2019年春人教版七年级数学下册10数据的收集整理与描述小专题五从图表中获取信息习题1
- 格式:doc
- 大小:239.00 KB
- 文档页数:3
人教版七年级数学(下册)第十章-数据的收
集、整理与总结教案
教学目标
1. 理解数据的概念和数据在日常生活中的作用。
2. 掌握数据的收集方法,包括观察法、实验法和调查法。
3. 学会整理数据的方法,包括制作频数表、制作条形统计图和
折线统计图。
4. 能够运用所学知识对数据进行分析和总结。
教学准备
1. 教材:人教版七年级数学(下册)第十章教材。
2. 教具:白板、黑板、多媒体课件、绘图工具。
教学过程
1. 导入:通过实例引入数据的概念和作用,激发学生的研究兴趣。
2. 授课:介绍数据的收集方法,包括观察法、实验法和调查法,并进行详细讲解和示范。
3. 练:分组进行实践操作,让学生亲自收集数据,并使用合适
的方法整理和表达数据。
4. 深化:引导学生分析和总结所收集的数据,提出问题并讨论。
5. 归纳:对本节课所学内容进行归纳总结,强化学生对数据收集、整理和总结方法的理解。
6. 作业:布置相应的练题和作业,巩固所学知识。
教学评价
1. 观察学生在课堂上的表现和参与程度。
2. 检查学生的作业完成情况和答案正确率。
3. 进行小组或个别评价,关注学生的理解深度和解决问题的能力。
教学活动设计合理,有助于学生对数据的收集、整理和总结方
法有更深入的认识。
第十章 数据的收集、整理与描述一、知识结构二、统计调查1、全面调查:考察全体对象的调查叫做全面调查.2、抽样调查:只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况.3、有关概念:要考查的全体对象称为总体,组成总体的每一个考查对象称为个体,被抽取的那些个体组成一个样本,样本中个体的数目称为样本容量.总体中的每一个个体都有相等机会被抽到的抽样方法是一种简单随机抽样;将总体分成几个层(如年龄段),然后再在各层中进行简单随机抽样,这是一种分层抽样. 与简单随机抽样相比,分层抽样更具有代表性.全班同学最喜爱节目人数统计表(划记法)扇形的大小是由圆心角的大小决定的.根据各项所占的百分比就可以算出对应扇形圆心角的度数.节目类型 人 数 百分比 A 新闻 4 10% B 体育 10 25% C 动画 8 20% D 娱乐 18 45% 合 计40100%301020400娱乐 动画娱乐节目类别如新闻:360°×10%≈36° 折线统计图三、直方图七年级准备从63名同学中挑40名参加广播体比赛。
收集身高数据如下(单位:㎝) 158 158 160 168 159 159 151 158 159 168 158 154 158 154 169 158 158 158 159 167 170 153 160 160 159 159 160 149 163 163 162 172 161 153 156 162 162 163 157 162 162 161 157 157 164 155 156 165 166 156 154 166 164 165 156 1571531651591571551641561、计算最大值与最小值的差(极差) 172-149=232、决定组距与组数把所有的数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距。
作等距分组(各组的组距相同),本例取组距为3㎝(从最小值起每隔3㎝作为一组). 232733最大值-最小值==组距将数据分成8组:149≤x <152,152≤x <155,…,170≤x <173.注意:①根据问题的需要各组的组距可以相同或不同;②组距和组数的确定没有固定的标准,要凭借经验和所研究的具体问题来决定;③当数据在100个以内时,按照数据的多少,常分成5~12组.3、频数分布表对落在各个小组内的数据进行累计,得到各个小组内的数据的个数(叫做频数)。
