二元一次方程教案
- 格式:doc
- 大小:173.50 KB
- 文档页数:7
二元一次方程教案二元一次方程教案(精选8篇)作为一名为他人授业解惑的教育工作者,总不可避免地需要编写教案,教案有助于学生理解并掌握系统的知识。
怎样写教案才更能起到其作用呢?下面是店铺为大家整理的二元一次方程教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
二元一次方程教案篇1一、教学目标:1.理解二元一次方程及二元一次方程的解的概念;2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育二、教学重点、难点:重点:二元一次方程的意义及二元一次方程的解的概念难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程三、教学方法与教学手段:通过与一元一次方程的比较,加强学生的类比的思想方法;通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点四、教学过程:1.情景导入:新闻链接:桐乡70岁以上老人可领取生活补助,得到方程:80a+150b=902 880。
2.新课教学:引导学生观察方程80a+150b=902 880与一元一次方程有异同?得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程做一做:1.根据题意列出方程:①小明去看望奶奶,买了5 kg苹果和3 kg梨共花去23元,分别求苹果和梨的单价,设苹果的单价x元/kg ,梨的单价y元/kg;②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程:(2)课本P80练习2.判定哪些式子是二元一次方程方程。
合作学习:活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动。
问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人,团支书拟安排8个劳动组,2个文艺,单从人数上考虑,此方案是否可行?为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等?由学生检验得出代入方程后,能使方程两边相等,得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解。
二元一次方程教案教学目标:1. 理解二元一次方程的定义和性质。
2. 掌握解二元一次方程的方法。
3. 能够应用二元一次方程解决生活中的实际问题。
教学重点:1. 解二元一次方程。
2. 运用解二元一次方程解决实际问题。
教学难点:运用解二元一次方程解决实际问题。
教学准备:1. 教师准备演示材料,包括黑板或白板、彩色粉笔或白板笔。
2. 学生准备纸和笔。
教学过程:Step 1:引入讨论教师可以通过提问的方式引导学生思考:什么是二元一次方程?有什么特点?我们能够应用它解决哪些问题?Step 2:解二元一次方程1. 观察和分析给定的二元一次方程。
2. 使用“消元法”或“代入法”解决方程,得到解集。
3. 检验解集是否满足原方程。
Step 3:应用解二元一次方程解决实际问题教师出示或讲解一些实际生活中涉及到二元一次方程的问题,如两个人的年龄、两个商品的价格等等。
学生可以运用所学的解二元一次方程的方法解决这些问题。
Step 4:巩固练习教师布置一些练习题,让学生独立或小组完成,并核对答案。
可以将解题过程和答案展示在黑板或白板上,便于学生理解和学习。
Step 5:总结与评价教师与学生一起总结解二元一次方程的要点和方法,并对学生的学习进行评价和反馈。
Step 6:拓展延伸教师可以提供更多的实际问题,让学生运用解二元一次方程的方法解决,进一步巩固和应用所学知识。
教学结束提示:为了让学生更好地理解和应用解二元一次方程的方法,教师可以设计一些实际例题,让学生进行解答和思考。
同时,鼓励学生多加练习,提高解问题的能力。
七年级数学二元一次方程组解法教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!七年级数学二元一次方程组解法教案(优秀6篇)《二元一次方程与一次函数》教学设计这次漂亮的本店铺为亲带来了6篇《七年级数学二元一次方程组解法教案》,希望能够满足亲的需求。
