空间向量与平行关系
- 格式:pptx
- 大小:2.03 MB
- 文档页数:28
空间向量的垂直与平行解析几何的几何关系空间向量在解析几何中具有广泛的应用,它们可以描述物体在空间中的位置、方向和运动等属性。
在学习空间向量时,了解其垂直与平行的几何关系是非常重要的。
本文将通过几何解析的方式,深入探讨空间向量垂直与平行的性质及其应用。
一、垂直向量在空间中,当两个向量的数量积为零时,我们称这两个向量是垂直的。
数学上可以表达为:两个向量的数量积等于零,则它们垂直。
设有两个向量a和b,它们的坐标分别表示为(a1, a2, a3)和(b1, b2, b3),则向量a与向量b垂直的条件可以表示为:a1 * b1 + a2 * b2 + a3 * b3 = 0这个条件求解出的结果就是两个向量垂直的充要条件。
垂直向量在几何上有许多重要的应用。
例如在平面几何中,两条直线互相垂直,则它们的方向向量必然垂直;在立体几何中,两个平面互相垂直,其法向量也必然垂直。
因此,熟练掌握垂直向量的性质对于解析几何的应用非常重要。
二、平行向量在空间中,当两个向量之间存在倍数关系时,我们称这两个向量是平行的。
数学上可以表达为:两个向量之间存在倍数关系,则它们平行。
设有两个向量a和b,它们的坐标表示为(a1, a2, a3)和(b1, b2, b3),则向量a与向量b平行的条件可以表示为:a1/b1 = a2/b2 = a3/b3 = k (k为常数)其中k为两个向量平行的倍数关系。
平行向量的性质可以应用于线段、直线和平面的平行关系的判断。
例如,在平面几何中,两个直线互相平行,则它们的方向向量之间必然存在倍数关系;在立体几何中,平面与直线平行,则平面的法向量与直线的方向向量必然平行。
三、垂直与平行向量的应用举例1. 垂直向量的应用考虑一个示例问题:已知一条直线L的向量方程为(r - r1) · n = 0,其中r1为已知点,n为已知向量。
求直线L上与已知点A垂直的点B 的坐标。
解析:根据向量方程可以得知,L上的任意点P满足向量n与r - r1垂直的关系。
《空间向量与平行关系》教学目标:知识与技能:掌握线线平行,线面平行,面面平行的传统,基底,坐标方法.过程与方法:在简单例题中利用这三种方法,循序渐进,慢慢熟练掌握.情感与价值:通过对线,面平行,两种方法的比较.发现其中的数学规律,学会总结,慢慢理解加深对数学的认识.教育目标:数学课到底教什么?一教知识:传授人类在历史发展的过程中对各类事物观察、归纳、推演和论证过的共有的和特有的稳定属性,即事物在变化过程中保持的不变性。
如三角形(类),其内角和为180度(共有属性),而多边形的外角和为360度(更高层面的总结).二教方法和思想:引导学生重演知识的发生发展的过程,感受人类先哲们探索的艰辛,体会数学先驱们天才的思想,从而学会观察事物,提出问题并加以解决,让数学知识这“冰冷的美丽唤出火热的思考”。
三引导学生融会贯通:简化记忆,构建起自己的数学结构,即总结出自己解决问题的“中途点”,以期能站在前人的肩膀上思考和分析问题.教学难点:线,面平行传统方法的回顾处理办法:在学案进行复习巩固教学重点:用向量解决线,面平行问题处理办法:通过例题循序渐进教学设计一.(复习回顾)2.方向向量:在空间中直线的方向上用一个与该直线平行的非零向量来表示,该向量称为这条直线的一个方向向量.法向量:垂直于平面的向量(非零向量)向量垂直:0=⋅⇔⊥→→→→b a b a (两非零向量)“思考为什么要强调两非零向量”?二.新知引入:向量法1.设直线m l ,的方向向量分别为→→b a ,,平面βα,的法向量分别为→→v u ,,则:Rb a b a m l ∈=⇔⇔→→→→λλ,∥∥0=⋅⇔⊥⇔→→→→u a u a l α∥Rv u v u ∈=⇔⇔→→→→λλβα,∥∥1.线线平行①设直线n m ,的方向向量分别为→→b a ,,根据下列条件判断直线n m ,的位置关系:()2,1,2--=→a ()6,3,6--=→b ,()2,1,2--=→a ()2,1,2--=→b ,②已知→1e ,→2e 是空间任意两个非零向量,根据下列条件判断直线n m ,的位置关系:→→→-=2132e e a →→→+-=2132e e b →→→-=2132e e a →→→-=2164e e b 2.