数据的收集、整理与描述知识结构制表 绘图一.统计调查 〔一〕全面调查1.数据处理的根本过程收集数据.整理数据.描述数据.分析数据.得出结论2.统计调查的方式及其优点〔1〕全面调查:我们把对全体对象的调查称为全面调查.〔2〕划计法:整理数据时,用正的每一划〔笔画〕代表一个数据,这种记录数据的方法叫划计法. 例如:统计中编号为1的数据每出现一次记一划,最后记为“正正一〞,即共出现11次. 〔3〕百分比:每个对象出现的次数与总次数的比值.注意:①调查方式有两种:一种是全面调查,另一种是抽样调查. ②划计之和为总次数,百分比之和为1.③划计法是记录数据常用的方法,根据个人的习惯也可改用其他方法. 全面调查的优点是可靠,.真实,抽样调查的优点是省时.省力,减少破坏性.全面调查抽样调查 收集数据 描述数据整理数据分析数据得出结论3.表示数据的两种根本方法一是统计表,通过表格可以找出数据分布的规律;二是统计图,利用统计图表示经过整理的数据,能更直观地反映数据的规律.4.常见统计图(1〕条形统计图:能清楚地表示出每个工程的具体数目;(2〕扇形统计图: 能清楚地表示出各局部与总量间的比重;(3〕折线统计图: 能反映事物变化的规律.5.扇形统计图〔1〕扇形统计图:用圆代表总体,圆中的各个扇形分别代表总体中的不同局部,扇形的大小反映局部占总体的百分比的大小,这样的统计图叫扇形统计图.〔2〕制作扇形统计图的三个步骤:1°计算各局部在总体中所占的百分比;2°计算各个扇形的圆心角的度数=360°×该局部占总体的百分比;3°在圆中依次作出上面的扇形,并标出百分比.〔3〕扇形的面积与对应的圆心角的关系:扇形的面积越大,圆心角的度数越大.扇形的面积越小,圆心角的度数越小.〔二〕抽样调查1.从总体中抽取局部对象进行的调查叫抽样调查.特点:抽样调查只考察总体中的一局部个体,因此它的优点是调查范围小,节省人力.物力.财力,但结果往往不如全面调查得到的结果准确,为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性.2.在统计中,需要考察对象的全体叫做总体,其中从总体中抽取的局部个体叫做总体的一个样本,样本中个体的数目叫做样本容量.3.抽样的必要性:总体中的个体数目较多,工作量较(太)大,无法一一考查;受客观条件的限制,无法对个体一一考查;考查具有破坏性,不允许对个体一一考查.3. 抽样调查的要求为了获得较为准确的调查结果,抽样时要注意样本的广泛性和代表性,即采取随机抽查的方法.如:请指出以下哪些调查的样本缺乏代表性.〔1〕从具有不同层次文化的市民中,调查市民的法治意识;〔2〕在大学生中调查我国青年的上网情况;〔3〕抽查电信部门的家属,了解市民对曜效劳的满意程度.小结:只有选择具有代表性的样本进行抽样调查,才能了解总体的面貌和特征.4. 总体和样本总体:要考察的对象的全体叫做总体.个体:组成总体的每一个考察对象称为个体.样本:从总体当中抽出的所有实际被调查的对象组成一个样本.样本容量:样本中个体的数量叫样本容量〔不带单位〕.思考:为了解东铁营二中初中一年级学生的身高,有关部门从初一年级中抽200名学生测量他们的身高,然后根据这一局部学生的身高去估计东铁营二中所有初一学生的平均身高.说出总体.个体.样本和样本容量.解:总体是:东铁营二中初一年级学生每人身高的全体.个体是:每名学生的身高.从中抽取的200名学生的每人身高的集体是总体的一个样本.样本容量是:200二.直方图1.数据的频数分布表反映了一组数据中的每个数据出现的频数,从而反映了在数据组中各数据的分布情况.要全面地掌握一组数据,必须分析这组数据中各个数据的分布情况.思考:八年级某班20名男生一次投掷标枪测试成绩如下〔单位:m〕:25,21,23,25,27,29,25,28,30,29,26,24,25,27,26,22,24,25,26,28.〔1〕将这20名男生的测试成绩按从小到大排列,统计出每种成绩的数值出现的频数,并制成统计表;〔2〕根据统计表答复:①成绩小于25米的同学有几人?占总人数的百分之几?②成绩大于28米的同学有几人?占总人数的百分之几?③这些同学的成绩大局部集中在哪个范围内,占总人数的百分比是多少?小结:利用频数.频率分布表,可以清楚地反映出一组数据中的每个数据出现的频数和频率,从而反映这些数据的整体分布情况.2.频数分布直方图为了直观地表示一组数据的分布情况,可以以频数分布表为根底,绘制分布直方图.〔1〕频数分布直方图简称直方图,它是条形统计图的一种.〔2〕直方图的结构:直方图由横轴.纵轴.条形图的三局部组成.〔3〕作直方图的步骤:①作两条互相垂直的轴:横轴和纵轴;②在横轴上划分一引起相互衔接的线段,每条线段表示一组,在线段的左端点标明这组的下限,在最后一组的线段的右端点标明其上限;③在纵轴上划分刻度,并用自然数标记;④以横轴上的每条线段为底各作一个矩形立于数轴上,使各矩形的高等于相应的频数.