能是()A.∠B=∠C B.∠ADC=∠AEB C.BD=CE D.BE=CD7.如图,A、B两点分别位于一个池塘的两端,小明想用绳子测量A、B间的距离,如图所示的这种方法,是利用了三角形全等中的()A.SSS B.ASA C.AAS D.SAS8.小明学习了全等三角形后总结了以下结论:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等、对应角相等;③面积相等的两个三角形是全等图形;④全等三角形的周长相等.其中正确的结论个数是()A.1B.2C.3D.49.如图,AD是△ABC的高,BE是△ABC的角平分线,BE,AD相交于点F,已知∠BAD =42°,则∠BFD=()A.45°B.54°C.56°D.66°10.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则BC长的可能值有()个.A.4B.5C.6D.7二.填空题(共6小题,满分24分)11.下列4个图形中,属于全等的2个图形是.(填序号)12.如图,某人将一块三角形玻璃打碎成两块,带块(填序号)能到玻璃店配一块完全一样的玻璃,用到的数学道理是.13.如图,Rt△ABC中,∠C=90°,∠B=25°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD 的度数是.14.如图,在△ABC中,AC=BC,过点A,B分别作过点C的直线的垂线AE,BF.若AE =CF=3,BF=4.5,则EF=.15.边长为整数、周长为20的三角形的个数为.16.如图,Rt△ABC中,∠BAC=90°,AB=6,AC=3,G是△ABC重心,则S△AGC=.三.解答题(共8小题,满分66分)17.如图,在一个三角形的一条边上取四个点,把这些点与这条边所对的顶点连接起来.问图中共有多少个三角形.请你通过与数线段或数角的问题进行类比来思考.18.如图,AB=DE,AC=DF,BE=CF,求证:△ABC≌△DEF.19.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.20.如图,已知B,D在线段AC上,且AD=CB,BF=DE,∠AED=∠CFB=90°求证:(1)△AED≌△CFB;(2)BE∥DF.21.如图,已知锐角△ABC,AB>BC.(1)尺规作图:求作△ABC的角平分线BD;(保留作图痕迹,不写作法)(2)点E在AB边上,当BE满足什么条件时?∠BED=∠C.并说明理由.22.如图,△ABC中,∠ACB=90°,D为AB上一点,过D点作AB垂线,交AC于E,交BC的延长线于F.(1)∠1与∠B有什么关系?说明理由.(2)若BC=BD,请你探索AB与FB的数量关系,并且说明理由.23.如图1,点A、B分别在射线OM、ON上运动(不与点O重合),AC、BC分别是∠BAO 和∠ABO的角平分线,BC延长线交OM于点G.(1)若∠MON=60°,则∠ACG=°;若∠MON=90°,则∠ACG=°;(2)若∠MON=n°.请求出∠ACG的度数;(用含n的代数式表示)(3)如图2,若∠MON=n°,过C作直线与AB交F.若CF∥OA时,求∠BGO﹣∠ACF的度数.(用含n的代数式表示)24.如图1所示,在Rt△ABC中,∠C=90°,点D是线段CA延长线上一点,且AD=AB,点F是线段AB上一点,连接DF,以DF为斜边作等腰Rt△DFE,连接EA,EA满足条件EA⊥AB.(1)若∠AEF=20°,∠ADE=50°,BC=2,求AB的长度;(2)求证:AE=AF+BC;(3)如图2,点F是线段BA延长线上一点,探究AE、AF、BC之间的数量关系,并证明你的结论.参考答案一.选择题(共10小题)1.【解答】解:设第三边的长为x,由题意得:4﹣2<x<4+2,2<x<6,故选:C.2.【解答】解:BC边上的高应从点A向BC引垂线,只有选项D符合条件,故选:D.3.【解答】解:由于BD=CD,则点D是边BC的中点,所以AD一定是△ABC的一条中线.故选:C.4.【解答】解:∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=100°,故选:D.5.【解答】解:∵∠A=74°,∠B=46°,∴∠ACB=60°,CD平分∠ACB,∴∠BCD=∠ACD=∠ACB=×60°=30°,∴∠BDC=180°﹣∠B﹣∠BCD=104°,故选:A.6.【解答】解:A、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此选项不合题意;B、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此选项不合题意;C、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此选项不合题意;D、添加BE=CD不能判定△ABE≌△ACD,故此选项符合题意;故选:D.7.【解答】解:观察图形发现:AC=DC,BC=BC,∠ACB=∠DCB,所以利用了三角形全等中的SAS,故选:D.8.【解答】解:①全等三角形的形状相同、大小相等,正确;②全等三角形的对应边相等、对应角相等,正确;③面积相等的两个三角形是全等图形,错误;④全等三角形的周长相等,正确.故选:C.9.【解答】解:∵AD是△ABC的高,∴∠ADB=90°,∵∠BAD=42°,∴∠ABD=180°﹣∠ADB﹣∠BAD=48°,∵BE是△ABC的角平分线,∴∠ABF=∠ABD=24°,∴∠BFD=∠BAD+∠ABF=42°+24°=66°,故选:D.10.【解答】解:∵△ABC的周长为22,△ABM的周长比△ACM的周长大2,∴2<BC<22﹣BC,解得2<BC<11,又∵△ABC的三边长均为整数,△ABM的周长比△ACM的周长大2,∴AC=为整数,∴BC边长为偶数,∴BC=4,6,8,10,故选:A.二.填空题(共6小题)11.【解答】解:根据全等三角形的判定(SAS)可知属于全等的2个图形是①③,故答案为:①③.12.【解答】解:第①块只保留了原三角形的一个角和部分边,根据这两块中的任一块不能配一块与原来完全一样的;第②块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带②去.故答案为:②,ASA.13.【解答】解:∵Rt△ABC中,∠C=90°,∠B=25°,∴∠CAB=90°﹣∠B=90°﹣25°=65°,由作图过程可知:MN是AB的垂直平分线,∴DA=DB,∴∠DAB=∠B=25°,∴∠CAD=∠CAB﹣∠DAB=65°﹣25°=40°.答:∠CAD的度数是40°.故答案为:40°.14.【解答】解:∵过点A,B分别作过点C的直线的垂线AE,BF,∴∠AEC=∠CFB=90°,在Rt△AEC和Rt△CFB中,,∴Rt△AEC≌Rt△CFB(HL),∴EC=BF=4.5,∴EF=EC+CF=4.5+3=7.5,故答案为:7.5.15.【解答】解:边长为整数、周长为20的三角形分别是:(9,9,2)(8,8,4)(7,7,6)(6,6,8)(9,6,5)(9,7,4)(9,8,3)(8,7,5),共8个.故答案为:8.16.【解答】解:延长AG交BC于E.∵∠BAC=90°,AB=6,AC=3,∴S△ABC=•AB•AC=9,∵G是△ABC的重心,∴AG=2GE,BE=EC,∴S△AEC=×9=4.5,∴S△AGC=×S△AEC=3,故答案为3三.解答题(共8小题)17.【解答】解:如图所示,图中三角形的个数有△ABC,△ACD,△ADE,△AEF,△AFG,△ABD,△ABE,△ABF,△ABG,△ACE,△ACF,△ACG,△ADF,△ADG,△AEG.18.【解答】解:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,∵,∴△ABC≌△DEF(SSS).19.【解答】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC和△CEB中,∴△ADC≌△CEB(AAS);(2)解:由题意得:AD=2×3=6cm,BE=7×2=14cm,∵△ADC≌△CEB,∴EC=AD=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.20.【解答】证明(1)∵∠AED=∠CFB=90°,在Rt△AED和Rt△CFB中,∴Rt△AED≌Rt△CFB(HL).