线面平行①设直线l 的方向向量为→a ,平面α的法向量为→u ,且直线l 不在平面α内.若0=⋅→→u a ,则()A.l α∥B.l ⊂αC.l ⊥αD.l ⊂α或l α∥②设直线l 的方向向量为→a ,平面α的法向量为→u ,若0=⋅→→u a ,则()A.l α∥B.l ⊂αC.l ⊥αD.l ⊂α或l α∥③设直线m 的方向向量为→a ,平面σ的法向量为,→u 直线m 不在平面α内.根据下列条件判断直线m 与平面σ的位置关系:()5,2,2-=→a ()4,46-=→,u ()5,2,2-=→a ()2,23-=→,u 3.面面平行①设平面βα,的法向量分别为→→v u ,,根据下列条件判断直线βα,的位置关系()2,2,1-=→u ()4,4,2--=→v ()6,6,3-=→u ()4,4,2--=→v ②设平面σ的法向量为(1,2,-2),平面β的法向量为(-1,-2,k ),若βα∥,则k =()A.2B.-4C.4D.-2在处理空间立体几何类题目的时候,可以考虑用这3种方法⎪⎩⎪⎨⎧⎩⎨⎧)坐标(空间直角坐标系基底向量法传统方法.2.1下面就从这个题目简单的体会一下三种方法处理问题的过程吧.例.已知正方体1111D C B A ABCD -棱长为2,F E ,分别是1BB 和1DD 的中点:求证:(1)AE FC ∥1(尝试上面总结的3种方法)(2)∥1FC 平面ADE(3)平面ADE ∥平面FB C 11方法一:(传统方法)证明:(1)过E 点作1CC 的垂线,与1CC 交于点O ,连接DO1111D C B A ABCD -是正方体则有=∥EO BC =∥AD ,即四边形AEOD 为平行四边形.∴DOAE ∥ E 分别是1BB 的中点,即O 为中点1CC 又因为F 为1DD 的中点,即FD =∥1OC ,即四边形1FDOC 为为平行四边形.∴DO FC ∥1,即AEFC ∥1(2)由(1)可知,AEFC ∥1则⇒⎪⎭⎪⎬⎫⊄⊂ADE FC ADE AE AEFC 平面平面∥11∥1FC 平面ADE(3)AD C B AD BC BC C B ∥∥∥1111⇒⎭⎬⎫,AED C B AED C B AED AD AD C B 平面∥平面平面∥111111⇒⎪⎭⎪⎬⎫⊄⊂由(2)可知∥1FC 平面ADE ,则AEDB FC AED C F AED C B C C B FC B FC C B B FC FC 平面∥平面平面∥平面∥平面平面1111111111111111⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫=⊂⊂1.已知正方体1111D C B A ABCD -棱长为2,F E ,分别是1BB 和1DD 的中点:求证:(1)AE FC ∥1(尝试上面总结的3种方法)(2)∥1FC 平面ADE(3)平面ADE ∥平面FB C 11(1)解:法2(用“基底”)法3(用“坐标”)由于(2),(3)用基底不便于处理问题,所以(2)(3)在此处采用“坐标法”(2)解:因为1111D C B A ABCD -是正方体,可以−→−DA ,−→−DC ,−→−1DD 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系Dxyz .(3)。
空间向量的平行与垂直关系解析在三维空间中,向量是常用来表示大小和方向的物理量。
当我们研究向量时,经常会遇到它们之间的平行与垂直关系。
本文将对空间向量的平行与垂直关系进行解析,并介绍相关的概念和性质。
一、向量的定义与表示在三维空间中,一个向量可以由它的起点和终点表示。
一个向量通常用字母加箭头来表示,如向量AB记作→AB。
向量的起点和终点可以是任意两个点,向量的长度可以用有向线段的长度来表示。
在直角坐标系中,一个三维向量可以表示为一个有序三元组(a, b, c),其中a、b、c是向量在x轴、y轴和z轴上的投影。
二、向量的平行关系1. 定义当两个非零向量的方向相同或相反时,这两个向量被称为平行向量。