如:为了了解某地区八年级学生的身高情况,现随机抽取了60名八年级男生,测得他们的身高〔单位:cm〕分别为156 162 163 172 160 141 152 173 180 174 157 174 145 16 153 165 156 167 161 172 178 156 166 155 140 157 167 156 168 150 164 163 155 162 160 168 147 161 157 162 165 160 166 164 154 161 158 164 151 169 169 162 158 163 159 164162 148 170 161〔1〕将数据适当分组,并绘制相应的频数分布直方图;〔2〕如果身高在的学生身高为正常,试求落在正常身高范围内学生的百分比.小结:画频数分布直方图可按以下步骤:①计算数差;②确定组距与组数;③确定组限;④列频数分布表;⑤画频数分布直方图.其中组距和组数确实定没有固定标准,要凭借经验和研究的具体问题决定.一般来说,组数越多越好,但实际操作比拟麻烦,当数据在100个以内时,根据数据的特征通常分成5~~12组.例1.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生.1995年联合国教科文组织把每年4月23日确定为“世界读书日〞.以下图中扇形是某校三个年级学生人数分布扇形统计图,其中八年级人数为408人,表格中是该校学生阅读课外书籍情况统计表.请你根据图表中的信息,解析以下问题:〔1〕求该校八年级的人数占全校总人数的百分率.〔2〕求表格中A,B的值.〔3〕该校学生平均每人读多少本课外书?图书种类借阅次数比重科普常识840 B名人传记816 0.34 漫画丛书A0.25 其它144 0.06八年级九年级38%七年级28%思路探索:扇形统计图主要描述各局部在总体中所占的百分比,所有百分比之和为100%,由于七年级占28%,九年级占38%,因此八年级的人数占全校总人数的34%.再看统计表,统计表可以具体看出借阅的次数和比重,由于比重之和应该也是1,所以科普常识类书籍所占的比重应该是1-0.34-0.25-0.06=0.35.由于借阅总次数为144÷0.06=2400〔次〕,所以A=2400-840-816-144=600〔次〕.规律总结:统计表问题要抓住各局部的频数之和等于总体,各局部的频率之和等于1;而扇形统计图中,各局部的百分比之和为100%.例2.刘强同学为了调查全市初中生人数,他对自己所在城区人口和城区初中生人数作了调查:城区人口约3万,初中生人数约1200.全市人口实际约300万,为此他推断全市初中生人数为12万.但市教育局提供的全市初中生人数约8万,与估计数据有很大偏差.请你用所学的统计知识,找出其中错误的原因______________.思路探索:此题属于抽样调查,总体是全市人口,抽取的样本是城区3万人口,抽取的样本不具有代表性和广泛性,因此推断的结果与真实数据之间存在偏差.稳固练习一、选择题1.以下调查适合作者普查的是 ( )A.了解在校大学生的主要娱乐方式B.了解我市居民对废电池的处理情况C.日光灯管长要检测一批灯管的使用寿命D.对甲型HINI流感患者的同一车厢乘客进行医学检查2.要了解全校学生的课外作业负担情况,你认为作抽样方法比拟适宜的是 ( )A.调查全校女生B.调查全校男生C.调查九年级全体学生D.调查七、八、九年级各100人3.要反映某市一周内每天的最高气温的变化情况,宜采用 ( )A.条形统计图B.扇形统计图C.折线统计图D.频数分布直方图4.小明在选举班委时得了28票,以下说法错误的选项是( )A.不管小明所在的班级有多少学生,所有选票中选小明的选票频率不变B. 不管小明所在的班级有多少学生,所有选票中选小明的选票频数不变C.小明所在班级的学生人数不少于28人D.小明的选票的频率不能大于115%乘车其它5%35%骑车步行5.一个班有40名学生,在期末体育考试中,优秀的有18人,在扇形统计图中,代表体育优秀扇形的圆心角是 ( ) A.144 B.162 C.216 D.2506.某校对学生上学方式进行了一次抽样调查,右图是根据此次调查结果所绘制的扇形同就,该学校2560人,被调查的学生中汽车的有21人,那么以下四种说法中,不正确的选项是 ( )A.被调查的学生有60人B.被调查的学生中,步行的有27人C.估计全校骑车上学的学生有1152人D.扇形图中,乘车局部所对应的圆心角为547.