(2)∵△AED≌△CFB,∴∠BDE=∠DBF,在△DBE和△BDF中,∴△DBE≌△BDF(SAS),∴∠DBE=∠BDF,∴BE∥DF.21.【解答】解:(1)如图,线段BD即为所求.(2)结论:BE=BC.理由:∵BD平分∠ABC,∵BE=BC,BD=BD,∴△BDE≌△BDC(SAS),∴∠BED=∠C.22.【解答】解:(1))∠1与∠B相等,理由:∵,△ABC中,∠ACB=90°,∴∠1+∠F=90°,∵FD⊥AB,∴∠B+∠F=90°,∴∠1=∠B;(2)若BC=BD,AB与FB相等,理由:∵△ABC中,∠ACB=90°,DF⊥AB,∴∠ACB=∠FDB=90°,在△ACB和△FDB中,,∴△ACB≌△FDB(AAS),∴AB=FB.23.【解答】解:(1)∵∠MON=60°,∴∠OBA+∠OAB=120°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=×120°=60°,∴∠ACB=180°﹣60°=120°,∴∠ACG=60°;∵∠MON=90°,∴∠OBA+∠OAB=90°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=×90°=45°,∴∠ACB=180°﹣45°=135°;故答案为:60,45;(2)在△AOB中,∠OBA+∠OAB=180°﹣∠AOB=180°﹣n°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=(∠OBA+∠OAB)=(180°﹣n°),即∠ABC+∠BAC=90°﹣n°,∴∠ACB=180°﹣(∠ABC+∠BAC)=180°﹣(90°﹣n°)=90°+n°,∴∠ACG=180°﹣(90°+n°)=90°﹣n°;(3)∵AC、BC分别是∠BAO和∠ABO的角平分线,∴∠ABC=ABO,∠BAC=∠OAC=,∵CF∥AO,∴∠ACF=∠CAG,∵∠BGO=∠BAG+∠ABG,∴∠BGO﹣∠ACF=∠BAG+∠ABG﹣∠ACF=2∠BAC+∠ABG﹣∠BAC=∠ABG+∠BAC=90°﹣n°.24.【解答】解:(1)在等腰直角三角形DEF中,∠DEF=90°,∵∠1=20°,∴∠2=∠DEF﹣∠1=70°,∵∠EDA+∠2+∠3=180°,∴∠3=60°,∵EA⊥AB,∴∠EAB=90°,∵∠3+∠EAB+∠A=180°,∴∠4=30°,∵∠C=90°,∴AB=2BC=4;(2)如图1,过D作DM⊥AE于M,在△DEM中,∠2+∠5=90°,∵∠2+∠1=90°,∵DE=FE,在△DEM与△EF A中,,∴△DEM≌△EF A,∴AF=EM,∵∠4+∠B=90°,∵∠3+∠EAB+∠4=180°,∴∠3+∠4=90°,∴∠3=∠B,在△DAM与△ABC中,,∴△DAM≌△ABC,∴BC=AM,∴AE=EM+AM=AF+BC;(3)如图2,过D作DM⊥AE交AE的延长线于M,∵∠C=90°,∴∠1+∠B=90°,∵∠2+∠MAB+∠1=180°,∠MAB=90°,∴∠2+∠1=90°,∠2=∠B,在△ADM与△BAC中,,∴△ADM≌△BAC,∵EF=DE,∠DEF=90°,∵∠3+∠DEF+∠4=180°,∴∠3+∠4=90°,∵∠3+∠5=90°,∴∠4=∠5,在△MED与△AFE中,,∴△MED≌△AFE,∴ME=AF,∴AE+AF=AE+ME=AM=BC,即AE+AF=BC.。
图1ABCD1 2图2 七年级下数学第五章《三角形》测试题班级: 姓名: 组号一、细心选一选:(每题3分,共30分) 本卷满分:共100分 1、在下列各组图形中,是全等的图形是( )A 、B 、C 、D 、2、如图1,⊿AOB ≌⊿COD ,A 和C ,B 和D 是对应顶点,若BD=8,AD=10,AB=5,则CD 的长为( )A 、10B 、8C 、5D 、不能确定3、如图2,已知∠1=∠2,要说明⊿ABD ≌⊿ACD ,还需从下列条件中选一个,错误的选法是( )A 、∠ADB=∠ADCB 、∠B=∠C C 、DB=DCD 、AB=AC4、生活中,我们经常会看到如图3所示的情况,在电线杆上拉两条钢筋,来加固电线杆,这是利用了三角形的( )A 、稳定性B 、全等性C 、灵活性D 、对称性 5、如图4所示,已知AB ∥CD ,AD ∥BC ,那么图中共有全等三角形( )A 、8对B 、4对C 、2对D 、1对 6、下列语句:①面积相等的两个三角形全等; ②两个等边三角形一定是全等图形;③如果两个三角形全等,它们的形状和大小一定都相同; ④边数相同的图形一定能互相重合。
其中错误的说法有( )A 、4个B 、3个C 、2个D 、1个7、如果一个三角形两边上的高的交点在三角形的内部,那么这个三角形是( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、任意三角形 8、下列说法正确的是( )A 、有一边和两角对应相等的两个三角形全等B 、有两边和一角对应相等的两个三角形全等C 、三个角对应相等的两个三角形全等A DCBO图4图3AB CD E 图4图7 图8 D 、面积相等,且有一边相等的两个三角形全等9、如图,AB=CD ,AD=BC ,则下列结论不正确的是( )A .AB ∥CD B .AD ∥BC C .∠A=∠CD .BD 平分∠ABC10、根据下列条件作三角形,不能唯一确定三角形的是( )A 、已知三个角B 、已知三条边C 、已知两角和夹边D 、已知两边和夹角二、仔细补一补:(每题3分共30分)11、若∠A :∠B :∠C=1:3:5,这个三角形为 三角形。
北师大版七年级数学测试卷(考试题)第4章三角形一、选择题1.下列说法正确的是()A. 全等三角形是指形状相同的三角形B. 全等三角形是指面积相等的两个三角形C. 全等三角形的周长和面积相等D. 所有等边三角形是全等三角形2.已知某三角形的两边长是6和4,则此三角形的第三边长的取值可以是()A. 2B. 9C. 10D. 113.下列各组图形中,一定是全等图形的是()A. 两个周长相等的等腰三角形B. 两个面积相等的长方形C. 两个斜边相等的直角三角形D. 两个周长相等的圆4.下列各组长度的三条线段能组成三角形的是()A. 1cm,2cm,3cmB. 1cm,1cm,2cmC. 1cm,2cm,2cmD. 1cm,3cm,5cm5.画△ABC的边AB上的高,下列画法中,正确的是()A. B.C. D.6.有长为2cm、3cm、4cm、6cm的四根木棒,选其中的3根作为三角形的边,可以围成的三角形的个数是A. 1个B. 2个C. 3个D. 4个7.在如图所示的长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C的个数是()A. 2B. 3C. 4D. 58.如图所示,∠1+∠2+∠3+∠4的度数为()A. 100°B. 180°C. 360°D. 无法确定9.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,这个规律是()A. ∠A=∠1+∠2B. 2∠A=∠1+∠2C. 3∠A=2∠1+∠2D. 3∠A=2(∠1+∠2)10.将一副直角三角尺按如图所示摆放,则图中锐角∠α的度数是()A. 45°B. 60°C. 70°D. 75°11.长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为()A. B. C. D.12.我国的纸伞工艺十分巧妙。