简而言之,如果两个向量的方向相同或相反,则它们是平行的。
使用数学符号表示,则有向量→AB ∥向量→CD,或者写作向量→AB || 向量→CD。
2. 判断方法有几种方法可以判断两个向量是否平行,以下是两种常用方法:- 方法一:比较向量的方向比率。
如果两个向量的两个分量的比例相同,则这两个向量是平行的。
例如,向量A(1, 2, 3)与向量B(2, 4, 6)的三个分量的比例都是1:2:3,因此向量A与向量B是平行的。
- 方法二:比较向量的法向量。
如果两个向量的法向量是平行的,那么这两个向量是平行的。
法向量是指将向量的分量进行交换,并改变其中一个分量的符号得到的新向量。
例如,向量A(1, 2, 3)的法向量是向量(-3, 1, -2)。
如果向量A和向量B的法向量平行,那么向量A和向量B是平行的。
三、向量的垂直关系1. 定义当两个非零向量的夹角为直角(90度)时,这两个向量被称为垂直向量。
使用数学符号表示,则有向量→AB ⊥向量→CD,或者写作向量→AB⊥向量→CD。
2. 判断方法有几种方法可以判断两个向量是否垂直,以下是两种常用方法:- 方法一:通过向量的点乘运算。
如果两个向量的点乘结果为0,则这两个向量是垂直的。
空间向量平行结论空间向量平行结论是三维空间中向量方向判断的重要结论之一。
它的理解对于研究空间向量的相关问题具有重要的意义。
下面就对空间向量平行结论进行详细介绍。
1. 空间向量的定义在三维空间中,向量可以表示为有向线段或箭头,具有大小和方向。
向量的大小称为模或长度,用两个点表示一个向量,起点和终点。
三维空间中的向量有三个分量,分别代表向量在三个方向上的长度和方向。
向量的方向可以用角度表示,也可以用另一个向量表示,这就是空间向量的概念。
2. 空间向量的平行性空间向量的平行性是指两个向量的方向相同或相反。
当两个向量的方向相同时,它们是平行向量,记作a ∥ b;当两个向量的方向相反时,它们是反平行向量,记作a ║ b。
显然,对于平行向量,它们的模长可以相等,也可以不相等;对于反平行向量,它们的模长必须相等。
3. 空间向量平行结论空间向量平行结论是指,如果两个非零向量平行,则它们的每一个分量的比例相等。
即如果向量a和向量b平行,则a和b的每一个分量的比值相等,即有:a1/ b1 = a2/ b2 = a3 / b3其中a1、a2、a3分别代表向量a在x、y、z三个方向上的分量,b1、b2、b3分别代表向量b在x、y、z三个方向上的分量。
该结论的证明可通过向量内积的定义来实现。
根据向量内积的定义,向量a和向量b的内积为:a •b = |a| |b| cosθ其中,|a|和|b|分别表示向量a和向量b的模长,θ为向量a和向量b之间的夹角。
如果a ∥ b,则θ=0或180度,所以cosθ=1或-1。
如果cosθ=1,则有:a •b = |a| |b|即:a1 b1 + a2 b2 + a3 b3 = |a| |b|化简可得:a1/ b1 = a2/ b2 = a3 / b3这就是空间向量平行结论。
4. 空间向量平行的判断在实际计算过程中,有必要判断两个向量是否平行。
常用的判断方法有三种:(1)利用向量的模长进行判断。
空间两个向量平行的公式在空间中,两个向量平行的公式可以通过向量的内积来表示。
内积是向量运算中的一种操作,可以将两个向量的长度和夹角信息结合起来。
当两个向量的内积等于零时,它们是垂直的,而当内积不等于零时,它们是平行的。
设有两个向量a和b,它们的内积可以表示为a·b。
如果a·b=0,则a和b垂直;如果a·b≠0,则a和b平行。
要证明两个向量平行,可以使用向量的坐标表示。
假设a=(a1,a2,a3)和b=(b1,b2,b3)是两个空间向量。
那么它们的内积可以表示为:a·b=a1b1+a2b2+a3b3当a·b=0时,上述等式可以转化为以下形式:a1b1+a2b2+a3b3=0这就是两个空间向量平行的公式。
当满足上述等式时,可以推断出两个向量a和b是平行的。
这个公式可以应用于任意维度的空间向量。
接下来,让我们来看一些应用例子。
例1:判断两个向量是否平行考虑向量a=(1,-2,3)和b=(2,-4,6)。