一组数据的最大值是97,最小值76,假设组距为4,那么可分为几组 ( )A. 4B. 5C. 6D. 78.某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果件以下图,根据此条形图估计这一天该校学生平均课外阅读时间为 ( )A.0.96小时B.1.07小时C.1.15小时D.1.50小时人数/人31315127510152000.511.52时间/时9. 超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成频数分布直方图〔图中等待时间6分钟到7分钟表示大于或等于6分钟而小于7分钟,其余类同〕,这个时间段内顾客等待时间不少于六分钟的人数为 〔 〕 A.5 B.7 C.16 D.3310.某水库水位发生变化的主要原因是降雨的影响,对这个水库5月份到10月份的水位进行统计得 到折线统计图如下图,那么该地区降雨最多的时期为 ( )5101520255678910月份水位A .5~6月份 B.7~8月份 C.8~9月份 D.9~10月份 二、填空题11.为了考察某七年级男生的身高情况,调查了60名男生的身高,那么它的总体是____________,个体是__________________,总体的一个样本是_________________.12.小明家本月的开支情况如下图,如果用于其它方面的支出是150元,那么他家用于教育支出是____________元。
1.了解数据收集的意义.2.知道用什么方法收集数据,会将收集到的数据进行分组整理.通过参与收集、整理数据和初步分析数据,发展数感,培养统计观念.3.会制作扇形统计图、频数分布表和频数分布直方图.4.会从各种统计图中获取信息解决问题.1.参与收集数据、整理数据、分析数据、从统计图中获取数据信息和用统计图表示数据的过程,理解统计在生活中重要的应用价值.2.学生在自主探究的基础上合作交流,寻求合理的答案,形成正确的结论.培养学生合作探究的意识,增强学生的体验和应用数学的意识.数据是对现实生活中被调查对象具体情况的反映,它是统计学中最基础的内容,对我们的实际行动有着重大的决策作用.本章内容不仅是以后学习数据分析和应用的基础,而且对培养和发展学生的数感和统计意识都有着重要的意义.本章我们学习两种收集数据的方法——全面调查和抽样调查.全面调查要考察全体调查对象,而抽样调查只考察部分调查对象.本章知识来源于生活,又直接指导生活,教材通过调查学生对电视节目的喜爱情况,经历了全面调查的过程,探索了抽样调查的方法,在理解条形图、扇形图、折线图的基础上,掌握用直方图描述数据的步骤,最后探究了从数据谈节水的课题,感受到数据的作用,增强了节水意识.利用统计图表等整理和描述数据,有利于我们发现和探索数据中蕴含的规律,获取数据中的信息,不同的统计图从不同侧面描述了数据不同的特点.因此,选用合适的统计图描述数据,对发现和探索数据的特点和规律是很重要的.【重点】数据的收集、整理、描述的过程和绘制频数分布表、频数分布直方图.【难点】根据统计的结果作出合理的判断和预测,体会统计对决策的作用,能够清晰地表达自己的观点.1.注重培养学生合作探究能力.教师在适当的时机提出问题,让学生思考后探究问题解决的办法.教师要及时地调控、组织学生对发现的问题进行研究、评判,对所得的结论、方法及时归纳、完善.2.注重生活中的统计问题.教师应引导学生有兴趣地观察、分析和讨论教材中提供的丰富的、鲜活的素材,并从生活中收集有关的实例,以增强学生的体验和应用数学的意识.教师还应让学生感受实例本身的政治意义和教育意义,对学生进行国情教育,使学生形成良好的人生观和价值观.3.注重抽样方案的设计.设计抽样方案时,要注意样本对总体的代表性.简单随机抽样是一种基本且实用的抽样方法,它要求总体中的每一个个体都有相等的机会被抽到,除了抽样方法要合理外,为了使样本能比较客观地反映总体,还要考虑样本容量的大小.1.了解全面调查和抽样调查的基本收集数据方法,并能根据调查的需要制作简单的问题调查表.2.学会利用表格、条形图、扇形图、直方图等方式整理数据.3.理解总体、样本、组距、频数等概念,并能够从整理的数据中提取有价值的信息.1.通过知识的综合复习构建初步的统计知识体系,深化对统计重要作用的认识.2.通过专题知识复习强化对统计知识的理解,提升整理数据的准确性和能力.领会统计知识在生活中的重要应用价值,培养学生细心做事的良好习惯和科学精神.【重点】利用表格、条形图、扇形图、直方图等多种方式整理和分析数据.【难点】条形图和直方图的区别与联系;对整理的数据进行科学的分析.。