一、选择题1.将一副三角板的直角顶点重合按如图所示方式放置,得到下列结论,其中正确的结论有( ) ①13∠=∠;②180BAE CAD ∠+∠=︒; ③若//BC AD ,则230∠=︒; ④若150CAD ∠=︒,则4C ∠=∠.A .1个B .2个C .3个D .4个2.芜湖长江三桥是集客运专线、市域轨道交通、城市主干道路于一体的公铁合建桥梁,2020年9月29日公路段投入运营,其侧面示意图如图所示,其中AB CD ⊥,现添加以下条件,不能判定ABC ABD △≌△的是( )A .ACB ADB ∠=∠ B .AB BD =C .AC AD = D .CAB DAB ∠=∠3.如图,∠ACB=90°,AC=BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD=3,BE=1,则DE 的长是( )A .1.5B .2C .22D .104.用三角尺画角平分线:如图,先在AOB ∠的两边分别取OM ON =,再分别过点M ,N 作OA ,OB 的垂线,交点为P .得到OP 平分AOB ∠的依据是( )A .HLB .SSSC .SASD .ASA 5.已知三角形的一边长为8,则它的另两边长分别可以是( )A .4,4B .17,29C .3,12D .2,96.如图,AB DE =,A D ∠=∠,要说明ABC DEF △≌△,需添加的条件不能是( )A .//AB DE B .//AC DF C .AC DE ⊥D .AC DF =7.直角ABC 、DEF 如图放置,其中90ACB DFE ∠=∠=︒,AB DE =且AB DE ⊥.若DF a =,BC b =,CF c =.则AE 的长为( )A .a c +B .b c +C .a b c +-D .a b c -+8.如图,若DEF ABC ≅,点B 、E 、C 、F 在同一条直线上,9BF =,5EC =,则CF 的长为( )A .1B .2C .2.5D .3 9.将下列长度的三根木棒首尾顺次连接,不能组成三角形的是( )A .4、5、6B .3、4、5C .2、3、4D .1、2、310.下列条件不能判定两个直角三角形全等的是( ) A .两条直角边对应相等 B .斜边和一锐角对应相等 C .斜边和一直角边对应相等D .两个锐角对应相等11.如图,ABC ADE ≅,BC 的延长线交DA 于F ,交DE 于G ,∠D =25°,∠E =105°,∠DAC =16°,则∠DGB 的度数为( )A .66°B .56°C .50°D .45°12.如图,已知AC ⊥BD ,垂足为O ,AO = CO ,AB = CD ,则可得到△AOB ≌△COD ,理由是( )A .HLB .SASC .ASAD .SSS二、填空题13.如图,已知AC DB =,添加一个条件________,可以得到ABC DCB △≌△.14.如图,在ABC 和DEF 中,点B F C E ,,,在同一直线上,,//BF CE AB DE =,请添加一个条件,使ABC DEF ≅,这个添加的条件可以是________.15.己知三角形的三边长分别为2,x ﹣1,3,则三角形周长y 的取值范围是__. 16.如图,直线AB 、CD 相交于点O ,OE 平分∠AOC ,OF ⊥OE 于点O ,若∠AOD =70°,则∠AOF =______度.17.等腰三角形一边长是10cm ,一边长是6cm ,则它的周长是_______________cm . 18.如图,在△ABC 中,点D 在边BC 上,已知点E ,F 分别是AD ,CE 边上的中点,且△BEF 的面积为6,则△ABC 的面积等于_____.19.已知三角形ABC 的三边长分别是,,a b c ,化简a b c b a c +----的结果是_________________;20.如图,在AOB ∠的两边上,分别取OM=ON ,在分别过点M 、N 作OA 、OB 的垂线,交点P ,画射线OP ,则OP 平分AOB ∠的依据是____________三、解答题21.如图,将两块含45°角的大小不同的直角三角板△COD 和△AOB 如图①摆放,连结AC ,BD .(1)如图①,猜想线段AC 与BD 存在怎样的数量关系和位置关系,请写出结论并证明; (2)将图①中的△COD 绕点O 顺时针旋转一定的角度(如图②),连结AC ,BD ,其他条件不变,线段AC 与BD 还存在(1)中的关系吗?请写出结论并说明理由.(3)将图①中的△COD 绕点O 逆时针旋转一定的角度(如图③),连结AC ,BD ,其他条件不变,线段AC 与BD 存在怎样的关系?请直接写出结论.22.如图1,在ABC 中,过点B 作BD AB ⊥,且BD AB =,连接CD .(问题原型)(1)若90ACB ∠=︒,且8AC BC ==,过点D 作的BCD △的BC 边上的高DE ,易证ABC BDE △≌△,从而得到BCD △的面积为______.(变式探究)(2)如图2,若90ACB ∠=︒,BC a =,用含a 的代数式表示BCD △的面积,并说明理由.(拓展应用)(3)如图3,若AB AC =,8BC =,则BCD △的面积为______.23.已知△ABC 和△ADE 均为等腰三角形,且∠BAC =∠DAE ,AB =AC ,AD =AE . (1)如图1,点E 在BC 上,求证:BC =BD+BE ;(2)如图2,点E 在CB 的延长线上,(1)的结论是否成立?若成立,给出证明;若不成立,写出成立的式子并证明.(3)如图3,点E 在BC 的延长线上,直接写出线段BC 、CD 、CE 三者之间的关系.24.如图,在五边形ABCDE 中,AB DE =,AC AD =.(1)请你添加一个与角有关的条件,使得ABC DEA ≌,并说明理由; (2)在(1)的条件下,若65CAD ∠=︒,110B ∠=︒,求BAE ∠的度数.25.如图,在△ABC 中,∠BAC 的平分线AD 交BC 于点D ,过点D 作DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F ,连接EF .写出两个结论(∠BAD =∠CAD 和DE =DF 除外),并选择一个结论进行证明. (1)____________; (2)____________.26.如图,Rt ABC 与Rt DEF △的顶点A ,F ,C ,D 共线,AB 与EF 交于点G ,BC 与DE 相交于点H ,90B E ∠=∠=︒,AF CD =,AB DE =.(1)求证:Rt ABC Rt DEF ≌; (2)若1GF =,求线段HC 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用同角的余角相等可判断①,利用角的和差与直角三角形的性质可判断②,利用平行线的性质先求解CAD ∠,再利用结论②可判断③,由150CAD ∠=︒,先求解230∠=︒, 如图,记,AB DE 交于,G 再求解90AGE ∠=︒, 再利用三角形的外角的性质求解4∠, 从而可判断④. 【详解】 解:90BAC DAE ∠=∠=︒, 122390∴∠+∠=∠+∠=︒, 13∴∠=∠,故①符合题意,19090180BAE CAD BAE DAE BAC DAE ∠+∠=∠+∠+∠=∠+∠=︒+︒=︒, 故②符合题意;//,BC AD180C CAD ∴∠+∠=︒, 45C ∠=︒, 135CAD ∴∠=︒,218018013545CAD ∴∠=︒-∠=︒-︒=︒, 故③不符合题意; 150180CAD BAE CAD ∠=︒∠+∠=︒,, 30BAE ∴∠=︒, 如图,记,AB DE 交于,G60E ∠=︒,180306090AGE ∴∠=︒-︒-︒=︒,45,B C ∠=∠=︒4904545.AGE B ∴∠=∠-∠=︒-︒=︒ 4.C ∴∠=∠ 故④符合题意,综上:符合题意的有①②④. 故选:.C 【点睛】本题考查的是角的和差,余角与补角,平行线的性质,三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键.2.B解析:B 【分析】根据已知条件可得∠ABC=∠ABD=90°,AB=AB ,结合全等三角形的判定定理依次对各个选项判断. 【详解】解:∵AB CD ⊥, ∴∠ABC=∠ABD=90°, ∵AB=AB ,∴若添加ACB ADB ∠=∠,可借助AAS 证明ABC ABD △≌△,A 选项不符合题意; 若添加AB BD =,无法证明ABC ABD △≌△,B 选项符合题意;若添加AC AD =,可借助HL 证明ABC ABD △≌△,C 选项不符合题意; 若添加CAB DAB ∠=∠,可借助ASA 证明ABC ABD △≌△,D 选项不符合题意; 故选:B . 【点睛】本题考查全等三角形的判定.熟练掌握全等三角形的判定定理,并能结合题上已知条件选取合适的定理是解题关键.3.B解析:B 【分析】根据已知条件可以得出∠E=∠ADC=90︒,进而得出∆CEB ≅∆ADC ,就可以得出BE=DC ,进而求出DE 的值. 【详解】∵BE ⊥CE ,AD ⊥CE , ∴∠E=∠ADC=90︒, ∴∠EBC+∠BCE=90︒, ∵∠BCE+∠ACD=90︒, ∴∠EBC=∠DCA ,在∆CEB 和∆ADC 中,∠E=∠ADC ,∠EBC=∠DCA ,BC=AC , ∴∆CEB ≅∆ADC(AAS), ∴BE=DC=1,CE=AD=3, ∴DE=EC-CD=3-1=2, 故选:B . 