我们可以计算它们的内积:a·b=1*2+(-2)*(-4)+3*6=2+8+18=28由于a·b≠0,我们可以得出结论:向量a和b是平行的。
例2:计算两个向量的夹角考虑向量a=(1,-2,3)和b=(2,-1,1)。
为了计算它们的夹角,我们需要先计算它们的内积和它们的长度。
a·b=1*2+(-2)*(-1)+3*1=2+2+3=7a,=√(1^2+(-2)^2+3^2)=√(1+4+9)=√14b,=√(2^2+(-1)^2+1^2)=√(4+1+1)=√6通过内积和长度的计算,我们可以得到两个向量的夹角的余弦值:cosθ = (a·b) / (,a, * ,b,) = 7 / (√14 * √6)现在,我们可以使用反余弦函数来计算夹角的大小θ:θ = arccos(cosθ)因此,我们可以得到两个向量a和b之间的夹角。
§3.2立体几何中的向量方法(一)——空间向量与平行关系课时目标 1.理解直线的方向向量与平面的法向量,并能运用它们证明平行问题.2.能用向量语言表述线线,线面,面面的平行关系.1.直线的方向向量直线的方向向量是指和这条直线________或______的向量,一条直线的方向向量有________个.2.平面的法向量直线l⊥α,取直线l的____________a,则向量a叫做平面α的__________.3.空间中平行关系的向量表示(1)线线平行设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2),且a2b2c2≠0,则l∥m⇔______________⇔__________⇔________________________.(2)线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔________⇔__________⇔________________________.(3)面面平行设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔__________⇔__________⇔________________________.一、选择题1.若n=(2,-3,1)是平面α的一个法向量,则下列向量能作为平面α的一个法向量的是()A.(0,-3,1) B.(2,0,1)C.(-2,-3,1) D.(-2,3,-1)2.若A(-1,0,1),B(1,4,7)在直线l上,则直线l的一个方向向量为()A.(1,2,3) B.(1,3,2)C.(2,1,3) D.(3,2,1)3.已知平面α上的两个向量a=(2,3,1),b=(5,6,4),则平面α的一个法向量为() A.(1,-1,1) B.(2,-1,1)C.(-2,1,1) D.(-1,1,-1)4.从点A(2,-1,7)沿向量a=(8,9,-12)的方向取线段长AB=34,则B点的坐标为() A.(-9,-7,7) B.(18,17,-17)C.(9,7,-7) D.(-14,-19,31)5.在正方体ABCD—A1B1C1D1中,棱长为a,M、N分别为A1B、AC的中点,则MN与平面BB1C1C的位置关系是()A.相交B.平行C.垂直D.不能确定6.已知线段AB的两端点的坐标为A(9,-3,4),B(9,2,1),则与线段AB平行的坐标平面是()A .xOyB .xOzC .yOzD .xOy 或yOz二、填空题7.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的单位法向量坐标为________________________.8.已知直线l 的方向向量为(2,m,1),平面α的法向量为⎝⎛⎭⎫1,12,2,且l ∥α,则m =________. 9.如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 、P 、Q 分别为棱AB 、CD 、BC 的中点,若平行六面体的各棱长均相等,则 ①A 1M ∥D 1P ; ②A 1M ∥B 1Q ;③A 1M ∥面DCC 1D 1; ④A 1M ∥面D 1PQB 1.