第十章数据的收集、整理与描述
知识要点
1、对数据进行处理的一般过程:收集数据、整理数据、描述数据、分析得出结论。
2、数据收集过程中,调查的方法通常有两种:全面调查和抽样调查。
3、除了文字叙述、列表、划记法外,还可以用条形图、折线图、扇形图、直方图来描述数据。
4、抽样调查简称抽查,它只抽取一部分对象进行调查,根据调查数据推断全体对象的情况。
要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量。
5、画频数直方图的步骤:①计算数差(最大值与最小值的差);
②确定组距和组数;③列频数分布表;④画频数直方图。
1。
数据的收集、整理与描述单元复习与巩固一、知识网络知识点一:总体、样本的概念1.总体:要考察的全体对象称为总体.2.个体:组成总体的每一个考察对象称为个体.3.样本:被抽取的那些个体组成一个样本.4.样本容量:样本中个体的数目叫样本容量(不带单位).注意:为了使样本能较好地反映总体的情况,除了要有合适的样本容量外,抽取时还要尽量使每一个个体都有同等的机会被抽到.知识点二:全面调查与抽样调查调查的方式有两种:全面调查和抽样调查:1.全面调查:考察全面对象的调查叫全面调查. 全面调查也称作普查,调查的方法有:问卷调查、访问调查、电话调查等.全面调查的步骤:(1)收集数据;(2)整理数据(划记法);(3)描述数据(条形图或扇形图等).2.抽样调查:若调查时因考察对象牵扯面较广,调查范围大,不宜采用全面调查,因此,采用抽样调查. 抽样调查只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况.抽样调查的意义:(1)减少统计的工作量;(2)抽样调查是实际工作中应用非常广泛的一种调查方式,它是总体中抽取样本进行调查,根据样本来估计总体的一种调查.3.判断全面调查和抽样调查的方法在于:①全面调查是对考察对象的全面调查,它要求对考察范围内所有个体进行一个不漏的逐个准确统计;而抽样调查则是对总体中的部分个体进行调查,以样本来估计总体的情况. ②注意区分“总体”和“部分”在表述上的差异. 在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小. 调查方法:问卷,观察,走访,试验,查阅资料。
知识点三:扇形统计图和条形统计图及其特点1.生活中,我们会遇到许多关于数据的统计的表示方法,它们多是利用圆和扇形来表示整体和部分的关系,即用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图.(1)扇形统计图的特点:①用扇形面积表示部分占总体的百分比;②易于显示每组数据相对于总体的百分比;③扇形统计图的各部分占总体的百分比之和为100%或1. 在检查一张扇形统计图是否合格时,只要用各部分分量占总量的百分比之和是否为100%进行检查即可.(2)扇形统计图的画法:把一个圆的面积看成是1,以圆心为顶点的周角是360°,则圆心角是36°的扇形占整个面积的,即10%. 同理,圆心角是72°的扇形占整个圆面积的,即20%. 因此画扇形统计图的关键是算出圆心角的大小.扇形的面积与圆心角的关系:扇形的面积越大,圆心角的度数越大;扇形的面积越小,圆心角的度数越小. 扇形所对圆心角的度数与百分比的关系是:圆心角的度数=百分比×360°.(3)扇形统计图的优缺点:扇形统计图的优点是易于显示每组数据相对于总数的大小,缺点是在不知道总体数量的条件下,无法知道每组数据的具体数量.2.用一个单位长度表示一定的数量关系,根据数量的多少画成长短不同的条形,条形的宽度必须保持一致,然后把这些条形排列起来,这样的统计图叫做条形统计图.(1)条形统计图的特点:①能够显示每组中的具体数据;②易于比较数据之间的差别.(2)条形统计图的优缺点:条形统计图的优点是能够显示每组中的具体数据,易于比较数据之间的差别,缺点是无法显示每组数据占总体的百分比.注意:(1)条形统计图的纵轴一般从0开始,但为了突出数据之间的差别也可以不从0开始,这样既节省篇幅,又能形成鲜明对比;(2)条形图分纵置个横置两种.知识点四:频数、频率和频数分布表1.一般我们称落在不同小组中的数据个数为该组的频数,频数与数据总数的比为频率. 频率反映了各组频数的大小在总数中所占的分量.公式:.