【点睛】本题考查全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解决问题的关键.4.A解析:A 【分析】利用垂直得到90PMO PNO ∠=∠=,再由OM ON =,OP OP =即可根据HL 证明()HL ≌PMO PNO △△,由此得到答案.【详解】∵PM OA ⊥,PN OB ⊥, ∴90PMO PNO ∠=∠=. ∵OM ON =,OP OP =,∴()HL ≌PMO PNO △△, ∴POA POB ∠=∠, 故选:A . 【点睛】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据题中的已知条件确定对应相等的边或角,由此利用以上五种方法中的任意一种证明两个三角形全等.5.D解析:D 【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”进行判断即可. 【详解】A 、∵4+4=8,∴构不成三角形;B 、29−17=12>8,∴构不成三角形;C 、∵12−3=9>8,∴构不成三角形;D 、9−2=7<8,9+2=11>8,∴能够构成三角形, 故选:D . 【点睛】此题考查了三角形的三边关系,熟练掌握三角形三边关系“任意两边之和大于第三边,任意两边之差小于三边”是解题的关键.6.C解析:C 【分析】直接根据三角形证明全等的条件进行判断即可; 【详解】A 、∵AB ∥DE ,∴∠ABC=∠DEC ,∴根据ASA 即可判定三角形全等,故此选项不符合题意;B 、∵AC ∥DF ,∴∠DFE=∠ACB ,∴根据AAS 即可判定三角形全等,故此选项不符合题意; C 、AC ⊥DE ,不符合三角形全等的证明条件,故此选项符合题意;D 、∵AC=DF ,∴根据SAS 即可判定三角形全等,故此选项不符合题意; 故选:C . 【点睛】本题考查了三角形证明全等所需添加的条件,正确掌握知识点是解题的关键;7.C解析:C 【分析】先利用AAS 证明ABC DEF ≅,再根据全等三角形的性质进行线段和差计算即可. 【详解】 解:90ACB ∠=︒,DE AB ⊥,90A B ∴∠+∠=︒,90A E ∠+∠=︒,B E ∴∠=∠,在ABC 与DEF 中90B E ACB DFE AB DE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ()ABC DEF AAS ∴≅△△;AC DF =∴,BC EF =,∵DF a =,BC b =,CF c =,AE AC EF CF =+-, ∴AE a b c =+- 故选C . 【点睛】本题主要考查了全等三角形的判定与全等三角形的性质,确定用AAS 定理进行证明是关键.8.B解析:B 【分析】根据全等三角形的对应边相等得到BE=CF ,计算即可. 【详解】解:∵△DEF ≌△ABC , ∴BC=EF , ∴BE+EC=CF+EC , ∴BE=CF ,又∵BF=BE+EC+CF=9,EC=5 ∵CF=12(BF-EC)=12(9-5)=2. 故选:B . 【点睛】本题考查了全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.9.D解析:D 【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可. 【详解】D 、4+5>6,能组成三角形,故此选项错误; B 、3+4>5,能组成三角形,故此选项错误; A 、2+3>4,能组成三角形,故此选项错误; D 、1+2=3,不能组成三角形,故此选项正确; 故选:D . 【点睛】此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.10.D解析:D【分析】根据三角形全等的判定对各选项分析判断后利用排除法求解.【详解】解:A 、可以利用边角边判定两三角形全等,故本选项不合题意;B 、可以利用角角边判定两三角形全等,故本选项不合题意;C 、根据斜边直角边定理判定两三角形全等,故本选项不合题意;D 、三个角对应相等不能证明两三角形全等,故本选项符合题意;故选:D .【点睛】本题考查了直角三角形全等的判定方法;本题主要利用三角形全等的判定,运用好有一对相等的直角这一隐含条件是解题的关键.11.A解析:A【分析】先根据全等三角形的性质可得105ACB E ∠=∠=︒,再根据三角形的外角性质可得AFC ∠的度数,然后根据对顶角相等可得DFG ∠的度数,最后根据三角形的内角和定理即可得.【详解】ABC ADE ≅,105E ∠=︒,105ACB E ∴∠=∠=︒,ACB DAC AFC ∠=∠+∠,16DAC ∠=︒,10516AFC ︒=︒+∴∠,解得89AFC ∠=︒,89DFG AFC ∴∠=∠=︒,在DFG 中,180GB F D D D G ∠∠=+∠+︒,25D ∠=︒,2518089DGB ∴∠+︒+=︒︒,解得66DGB ∠=︒,故选:A .【点睛】本题考查了全等三角形的性质、三角形的外角性质、三角形的内角和定理、对顶角相等,熟练掌握全等三角形的性质是解题关键.12.A解析:A【分析】根据三角形全等的判定定理进行判断.【详解】A. AC⊥BD,垂足为O,AO=CO,AB=CD,所以由HL可得到△AOB≌△COD,所以A正确;B.错误;C.错误;D.错误.【点睛】本题考查了三角形全等的判定定理,熟练掌握定理是本题解题的关键.二、填空题13.(答案不唯一)【分析】要使△ABC≌△DCB由于BC是公共边若补充一组边相等则可用SSS判定其全等;【详解】解:添加AB=DC∵AC=BDBC=BCAB=DC∴△ABC≌△DCB(SSS)∴加一个适=(答案不唯一)解析:AB DC【分析】要使△ABC≌△DCB,由于BC是公共边,若补充一组边相等,则可用SSS判定其全等;【详解】解:添加AB=DC,∵ AC=BD,BC=BC,AB=DC,∴△ABC≌△DCB(SSS),∴加一个适当的条件是AB=DC,故答案为:AB=DC.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,根据已知图形以及判定方法选择添加的条件是正确解答本题的关键.14.(答案不唯一)【分析】根据等式的性质可得BC=EF根据平行线的性质可得再添加AB=DE可利用SAS判定【详解】添加AB=DE∵BF=CE∴BF+FC=CE+FC即BC=EF∵AB//DE∴∠B=∠E=(答案不唯一)解析:AB DE【分析】∠=∠,再添加AB=DE可利用SAS 根据等式的性质可得BC=EF,根据平行线的性质可得B E≅.判定ABC DEF【详解】添加AB=DE,∵BF=CE,∴BF+FC=CE+FC,即BC=EF,∵AB//DE,∴∠B =∠E ,在△ABC 和△DEF 中AB ED B E BC EF =⎧⎪∠=∠⎨⎪=⎩, ∴ABC DEF ≅ (SAS ),故答案为AB DE =(答案不唯一)【点睛】 本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL15.6<y <10【详解】根据三角形的三边关系得3-2<x-1<2+3解得:1<x-1<5所以三角形周长y 的取值范围:1+2+3<y <2+3+5即6<y <10故答案为6<y <10【点睛】本题考查三角形三边解析:6<y <10【详解】根据三角形的三边关系,得3-2<x-1<2+3,解得:1<x-1<5,所以三角形周长y 的取值范围:1+2+3<y <2+3+5,即6<y <10,故答案为6<y <10.【点睛】本题考查三角形三边的关系,解决此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.16.145【分析】由已知角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小从而得到∠AOF 的值【详解】解:∵∵OE 平分∠AOC ∴∵OF ⊥OE 于点O ∴∠EOF =90°∴∠AOF =∠AOE+∠EOF =55解析:145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵70180110AOD AOC AOD ∠=︒∴∠=︒-∠=︒,,∵OE 平分∠AOC ,∴1552AOE AOC ∠=∠=︒, ∵OF ⊥OE 于点O ,∴∠EOF =90°,∴∠AOF =∠AOE+∠EOF =55°+90°=145°,故答案为145.