以上结论中正确的是________.(填写正确的序号) 三、解答题10.已知平面α经过三点A (1,2,3),B (2,0,-1),C (3,-2,0),试求平面α的一个法向量. 11.如图所示,在空间图形P —ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,CD ∥AB ,∠ABC =∠BCD =90°,AB =4,CD =1,点M 在PB 上,且PB =4PM ,∠PBC =30°,求证:CM ∥平面P AD .【能力提升】12.在正方体ABCD—A1B1C1D1中,O是B1D1的中点,求证:B1C∥平面ODC1.13.如图,在底面是菱形的四棱锥P—ABCD中,∠ABC=60°,P A⊥平面ABCD,P A=AC =a,点E在PD上,且PE∶ED=2∶1.在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.平行关系的常用证法(1)证明线线平行只需要证明表示两条直线的向量满足实数倍数关系,如证明AB ∥CD只需证AB →=λCD →.证明线面平行可转化为证直线的方向向量和平面的法向量垂直,然后说明直线在平面外.证面面平行可转化证两面的法向量平行.(2)证明线面平行问题或面面平行问题时也可利用立体几何中的定理转化为线线平行问题,再利用向量进行证明.§3.2 立体几何中的向量方法(一)——空间向量与平行关系知识梳理1.平行 重合 无数 2.方向向量 法向量3.(1)a ∥b a =λb a 1a 2=b 1b 2=c 1c 2(a 2b 2c 2≠0)(2)a ⊥u a·u =0 a 1a 2+b 1b 2+c 1c 2=0(3)u ∥v u =k v a 1a 2=b 1b 2=c 1c 2(a 2b 2c 2≠0)作业设计1.D [只要是与向量n 共线且非零的向量都可以作为平面α的法向量.故选D.]2.A [∵AB →=(2,4,6),而与AB →共线的非零向量都可以作为直线l 的方向向量,故选A.]3.C [显然a 与b 不平行,设平面α的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧a·n =0,b·n =0, ∴⎩⎪⎨⎪⎧2x +3y +z =0,5x +6y +4z =0. 令z =1,得x =-2,y =1,∴n =(-2,1,1).]4.B [设B (x ,y ,z ),AB →=(x -2,y +1,z -7) =λ(8,9,-12),λ>0.故x -2=8λ,y +1=9λ,z -7=-12λ, 又(x -2)2+(y +1)2+(z -7)2=342, 得(17λ)2=342,∵λ>0,∴λ=2.∴x =18,y =17,z =-17,即B (18,17,-17).]5.B [可以建立空间直角坐标系,通过平面的法向量AB →和MN →的关系判断.]6.C [AB →=(0,5,-3),AB 与平面yOz 平行.]7.⎝⎛⎭⎫33,33,33或⎝⎛⎭⎫-33,-33,-338.-8解析 ∵l ∥α,∴l 的方向向量与α的法向量垂直.∴(2,m,1)·⎝⎛⎭⎫1,12,2=2+12m +2=0,∴m =-8. 9.①③④解析 ∵A 1M →=AM →-AA 1→=D P →-DD 1→=D 1P →, ∴A 1M ∥D 1P .∵D 1P ⊂面D 1PQB 1,∴A 1M ∥面D 1PQB 1. 又D 1P ⊂面DCC 1D 1,∴A 1M ∥面DCC 1D 1. ∵B 1Q 为平面DCC 1D 1的斜线,∴B 1Q 与D 1P 不平行,∴A 1M 与B 1Q 不平行. 10.解 ∵A (1,2,3),B (2,0,-1),C (3,-2,0),∴AB →=(1,-2,-4),AC →=(2,-4,-3), 设平面α的法向量为n =(x ,y ,z ).依题意,应有n ·AB →=0,n ·AC →=0. 即⎩⎪⎨⎪⎧ x -2y -4z =02x -4y -3z =0,解得⎩⎪⎨⎪⎧x =2y z =0. 令y =1,则x =2.∴平面α的一个法向量为n =(2,1,0).11.