由以上公式还可得出两个变形公式:(1)频数=频率×数据总数.(2).注意:(1)所有频数之和一定等于总数;(2)所有频率之和一定等于1.2.数据的频数分布表反映了一组数据中的每个数据出现的频数,从而反映了在一组数据中各数据的分布情况.要全面地掌握一组数据,必须分析这组数据中各个数据的分布情况.知识点五:频数分布直方图与频数折线图1.在描述和整理数据时,往往可以把数据按照数据的范围进行分组,整理数据后可以得到频数分布表,在平面直角坐标系中,用横轴表示数据范围,纵轴表示各小组的频数,以各组的频数为高画出与这一组对应的矩形,得到频数分布直方图.2.条形图和直方图的异同:直方图是特殊的条形图,条形图和直方图都易于比较各数据之间的差别,能够显示每组中的具体数据和频率分布情况.直方图与条形图不同,条形图是用长方形的高(纵置时)表示各类别(或组别)频数的多少,其宽度是固定的;直方图是用面积表示各组频数的多少(等距分组时可以用长方形的高表示频数),长方形的宽表示各组的组距,各长方形的高和宽都有意义. 此外由于分组数据都有连续性,直方图的各长方形通常是连续排列,中间没有空隙,而条形图是分开排列,长方形之间有空隙.3.频数折线图的制作一般都是在频数分布直方图的基础上得到的,具体步骤是:首先取直方图中每一个长方形上边的中点;然后再在横轴上取两个频数为0的点(直方图最左及最右两边各取一个,它们分别与直方图左右相距半个组距);最后再将这些点用线段依次连接起来,就得到了频数折线图.4.频数分布直方图的画法:(1)找到这一组数据的最大值和最小值;(2)求出最大值与最小值的差;(3)确定组距,分组;(4)列出频数分布表;(5)由频数分布表画出频数分布直方图.5.画频数分布直方图的注意事项:(1)分组时,不能出现数据中同一数据在两个组中的情况,为了避免,通常分组时,比题中要求数据单位多一位. 例如:题中数据要求到整数位,分组时要求数据到0.5即可.(2)组距和组数的确定没有固定的标准,要凭借数据越多,分成的组数也就越多,当数据在100以内类型一:考查基本概念1:为了了解2020年河南省中考数学考试情况,从所有考生中抽取600名考生的成绩进行考查,指出该考查中的总体和样本分别是什么?思路点拨:从概念上来看,总体即全部考查对象,样本是一部分考查对象,还要注意考查的对象是数量指标.解析:总体是2020年河南省参加中考考试的所有考生的数学成绩;样本是抽取的600名考生的数学成绩.总结升华:统计中的研究对象是数据,而不是具体的人或物. 在叙述总体和样本时,要注意他们的范围和数量指标.【变式】2020年某县共有4591人参加中考,为了考查这4591名学生的外语成绩,从中抽取了80名学生成绩进行调查,以下说法不正确的是().A.4591名学生的外语成绩是总体;B.此题是抽样调查;C.样本是80名学生的外语成绩;D.样本是被调查的80名学生.【答案】D.类型二:调查方法的考查2:下列调查中,适合用普查(全面调查)方法的是().A.电视机厂要了解一批显像管的使用寿命;B.要了解我市居民的环保意识;C.要了解我市“阳山水蜜桃”的甜度和含水量;D.要了解某校数学教师的年龄状况.思路点拨:A、B、C工作量太大,太复杂,只能作抽样调查,而D可以作普查,即全面调查.解析:D.总结升华:在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.举一反三:【变式】下列抽样调查中抽取的样本合适吗?为什么?(1)数学老师为了了解全班同学数学学习中存在的困难和问题,请数学成绩优秀的10名同学开座谈会;(2)在上海市调查我国公民的受教育程度;(3)在中学生中调查青少年对网络的态度;(4)调查每班学号为5的倍数的学生,以了解学校全体学生的身高和体重;(5)调查七年级中的两位同学,以了解全校学生的课外辅导用书的拥有量.【答案】(1)中的抽样不太合适,抽样时,应该让成绩好、中、差的同学都有代表参加;(2)中上海市的经济发达,公民受教育的程度较高,不具有代表性;(3)中青少年不仅仅是中学生,还有为数众多的非中学生,中学生对网络的态度不代表青少年对网络的态度;(4)中抽样是随机的,因此可以认为抽样合适;(5)中调查的人数太少,各年级的情况可能有所不同,因此抽样不合适.类型三:考查整理数据的能力3:图中所示的是2020年南宁市年鉴记载的本市社会消费品零售总额(亿元)统计图.请你仔细观察图中的数据,并回答下面问题.(1)图中所列的6年消费品零售总额的最大值和最小值的差是多少亿元?