【点睛】本题考查邻补角、角平分线和垂直以及角度的运算等知识,根据有关性质和定义灵活计算是解题关键.17.26或22【分析】因为等腰三角形的底边和腰不确定6cm可以为底边也可以为腰长故分两种情况:当6cm为腰时底边为10cm先判断三边能否构成三角形若能求出此时的周长;当6cm为底边时10cm为腰长先判断解析:26或22【分析】因为等腰三角形的底边和腰不确定,6cm可以为底边也可以为腰长,故分两种情况:当6cm为腰时,底边为10cm,先判断三边能否构成三角形,若能,求出此时的周长;当6cm 为底边时,10cm为腰长,先判断三边能否构成三角形,若能,求出此时的周长.【详解】解:若6cm为等腰三角形的腰长,则10cm为底边的长,6cm,6cm,10cm可以构成三角形,此时等腰三角形的周长=6+6+10=22(cm);若10cm为等腰三角形的腰长,则6cm为底边的长,10cm,10cm,6cm可以构成三角形,此时等腰三角形的周长=10+6+10=26(cm);则等腰三角形的周长为26cm或22cm.故答案为:26或22.【点睛】本题考查了等腰三角形的定义和三角形的三边关系.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形,这点非常重要,也是解题的关键.18.24【分析】由EF分别为ADCE的中点可得BECEBF分别为△ABD△ACD△BEC的中线根据中线的性质可知将相应三角形分成面积相等的两部分据此即可解答【详解】解:∵由于EF分别为ADCE的中点∴S解析:24【分析】由E、F分别为AD、CE的中点可得BE、CE、BF分别为△ABD、△ACD、△BEC的中线,根据中线的性质可知将相应三角形分成面积相等的两部分,据此即可解答.【详解】解:∵由于E、F分别为AD、CE的中点,∴S△ABE=S△DBE,S△DCE=S△AEC,S△BEF=S△BCF,∴S△BEC=2S△BEF=12,∴S△ABC=2S△BEC=24.故答案为:24.【点睛】本题考查了三角形中线的性质,属于常考题型,熟知三角形的中线将相应的三角形分成面积相等的两部分是解题的关键.19.【分析】先根据三角形的三边关系定理可得再根据绝对值运算整式的加减即可得【详解】由三角形的三边关系定理得:则故答案为:【点睛】本题考查了三角形的三边关系定理绝对值运算整式的加减熟练掌握三角形的三边关系 解析:22b c -【分析】先根据三角形的三边关系定理可得,a b c a c b +>+>,再根据绝对值运算、整式的加减即可得.【详解】由三角形的三边关系定理得:,a b c a c b +>+>,0,0a b c b a c ∴+->--<, 则()a b c b a c a b c a c b +----=+--+-,a b c a c b =+---+,22b c =-,故答案为:22b c -.【点睛】本题考查了三角形的三边关系定理、绝对值运算、整式的加减,熟练掌握三角形的三边关系定理是解题关键.20.全等三角形判定(斜边和直角边对应相等)【分析】利用判定方法HL 证明Rt △OMP 和Rt △ONP 全等进而得出答案【详解】解:在Rt △OMP 和Rt △ONP 中∴Rt △OMP ≌Rt △ONP (HL )∴∠MOP =解析:全等三角形判定(斜边和直角边对应相等HL )【分析】利用判定方法“HL”证明Rt △OMP 和Rt △ONP 全等,进而得出答案.【详解】解:在Rt △OMP 和Rt △ONP 中,OM ON OP OP⎧⎨⎩==, ∴Rt △OMP ≌Rt △ONP (HL ),∴∠MOP =∠NOP ,∴OP 是∠AOB 的平分线.故答案为HL【点睛】本题考查了全等三角形的应用以及基本作图,熟练掌握三角形全等的判定三、解答题21.(1)AC=BD ,AC ⊥BD ,证明见解析;(2)存在,AC=BD ,AC ⊥BD ,证明见解析;(3)AC=BD ,AC ⊥BD【分析】(1)延长BD交AC于点E.易证△AOC≌△BOD(SAS),可得AC=BD,∠OAC=∠OBD,由∠ADE=∠BDO,可证∠AED=∠BOD=90º即可;(2)延长BD交AC于点F,交AO于点G.易证△AOC≌△BOD(SAS),可得AC=BD,∠OAC=∠OBD,由∠AGF=∠BGO,可得∠AFG=∠BOG=90º即可;(3)BD交AC于点H,AO于M,可证△AOC≌△BOD(SAS),可得AC=BD,∠OAC=∠OBD,由∠AMH=∠BMO,可得∠AHM=∠BOH=90º即可.【详解】(1)AC=BD,AC⊥BD,证明:延长BD交AC于点E.∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠COA=∠BOD=90º,∴△AOC≌△BOD(SAS),∴AC=BD,∴∠OAC=∠OBD,∵∠ADE=∠BDO,∴∠AED=∠BOD=90º,∴AC⊥BD;(2)存在,证明:延长BD交AC于点F,交AO于点G.∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠DOC=BOA=90º,∵∠AOC=∠DOC-∠DOA,∠BOD=∠BOA-∠DOA,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∵∠AGF=∠BGO,∴∠AFG=∠BOG=90º,∴AC⊥BD;(3)AC=BD,AC⊥BD.证明:BD交AC于点H,AO于M,∵△COD和△AOB均为等腰直角三角形,∴OC=OD,OA=OB,∠DOC=BOA=90º,∵∠AOC=∠DOC+∠DOA,∠BOD=∠BOA+∠DOA,∴∠AOC=∠BOD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∵∠AMH=∠BMO,∴∠AHM=∠BOH=90º,∴AC⊥BD.【点睛】本题考查三角形旋转变换中对应相等的位置与数量关系,掌握三角形全等的证明方法,及其角度计算是解题关键.22.(1)32;(2)212BCD S a =△,理由见解析;(3)16. 【分析】(1)如图1中,由AAS 定理可证△ABC ≌△BDE ,就有DE=BC=8.进而由三角形的面积公式得出结论;(2)如图2中,过点D 作BC 的垂线,与BC 的延长线交于点E ,由AAS 定理可证得△ABC ≌△BDE ,就有DE=BC=a .进而由三角形的面积公式得出结论.(3)如图3中,过点A 作AF ⊥BC 与F ,过点D 作DE ⊥BC 的延长线于点E ,由等腰三角形的性质可以得出BF=12BC ,由条件可以得出△AFB ≌△BED 就可以得出BF=DE ,由三角形的面积公式就可以得出结论.【详解】解:(1)∵在ABC 中,90ACB ∠=︒,过点B 作BD AB ⊥且过点D 作的BCD △的BC 边上的高DE ,∴90DEB ACB ABD ∠=∠=∠=︒∴90ABC DBE ∠+∠=︒∵90DBE BDE ∠+∠=︒∴ABC BDE ∠=∠.在Rt ABC △与Rt BDE △中,ACB DEB ABC BDE AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()Rt Rt ABC BDE AAS ≌△△,8DE CB == ∴18823212BCD S CB DE ⋅⨯=⨯==△ 故答案为:32(2)212BCD S a =△ 理由:过点D 作DE CB ⊥延长线于点E∴90DEB ACB ∠=∠=︒∵BD AB ⊥,1290∠+∠=︒∵290A ∠+∠=︒∴1A ∠=∠. 在Rt ABC △与Rt BDE △中,1ACB DEB A AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()Rt Rt ABC BDE AAS ≌△△,DE CB a ==∴21122BCD S CB DE a =⋅=△ (3)如图3中,∵AB AC = ∴BF=12BC=12×8=4. 过点A 作AF ⊥BC 与F ,过点D 作DE ⊥BC 的延长线于点E ,∴∠AFB=∠E=90°,∴∠FAB+∠ABF=90°.∵∠ABD=90°,∴∠ABF+∠DBE=90°,∴∠FAB=∠EBD.在△AFB和△BED中,AFB EFAB EBD AB BD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFB≌△BED(AAS),∴BF=DE=4.∵S△BCD=12BC•DE,∴S△BCD=184162⨯⨯=∴△BCD的面积为16.故答案为:16【点睛】本题考查了直角三角形的性质的运用,等腰三角形的性质的运用,全等三角形的判定及性质的运用,三角形的面积公式的运用,解答时证明三角形全等是关键.23.