证明 建立如图所示的空间直角坐标系Cxyz . 方法一 ∵∠PBC =30°,PC =2, ∴BC =23,PB =4.于是D (1,0,0),C (0,0,0),A (4,23,0),P (0,0,2). ∵PB =4PM ,∴PM =1,M ⎝⎛⎭⎫0,32,32.∴CM →=⎝⎛⎭⎫0,32,32,DP →=(-1,0,2),DA →=(3,23,0).设CM →=x DP →+y DA →,其中x ,y ∈R .则⎝⎛⎭⎫0,32,32=x (-1,0,2)+y (3,23,0).∴⎩⎨⎧-x +3y =023y =322x =32,解得x =34,y =14.∴CM →=34DP →+14DA →,∴CM →,DP →,DA →共面.∵CM ⊄平面P AD ,∴CM ∥平面P AD .方法二 由方法一可得CM →=⎝⎛⎭⎫0,32,32,DP →=(-1,0,2),DA →=(3,23,0).设平面P AD的法向量为n =(x ,y ,z ),则有,即⎩⎨⎧-x +2z =03x +23y =0.令x =1,解得z =12,y =-32.故n =⎝⎛⎭⎫1,-32,12.又∵CM →·n =⎝⎛⎭⎫0,32,32·⎝⎛⎭⎫1,-32,12=0.∴CM →⊥n ,又CM ⊄平面P AD . ∴CM ∥平面P AD .12.证明 方法一 ∵B 1C →=A 1D →,B 1∉A 1D , ∴B 1C ∥A 1D ,又A 1D ⊂平面ODC 1,∴B 1C ∥平面ODC 1.方法二 ∵B 1C →=B 1C 1→+B 1B →=B 1O →+OC 1→+D 1O →+OD →=OC 1→+OD →. ∴B 1C →,OC 1→,OD →共面.又B 1C ⊄平面ODC 1,∴B 1C ∥平面ODC 1. 方法三建系如图,设正方体的棱长为1,则可得 B 1(1,1,1),C (0,1,0), O ⎝⎛⎭⎫12,12,1,C 1(0,1,1), B 1C →=(-1,0,-1),OD →=⎝⎛⎭⎫-12,-12,-1,OC 1→=⎝⎛⎭⎫-12,12,0. 设平面ODC 1的法向量为n =(x 0,y 0,z 0),则得⎩⎨⎧-12x 0-12y 0-z 0=0, ①-12x 0+12y 0=0, ②令x 0=1,得y 0=1,z 0=-1,∴n =(1,1,-1). 又B 1C →·n =-1×1+0×1+(-1)×(-1)=0, ∴B 1C →⊥n ,且B 1C ⊄平面ODC 1, ∴B 1C ∥平面ODC 1.13.解 方法一 当F 是棱PC 的中点时,BF ∥平面AEC . ∵BF →=BC →+12CP →=AD →+12(CD →+DP →)=AD →+12(AD →-AC →)+32(AE →-AD →)=32AE →-12AC →. ∴BF →、AE →、AC →共面. 又BF ⊄平面AEC , ∴BF ∥平面AEC . 方法二如图,以A 为坐标原点,直线AD 、AP 分别为y 轴、z 轴,过A 点垂直于平面P AD 的直线为x 轴,建立空间直角坐标系.由题意,知相关各点的坐标分别为A (0,0,0),B ⎝⎛⎭⎫32a ,-12a ,0,C ⎝⎛⎭⎫32a ,12a ,0,D (0,a,0),P (0,0,a ),E ⎝⎛⎭⎫0,23a ,13a . 所以AE →=⎝⎛⎭⎫0,23a ,13a ,AC →=⎝⎛⎭⎫32a ,12a ,0, AP →=(0,0,a ),PC →=⎝⎛⎭⎫32a ,12a ,-a ,BP →=⎝⎛⎭⎫-32a ,12a ,a .设点F 是棱PC 上的点,PF →=λPC →=⎝⎛⎭⎫32aλ,12aλ,-aλ,其中0<λ<1, 则BF →=BP →+PF →=⎝⎛⎭⎫32aλ-1 ,12a 1+λ,a 1-λ,令BF →=λ1AC →+λ2AE →即⎩⎪⎨⎪⎧λ-1=λ1,1+λ=λ1+43λ2,1-λ=13λ2.解得λ=12,λ1=-12,λ2=32,即λ=12时,BF →=-12AC →+32AE →,即F 是PC 的中点时,BF →、AC →、AE →共面.又BF ⊄平面AEC ,所以当F 是棱PC 的中点时,BF∥平面AEC.。