(2)求1990年、1995年和2020年这三年社会消费品零售总额的平均数(精确到0.01).(3)从图中你还能发现哪些信息,请说出其中两个.思路点拨:从图中可以看出最大值是163.44(亿元),最小值是0.33(亿元).第(3)题为开放性问题,答案不唯一解析:(1)163.44-0.33=163.11(亿元).(2)(亿元).(3)①2020年至2020年消费品零售总额的增长速度比1980年至1990年10年间的消费品零售总额平均增长速度快;②可以看出2020年人民生活水平比10年前有大幅度提高.总结升华:仔细观察图表,获取准确有用的信息.举一反三:【变式1】某中学在一次健康知识测试中,抽取部分学生成绩(分数为整数,满分为100分)为样本,绘制成绩统计图,请结合统计图回答下列问题.(1)本次测试中抽取的学生共多少人?(2)分数在90.5~100.5分这一组的频率是多少?(3)从左到右各小组的频率比是多少?(4)若这次测试成绩80分以上(不含80分)为优秀,则优秀率不低于多少?【答案】(1)2+3+41+4=50(人).所以本次测试中抽取的学生共有50人.(2)4÷50=0.08. 所以分数在90.5~100.5分这一组的频率是0.08.(3)从左到右各小组的频率比是2∶3∶41∶4.(4)41+4=45,,所以优秀率不低于90%.【变式2】(2020辽宁丹东)为了估计某市空气质量情况,某同学在30天里做了如下记录:污染指数()②将消费者打算购买小车的情况整理后,作出了频数分布直方图的一部分如图(注:每组包含最小值不包含最大值,且车价取整数).请你根据以上信息,回答下列问题:(1)根据①中信息可得,被调查消费者的年收入的众数是__________万元;(2)请在图中补全这个频数分布直方图;(3)打算购买价格10万元以下小车的消费者的人数占被调查消费者总人数的百分比是__________.分析:被调查的消费者人数中,年收入为6万元的人数最多,所以被调查的消费者的年收入的众数是6万元;因为共发放了1000份调查问卷,所以购买价格在10万到20万的人数为:1000-(40+120+360+200+40)=240(人);打算购买价格10万元以下小车的消费者人数为:40+120+360=520(人),占被调查消费者人数的百分比是.【答案】(1)6;(2)频数分布直方图为:(3)52%.。
2019年人教版数学初一下学期第十章知识点总结
第十章数据的收集、整理与描述
一.知识框架
二.知识概念
1.全面调查:考察全体对象的调查方式叫做全面调查。
2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。
3.总体:要考察的全体对象称为总体。
4.个体:组成总体的每一个考察对象称为个体。
5.样本:被抽取的所有个体组成一个样本。
6.样本容量:样本中个体的数目称为样本容量。
7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数。
8.频率:频数与数据总数的比为频率。
9.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。
本章要求通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,培养重视调查研究的良好习惯和科学态度。
小专题(五) 从图表中获取信息
1.(呼和浩特中考)以下是某手机店1~4月份的两个统计图,分析统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为(B)
A.4月份三星手机销售额为65万元
B.4月份三星手机销售额比3月份有所上升
C.4月份三星手机销售额比3月份有所下降
D.3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额
2.(深圳中考)2016年深圳市“读书月”活动结束后,教育部门就某校初三学生在该活动期间阅读课外书籍的数量进行统计,将收集的数据绘制成如下两幅不完整的统计图,请根据图中提供的信息,解答下列问题.
(1)x=20%,这次共抽取400名学生进行调查,并补全条形图;
(2)在学生读书数量扇形统计图中,3本以上所对扇形的圆心角是72°;
(3)若全市在校初三年级学生有6.7万名,请你估计全市初三学生在本次“读书月”活动中读书数量在3本以上的学生约有1.34万名.