(1)见解析;(2)(1)的结论不成立,成立的结论是BC=BD﹣BE,证明见解析;(3)BC=CD-CE【分析】(1)证得∠DAB=∠EAC,证明△DAB≌△EAC(SAS),由全等三角形的性质得出BD=CE,则可得出结论;(2)证明△DAB≌△EAC(SAS),得出BD=CE,则成立的结论是BC=BD-BE;(3)证明△DAC≌△EAB(SAS),得出BE=CD,则成立的结论是BC=BD-BE.【详解】解:(1)证明:∵∠BAC=DAE,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,即∠DAB=∠EAC,又∵AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴BD=CE,∴BC=BE+CE=BD+BE;(2)解:(1)的结论不成立,成立的结论是BC =BD ﹣BE证明:∵∠BAC =∠DAE ,∴∠BAC+∠EAB =∠DAE+∠EAB ,即∠DAB =∠EAC ,又∵AB =AC ,AD =AE ,∴△DAB ≌△EAC (SAS ),∴BD =CE ,∴BC =CE ﹣BE =BD ﹣BE(3)∵∠BAC =∠DAE ,∴∠BAC+∠EAC =∠DAE+∠EAC ,即∠BAE =∠DAC ,又∵AB =AC ,AD =AE ,∴△BAE ≌△CAD (SAS ),∴BE =CD ,∴BC =CD ﹣CE【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键. 24.(1)添加一个角有关的条件为BAC EDA ∠=∠,使得ABC DEA ≌,理由见解析;(2)BAE ∠的度数为135︒.【分析】(1)根据已知条件,选择SAS 原理,可确定添加的角;(2)利用三角形全等,∠B 的度数,可求∠BAC+∠DAE ,问题可解.【详解】(1)添加一个角方面的条件为BAC EDA ∠=∠,使得ABC DEA ≌.在ABC 和DEA △中∵AB DE =,BAC EDA ∠=∠,AC DA =,∴()SAS ABC DEA ≌△△; (2)在(1)的条件下∵ABC DEA ≌,∴ACB DAE ∠=∠,若65CAD ∠=︒,110B ∠=︒,则18070ACB BAC B ∠+∠=︒-∠=︒,∴70DAE BAC ACB BAC ∠+∠=∠+∠=︒,∴7065135BAE DAE BAC CAD ∠=∠+∠+∠=︒+︒=︒,即BAE ∠的度数为135︒.【点睛】本题考查了三角形全等,熟练掌握全等三角形判定原理和性质是解题的关键.25.(1)∠ADE=∠ADF ;证明见解析;(2)AE=AF ;证明见解析.【分析】(1)∠ADE=∠ADF ,根据DE ⊥AB ,DF ⊥AC 及AD 为∠BAC 的角平分线,即可证得∠ADE=∠ADF;(2)AE=AF,根据(1)可知证明△AED≌△AFD,即可证得AE=AF.【详解】(1)结论1:∠ADE=∠ADF,证明如下:∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90︒,∵AD为∠BAC的角平分线,∴∠EAD=∠FAD,∴∠ADE=∠ADF;(2)结论2:AE=AF,证明如下:由(1)可知:△AED≌△AFD,∴AE=AF.【点睛】本题考查全等三角形的性质和判定,解题的关键是灵活运用全等三角形的判定和性质解决问题.26.(1)见详解;(2)1【分析】(1)先证明AC=DF,再根据HL证明Rt ABC Rt DEF≌;(2)先证明∠AFG=∠DCH,从而证明∆AFG≅∆DCH,进而即可求解.【详解】(1)∵AF CD=,∴AF+CF=CD+CF,即AC=DF,在Rt ABC与Rt DEF△中,∵AC DF AB DE=⎧⎨=⎩,∴Rt ABC≅Rt DEF△(HL);(2)∵Rt ABC≅Rt DEF△,∴∠A=∠D,∠EFD=∠BCA,∵∠AFG=180°-∠EFD,∠DCH=180°-∠BCA,∴∠AFG=∠DCH,又∵AF CD=,∴∆AFG≅∆DCH,∴HC=GF =1.【点睛】本题主要考查全等三角形的判定和性质,熟练掌握HL和ASA证明三角形全等,是解题的关键.。
DACFD D EC FDE 图 9H一.选择题: 全等三角形测试题13. 已知,如图 13-6,D 是△ABC 的边 ABA上一点, DF 交 AC 于点 E, DE=FE, FC ∥AB,F 1.在△ABC 和△A’B’C’中, AB=A’B’, ∠B=∠B’, 补充条件后仍不一定能保 证△ABC ≌△A’B’C’, 则补充的这个条件是( ) A .BC=B’C’ B .∠A=∠A’ C .AC=A’C’ D .∠C=∠C’2. 直角三角形两锐角的角平分线所交成的角的度数是( )A .45°B .135°C .45°或 135°D .都不对 3.现有两根木棒,它们的长分别是 40cm 和 50cm ,若要钉成一个三角形木 求证:AD=CF .BC图 13-6 架,则在下列四根木棒中应选取( ) A .10cm 的木棒 B .40cm 的木棒 C .90cm 的木棒 D .100cm 的木棒二、填空题: 4. 三角形 ABC 中,∠A 是∠B 的 2 倍,∠C 比∠A +∠B 还大 12 度,则这个三角形是__三角形.5. 以三条线段 3、4、x -5 为这组成三角形,则 x 的取值为____.6. 杜师傅在做完门框后,为防止门框变形常常需钉两根斜拉的木条,这样做的数学原理是____.7. △ABC 中,∠A +∠B =∠C ,∠A 的平分线交 BC 于点 D ,若CD =8cm ,则点 D 到 AB 的距离为____cm .8..AD 是△ABC 的边 BC 上的中线,AB =12,AC =8,则边 BC 的取值范围是____;中线 AD 的取值范围是____. 三、解答题:11. 已知:如图 13-4,AE=AC , AD=AB ,∠EAC=∠DAB , 14. 如图 5-7,△ABC 的边 BC 的中垂线 DF 交△BAC 的外角平分线 AD 于 D, F 为垂足, DE ⊥AB 于 E ,且 AB>AC , 求证:BE -AC=AE .BF C16.如图 9 所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是 BC 边上的中线,过 C 作 AD 的垂线,交 AB 于点 E ,交 AD 于点 F ,求证: ∠ADC =∠BDE .求证:△EAD ≌△CAB . EB图 13-4AEB图 9AB CD⎪⎩六、参考答案提示1. C .(提示:边边角不能判定两个三角形全等.)2. C .(提示:由三角形内角和为 180°可求,要注意有两个不同的角.)3. B .(提示:利用三角形三边的关系,第三根木棒 x 的取值范围是:10cm <x <90cm .= ∠ECB , 又 ∵∠ABE=∠ACE ,∴∠ABC=∠ACB , ∴AB=AC. 在△ AEB 和△AEC 中, AE=AE. BE=CE, AB=AC, ∴△AEB ≌△AEC,∠BAE=∠CAE. C16.如图 11 所示,过 B 点作 BH ⊥BC 交 CE 的延长线于 H 点.∵∠CAD +∠ACF =90°,∠BCH +∠ACF =90°,FD∴∠CAD =∠BCH .在△ACD 与△CBH 中,AEB4.C . (提示:A 不能构成三角形,B 满足边边角,不能判定三角形全等,D 项 可 画 出 无 数 个 三 角 形 .) 5.B .(提示:∠CDE =∠B +∠-∠=∠-∠B ,故得到 2(∠B -∠)+∠=0.又∵∠-∠B =∠-∠C =∠CDE ,所以可得到∠CDE = ,故当∠为定值时,∠CDE 为定值.)∵∠CAD =∠BCH ,AC =CB ,∠ACD =∠CBH =90°,∴△ACD ≌△CBH .∴∠ADC =∠H ① CD =BH , ∵CD =BD ,∴BD =BH .∵△ABC 是等腰直角三角形,∠CBA =∠HBE =45°⎧BD = BH ,图 11H 26.钝角.(提示:由三角形的内角和可求出∠A 、∠B 和∠C 的度数) 7.6<x<12.(提示:由三边关系可知:4-3<x -5<4+3. 8.三角形的稳定性.9.8.(提示:点 D 到 AB 的距离与 CD 的长相等.) 10.4<BC <20;2<AD <10.(提示:要注意三角形一边上的中线的取值范围是大于另两边之差的一半,小于两边之和的一半.) 11. 提示:先证∠EAD=∠CAB ,再由 SAS 即可证明.12. ①△ABC ≌△DBE ,BC=BE ,∠ABC=∠DBE=90°,AB=BD ,符合SAS ;②△ACB 与△ABD 不全等,因为它们的形状不相同,△ACB 只是直角三角形,△ABD 是等腰直角三角形;③△CBE 与△BED 不全等, 理由同②;④△ACE 与△ADE 不全等,它们只有一边一角对应相等. 13. 提示:由 ASA 或 AAS ,证明△ADE ≌△CFE .14. 过 D 作 DN ⊥AC, 垂足为 N, 连结 DB 、DC 则 DN=DE ,DB=DC ,又 ∵DE ⊥AB, DN ⊥AC, ∴Rt △DBE ≌Rt △DCN , ∴BE=CN .又 ∵AD=AD ,DE=DN ,∴Rt △DEA ≌Rt △DNA ,∴AN=AE ,∴BE=AC+AN=AC+AE ,∴BE -AC=AE . 15. 上面证明过程不正确; 错在第一步. 正确过程如下:在△BEC 中, ∵BE=CE , ∴∠EBC=∴在△BED 和 BEH 中, ⎨∠EBD =∠EBH, ,∴△BED ≌△BEH .⎪BE =BE, ∴∠BDE =∠H , ② 由①②得,∠ADC =∠BDE .。