3.(长春中考)在“世界家庭日”前夕,某校团委随机抽取n名本校学生,对“世界家庭日”当天所喜欢的家庭活动方式进行问卷调查.问卷中的家庭活动方式包括:
A.在家里聚餐B.去影院看电影
C.到公园游玩D.进行其他活动
每位学生在问卷调查时都按要求只选择了其中一种喜欢的活动方式.该校团委收回全部问卷后,将收集到的数据整理并绘制成如下的统计图.根据统计图提供的信息,解答下列问题:
n名学生喜欢的家庭活动方式的人数条形统计图
(1)求n的值;
(2)四种方式中最受学生喜欢的方式为C(用A,B,C,D作答);选择该种方式的学生人数占被调查的学生人数的百分比为35%;
(3)根据统计结果,估计该校1 800名学生中喜欢C方式的学生比喜欢B方式的学生多的人数.
解:(1)n =30+40+70+60=200. (3)1 800×70200-1 800×40
200
=270(人).
答:该校1 800名学生中喜欢C 方式的学生比喜欢B 方式的学生大约多270人.
4.(齐齐哈尔中考改编)为增强学生体质,各学校普遍开展了阳光体育活动.某校为了了解全校1 000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计,根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x <8的学生人数占24%.根据以上信息及统计图解答下列问题:
(1)本次调查属于抽样调查,样本容量是50; (2)请补全频数分布直方图中空缺的部分;
(3)估计全校学生每周课外体育活动时间不少于6小时的人数.
解:(2)50×24%=12,50-(5+22+12+3)=8,∴抽取的样本中,活动时间在2≤x <4的学生有8名,活动时间在6≤x <8的学生有12名.因此,可补全直方图如图.
(3)1 000×12+3
50
=300(人).
答:估计全校学生每周课外体育活动时间不少于6小时的人数约为300人.
5.(庆阳中考)现在的青少年由于沉迷电视、手机、网络游戏等,视力日渐减退,某市为了了解学生的视力变化情况,从全市九年级随机抽取了1 500名学生,统计了每个人连续三年视力检查的结果,根据视力在4.9以下的人数变化制成折线统计图,并对视力下降的主要因素进行调查,制成扇形统计图.
解答下列问题:
(1)图中D 所在扇形的圆心角度数为54°;
(2)若2016年全市共有30 000名九年级学生,请你估计视力在4.9以下的学生约有多少名? (3)根据扇形统计图信息,你觉得中学生应该如何保护视力? 解:(2)30 000×800
1 500
=16 000(名).
答:估计视力在4.9以下的学生约有16 000名.
(3)答案不唯一,如建议中学生应少看电视,少玩游戏,少看手机等,只要合理即可.
6.(杭州中考)某汽车厂去年每个季度汽车销售数量(辆)占当季汽车产量(辆)的百分比的统计图如图所示,根据统
计图回答下列问题:
(1)若第一季度的汽车销售数量为2 100辆,求该季度的汽车产量; (2)圆圆同学说:“因为第二、第三这两个季度汽车占当季汽车产量的百分比由75%降为50%,所以第二季度的汽车产量一定高于第三季度的汽车产量”,你觉得圆圆说得对吗?为什么?
解:(1)∵2 100÷70%=3 000(辆), ∴该季度的汽车产量为3 000辆.
(2)圆圆说得不对,因为每个季度的汽车产量不一定相等,而统计图中只是某汽车厂去年每个季度汽车销售数量(辆)占当季汽车产量(辆)的百分比,如二、三季度当季的汽车产量分别为4 000辆、10 000辆,可算出某汽车厂的这两季度汽车产量分别为3 000辆、5 000辆,这样虽然百分比减少了,但产量、销售量却都增加了.
7.(淮安中考)某公司为了了解员工对“六五”普法知识的知晓情况,从本公司随机选取40名员工进行普法知识考查,对考查成绩进行统计(成绩均为整数,满分100分),并依据统计数据绘制了如下尚不完整的统计图表.
组别 分数段/分 频数/人数
频率 1 50.5~60.5 2 a 2 60.5~70.5 6 0.15 3 70.5~80.5 b c 4 80.5~90.5 12 0.30 5 90.5~100.5
6 0.15 合计
40
1.00
解答下列问题:
(1)表中a =0.05,b =14,c =0.35; (2)请补全频数分布直方图;
(3)该公司共有员工3 000人,若考查成绩80分以上(不含80分)为优秀,试估计该公司员工“六五”普法知识知晓程度达到优秀的人数.
解:(2)补全频数分布直方图如图.
(3)12+640
×3 000=1 350(人)
或3 000×(0.30+0.15)=1 350(人).
答:估计该公司员工“六五”普法知识知晓程度达到优秀的人数约为1 350人.。