第四章三角形一、选择题(每小题3分,共30分)1.下面是2014年仁川亚运会的会徽和吉祥物,其中是全等图形的一组是()答案 B 选项A和D中的两个图形的形状相同,大小不同,选项C中的两个图形的形状、大小都不相同,只有选项B中的两个图形的形状、大小都相同,故选B.2.如果一个三角形的两边长分别是2和4,则第三边的长可能是()A.2B.4C.6D.8答案 B 设第三边的长为x,则4-2<x<2+4,即2<x<6,故选B.3.在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是()A.等边三角形B.锐角三角形C.直角三角形D.钝角三角形答案 D ∵∠A=20°,∠B=60°,∴∠C=180°-∠A-∠B=180°-20°-60°=100°,∴△ABC是钝角三角形.故选D.4.如图4-6-1,D,E分别为△ABC的边AC,BC的中点,则下列说法不正确的是()图4-6-1A.DE是△BDC的中线B.BD是△ABC的中线C.AD=DC,BE=ECD.∠C的对边是DE答案 D 在△DEC中,∠C的对边是DE.5.如图4-6-2,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为()图4-6-2A.30°B.35°C.40°D.45°答案 C ∵AB∥CD,∴∠FEB=∠C=70°,又∵∠AEF+∠BEF=180°,∴∠AEF=180°-70°=110°,在△AEF 中,∠A+∠F+∠AEF=180°,∴∠A=180°-∠AEF-∠F=40°.6.如图4-6-3,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()图4-6-3A.∠A=∠CB.∠D=∠BC.AD∥BCD.DF∥BE答案 B 当∠D=∠B时,在△ADF和△CBE中,∵{AD =BC,∠D =∠B,DF =BE, ∴△ADF ≌△CBE(SAS), 故选B.7.已知三角形的三边长分别为4,x,7,且x 为奇数,则满足条件的三角形的个数为( ) A.3 B.4 C.5 D.6答案 A 由已知得3<x<11,又∵x 为奇数,则x 可取5、7、9.故满足条件的三角形有3个.8.如图4-6-4,在△ABC 中,∠ABC 、∠ACB 的平分线BE 、CD 相交于点F,∠ABC=42°,∠A=60°,则∠BFC=( )图4-6-4A.118°B.119°C.120°D.121°答案 C 在△ABC 中,∠ACB=180°-∠A-∠ABC=180°-60°-42°=78°.∵BE 、CD 分别平分∠ABC 、∠ACB,∴∠FBC=12∠ABC=21°,∠FCB=12∠ACB=39°,∴∠BFC=180°-∠FBC-∠FCB=180°-21°-39°=120°.故选C. 9.图4-6-5如图4-6-5,已知AB=AC,AE=AF,BE 与CF 交于点D,则以下结论:①△ABE ≌△ACF;②△BDF ≌△CDE;③D 在∠BAC 的平分线上,其中正确的是( )A.①B.②C.①②D.①②③ 答案 D ∵AB=AC,∠A=∠A,AE=AF, ∴△ABE ≌△ACF(SAS).∴∠AEB=∠AFC,∠B=∠C,∴∠CED=∠BFD, ∵AB=AC,AF=AE,∴BF=CE. ∴△BDF ≌△CDE.∴CD=BD. 连接AD,∵AB=AC,BD=CD,AD=AD, ∴△ABD ≌△ACD(SSS),∴∠CAD=∠BAD,∴D 在∠BAC 的平分线上,故①②③都正确.图4-6-610.如图4-6-6,△ABC 的底边边长BC=a,当顶点A 沿BC 边上的高AD 由A 向D 移动到达E 点时,若DE=12AE,则△ABC 的面积将变为原来的( )A.12 B.13 C.14 D.19答案 B ∵DE=12AE=13AD, ∴S △BCE =12BC ·DE=12BC ·13AD=13S △ABC . 故选B.二、填空题(每小题4分,共24分)11.如图4-6-7,为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是利用了.图4-6-7答案三角形的稳定性12.在△ABC中,BC=10,AB=6,那么AC的取值范围是.答案4<AC<16解析由三角形三边关系得10-6<AC<10+6,即4<AC<16.13.如图4-6-8,已知∠B=78°,∠C=40°,AD平分∠BAC,则∠ADB=.图4-6-8答案71°解析∵∠B=78°,∠C=40°,∴∠BAC=180°-∠B-∠C=62°,∵AD平分∠BAC=31°,∴∠ADB=180°-∠B-∠BAD=71°.∠BAC,∴∠BAD=1214. 如图4-6-9,△ABC中,AD为中线,DE⊥AB于E,DF⊥AC于F,AB=3,AC=4,DF=1.5,则DE=.图4-6-9答案 2解析 ∵AD 是△ABC 的中线,∴S △ABD =S △ACD .又S △ACD =12AC ·DF=12×4×1.5=3,∴S △ABD =12AB ·DE=3,∴DE=2.15.)如图4-6-10,在△ABC 中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE= .图4-6-10答案 3解析 ∵∠A=∠A,∠1=∠2,BE=CD,∴△ABE ≌△ACD,∴AD=AE=2,AB=AC=5,∴CE=AC -AE=5-2=3.16.如图4-6-11所示:要说明△ABC ≌△BAD.(1)已知∠1=∠2,若要以SAS 为依据,则可添加的一个条件是 ;(2)已知∠1=∠2,若要以AAS 为依据,则可添加的一个条件是 ;(3)已知∠1=∠2,若要以ASA 为依据,则可添加的一个条件是 .图4-6-11答案 (1)BC=AD (2)∠C=∠D (3)∠BAC=∠ABD三、解答题(共46分)17.(10分)如图4-6-12,点C,E,F,B 在同一直线上,点A,D 在BC 异侧,AB ∥CD,AE=DF,∠A=∠D.求证:AB=CD.图4-6-12证明 ∵AB∥CD,∴∠B=∠C,在△ABE 和△DCF 中,{∠B =∠C,∠A =∠D,AE =DF,∴△ABE ≌△DCF,∴AB=CD.18.(12分)如图4-6-13所示,A,B 两个建筑物分别位于河的两岸,要测得它们之间的距离,可以从B 出发沿河岸画一条射线BF,在BF 上截取BC=CD,过D 作DE ∥AB,使E,C,A 在同一条直线上,则DE 的长就是A,B 之间的距离.请你说明理由.图4-6-13解析 因为AB ∥DE,所以∠ABC=∠EDC, 在△ABC 和△EDC 中,{∠ABC =∠EDC,BC =DC,∠ACB =∠ECD,所以△ABC ≌△EDC,所以AB=DE.即DE 的长就是A,B 之间的距离.19.(10分)图4-6-14如图4-6-14所示,某块三角形模具ABC的阴影部分已经破损.(1)只要从残留的模具片中度量出哪些边、角,就可以不带残留的模具片到店铺加工一块与原来的三角形模具ABC的形状和大小完全相同的三角形模具A'B'C'?请简要说明理由;(2)作出三角形模具A'B'C'(要求:尺规作图,保留作图痕迹,不写作法和理由).解析(1)只要度量残留的三角形模具片的∠B,∠C的度数和边BC的长即可.理由如下:两角及其夹边对应相等的两个三角形全等.(2)如图所示.20.(14分)如图4-6-15,△ABC中,D为AB的中点,AD=5厘米,∠B=∠C,BC=8厘米.点Q在线段CA上从点C向终点A运动.(1)若点P在线段BC上以3厘米/秒的速度从点B向终点C运动,同时..①若点Q的速度与点P的速度相等,经过1秒后,请说明△BPD≌△CQP;②若点Q的速度与点P的速度不等,当点Q的速度为多少时,能使△BPD≌△CPQ?(2)若点P 以3厘米/秒的速度从点B 向点C 运动,同时..点Q 以5厘米/秒的速度从点C 向点A 运动,它们都依次沿△ABC 三边运动,则经过多长时间,点Q 第一次在△ABC 的哪条边上追上点P?图4-6-15解析 (1)①证明:∵BP=3×1=3厘米,CQ=3×1=3厘米,∴BP=CQ.∵D 为AB 的中点,∴BD=AD=5厘米.∵CP=BC -BP=8-3=5厘米, ∴BD=CP.又∵∠B=∠C,∴△BPD ≌△CQP(SAS).②设点Q 的运动时间为t 秒,运动速度为v 厘米/秒. ∵△BPD ≌△CPQ,∴BP=CP=4厘米,CQ=BD=5厘米,∴t=BP 3=43秒,∴v=CQ t =543=154 厘米/秒.∴当点Q 的运动速度为154 厘米/秒时,能使△BPD ≌△CPQ. (2)设经过x 秒点Q 第一次追上点P.由题意,得5x-3x=2×10,解得x=10.∴点P运动的路程为3×10=30(厘米),∵30=28+2,∴此时点P在BC边上,∴经过10秒点Q第一次在边BC上追上点P.。
第四章《三角形》质量检测卷(解析版)(全卷满分100分限时90分钟)一.选择题:(每小题3分,共36分)1. 满足下列条件的△ABC中,不是直角三角形的是()A. ∠B+∠A=∠CB. ∠A:∠B:∠C=2:3:5C. ∠A=2∠B=3∠CD. 一个外角等于和它相邻的一个内角【答案】B【解析】本题考查了直角三角形的判定根据三角形的内角和是及邻补角是,对各选项进行分析即可。
A、∵∠B+∠A=∠C,∴∠C=90°,∴△ABC是直角三角形;B、∵∠A:∠B:∠C=2:3:5,∴∠C=90°,∴△ABC是直角三角形;C、∵∠A=2∠B=3∠C,∴∠A≠90°,∴△ABC不是直角三角形;D、∵一个外角等于和它相邻的内角,∴每一个角等于90°,∴△ABC是直角三角形;故选C.2..下列说法正确的是()A.三角形的角平分线是射线B.三角形的中线是线段C.三角形的高是直线D.直角三角形仅有一条高线【答案】B【解析】三角形的角平分线,中线,高都是线段,故A,C错误,B正确;任何三角形都有三条高线,故D错误.故选B.3.若一个三角形的两边长分别为3和7,则第三边长可能是( )A. 6B. 3C. 2D. 11 【答案】A【解析】试题解析:设第三条边长为x,根据三角形三边关系得:7-3<x<7+3,即4<x<10.结合各选项数值可知,第三边长可能是6.故选A.4.在下列长度的四根木棒中,能与长为4cm、9cm的两根木棒钉成一个三角形的是( )A. 4cmB. 5cmC. 9cmD. 13cm【解析】试题解析:根据三角形的三边关系,得:第三边应大于两边之差,且小于两边之和,即9-4=5,9+4=13.∴第三边取值范围应该为:5<第三边长度<13,故只有C选项符合条件.故选C.5.一个钝角三角形的三条角平分线所在的直线一定交于一点,这交点一定在( )A. 三角形内部B. 三角形的一边上C. 三角形外部D. 三角形的某个顶点上【答案】A【解析】三角形三条角平分线所在的直线一定交于一点,这一点是三角形的内心即内切圆的圆心,此点在三角形(锐角三角形、直角三角形、钝角三角形)内部.故选:A.6.三角形的一个外角是锐角,则此三角形的形状是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 无法确定【答案】B【解析】本题主要考查了三角形的形状根据外角是锐角,可得相邻的内角是钝角,即可判断。
新北师大版全等三角形测试题
一、选择题(每小题3分,共30分)
1. 有下列长度的三条线段,能组成三角形的是( )
A 、 2cm ,3cm ,4cm
B 、 1cm ,4cm ,2cm
C 、1cm ,2cm ,3cm
D 、 6cm ,2cm ,3cm 2. 在下列各组图形中,是全等的图形是( )
3.下列命题中正确的是( )
①全等三角形对应边相等; ②三个角对应相等的两个三角形全等;
A .4个
B 、3个
C 、2个
D 、1
4
.如图,已知AB=CD ,AD=BC
,则图中全等三角形共有(
A
.2
对 B 、3对 C 、4对 D 、5对 5. 具备下列条件的两个三角形中,不一定全等的是 ( (A) 有两边一角对应相等 (B) 三边对应相等
(C) 两角一边对应相等 (D )有两边对应相等的两个直角三角形
6.如右图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻璃店 去配一块完全一样的玻璃,那么最省事的办法是( )
A.带①去
B. 带②去
C. 带③去
D. 带①和②去 7.已知△ABC ≌△DEF ,∠A=70°,∠E=30°,则∠F 的度数为 ( )
(A ) 80° (B ) 70° (C ) 30° (D ) 100°
8.对于下列各组条件,不能判定△ABC ≌△C B A '''的一组是 ( )
(A ) ∠A=∠A ′,∠B=∠B ′,AB=A ′B ′ (B ) ∠A=∠A ′,AB=A ′B ′,AC=A ′C ′ (C ) ∠A=∠A ′,AB=A ′B ′,BC=B ′C ′ (D ) AB=A ′B ′,AC=A ′C ′,BC=B ′C ′
9.如图,△ABC ≌△CDA ,并且AB=CD ,那么下列结论错误的是 ( )
(A )∠DAC=∠BCA (B )AC=CA
(C )∠D=∠B (D )AC=BC
10.如图,D 在AB 上,E 在AC 上,且∠B=∠C ,
则在下列条件中,无法判定△ABE ≌△ACD 的是( )
(A )AD=AE (B )AB=AC (C )BE=CD (D )∠AEB=∠ADC 二、填空: (每小题3分,共30分)
1、全等三角形的_________和_________相等; 2.已知△ABC 与△DEF 中 AB=DE ,∠B=∠E ,若要使△ABC ≌△DEF , 还需条件:_____________,
A B C
D E
3.如右图,已知∠B =∠D=90°,,若要使△AB C ≌△ABD ,还要需条件:_____________,
4.如图5,⊿ABC ≌⊿ADE ,若∠B=40°,∠EAB=80°,
DAC= 。
5.如图7,已知∠1=∠2,AB ⊥AC ,BD ⊥CD ,则图中全等三角形有 _____________;
≌ΔBOC 。
7.如图9,AE=BF ,AD ∥BC ,AD=BC ,则有ΔADF ≌ ,且DF= 。
8.如图10,在ΔABC 与ΔDEF 中,如果AB=DE ,BE=CF ,只要加上∠ =∠ 或 ∥ ,就可证明ΔABC ≌ΔDEF 。
9、已知ABC 与△DEF 中,∠B=∠DEF ,AB=DE ,要说明△ABC ≌△DEF , (1)若以“ASA ”为依据,还缺条件 (2)若以“AAS ”为依据,还缺条件 . 10、为了使一扇旧木门不变形,木工师傅在木门的背面 加钉了一根木条,这样做的道理是 。
三、证明题(每小题5分,共40分)
1、如右图,已知AB=AD ,且AC 平分∠BAD ,BC=DC 吗?为什么?
2.已知:点 A 、C 、B 、D 在同一条直线,AC=BD ,∠M=∠N ,AM=CN 。
问:MB ∥ND 吗?为什么?
A
B C D A
B
C
D
第2题
第3题图
第2题图
3、如右图,AB=AD ,∠BAD=∠C AE,AC=AE ,求证:AB=AD
4、已知:如图,AB=CD,AB∥DC.求证:AD∥BC, AD=BC
5.已知:如图,AB=AC,DB=DC.F是AD的延长线上一点.求证:(1)∠ABD=∠ACD (2)BF=CF
A
B
C
D
E
6、(7分)已知:如图,,。
求证:。
7、已知:如图,CE⊥AB,BF⊥AC,CE与BF相交于D,且BD=CD.
试说明AD是∠BAC的平分线。
8、如图,在一小水库的两测有A、B两点,A、B间的距离不能直接测得,采用方法如下:取一点可以同时到达A、B的点C,连结AC并延长到D,使AC=DC;同法,连结BC并延长到E,使BC=EC;这样,只要测量CD的长度,就可以得到A、B的距离了,这是为什么呢?根据以上的描述,请画出图形,并写出已知、求证、证明。
A
B
C。