二元一次方程大班教案教学目标:1. 理解二元一次方程的概念和表示方法;2. 学会解二元一次方程;3. 能够应用解二元一次方程解决实际问题。
教学准备:1. 教师准备PPT或者黑板,用于呈现教学内容;2. 教师准备练习题,用于学生课堂练习。
教学过程:一、导入(5分钟)1. 教师通过提问的方式,复习一元一次方程的知识点,引导学生回忆并巩固已学内容;2. 教师介绍二元一次方程的概念,并与一元一次方程进行对比,激发学生的学习兴趣。
二、概念解释与示例(10分钟)1. 教师以具体的例子说明二元一次方程的表示方法,例如:2x + 3y = 8;2. 教师解释方程中的未知数、系数及常数项的意义;3. 教师给出几个实际问题,引导学生将问题转化为二元一次方程,并解释方程的含义。
三、解二元一次方程的方法(15分钟)1. 教师介绍两种解二元一次方程的方法:代入法和消元法;2. 教师以示例详细讲解代入法和消元法的步骤和注意事项;3. 教师鼓励学生多思考、多练习,熟练掌握解二元一次方程的方法。
四、课堂练习(15分钟)1. 教师出示多个二元一次方程的实际问题,让学生运用所学知识解题;2. 学生独立完成练习题,教师巡视并指导学生的解题思路;3. 教师选取几道典型题目,与学生一起讨论解题过程。
五、实际应用(10分钟)1. 教师以实际生活中的应用问题,如购买文具、购买食物等,引导学生运用所学知识解决问题;2. 学生积极参与,提出解题思路和答案,教师引导学生深入思考并给予认可。
六、拓展延伸(10分钟)1. 教师介绍更高级的二元一次方程,如含参数的二元一次方程等;2. 学生思考高级问题,并与同学一起合作解决;3. 教师提供实际生活中更复杂的二元一次方程问题,并鼓励学生尝试解决。
七、总结归纳(5分钟)1. 教师带领学生总结本节课学到的知识要点,并进行复习;2. 学生积极回答教师提问,巩固所学内容;3. 教师对学生的学习表现给予肯定和鼓励。
二元一次方程组教案3 篇一、学习内容分析:执教者钱嘉颖时间XXXX年6月12日1、选自初一年级(下)数学学科第八章(第一单元)第一节(课)(1课时45分钟)2、教材内容简要分析教材以引言中的一个实际例子,“一班和二班进行篮球比赛,总共打了22场。
每胜一场得2分,每负一场得1分,已知比赛结束一班累计得了40分,思考:一班胜了多少场,负了多少场”来开展这次课程。
以本例来首先回忆已学过的一元一次方程的知识内容,以此作为切入点,引导学生思考用两个未知数来表示方程,借此进入二元一次方程的介绍。
之后,引导学生利用一元一次方程的解法特点来思考二元一次方程组的解答方法,本次课程内容主要介绍了代入解答法(也称消元法)的详细解答过程,以及二元一次方程组的实际运用及解答,让学习者更好的吸收及掌握二元一次方程组和二元一次方程组的消元法。
另外,在本单元结束介绍了作为课外知识的“二元一次方程古代表示方法”。
3、学习内容分析表:知识点重点难点编号内容1二元一次方程组定义及特点二元一次方程组的两个特点二元一次方程组成立的条件(未知数要同时满足两个条件)2二元一次方程组代入消元法代入消元法的具体解法消元法与一元一次方程解法间的联系3二元一次方程组实际运用以实际例题列出方程并解答未知数的假设以及运用已知条件列出正确方程。
二、学习者分析:本次教学的对象是云南省某中学的初中一年级学生,平均年龄12岁。
初一年级是学生由幼稚的童年向青年转化和个性逐渐成型的重要转折点,初一年级学生具有其特殊性。
初一年级学生由于刚刚接触完全不同于小学的学习生活而有手足无措的情况。
而在这个时期的学生生理和心理飞速发展变化,自我意识开始强烈,有了自己的兴趣,独立性增强,感情趋于丰富复杂化,有一定独立思考的能力、一定程度的抽象思维能力和逻辑思维能力,处于识记能力最强的时期。
此时,进行的教育可以更加重视独立思考,在数学教学中更加重视引导教学,致使学习者能够更加深刻的理解所学知识,达到教学目标。
公式法解二元一次方程教案六篇教案一:用公式法解简单的二元一次方程一、教学目标1、理解并掌握二元一次方程的求根公式。
2、能够熟练运用公式法解二元一次方程。
二、教学重难点1、重点(1)求根公式的推导过程。
(2)运用求根公式解二元一次方程。
2、难点求根公式的推导。
三、教学方法讲授法、练习法四、教学过程1、复习导入(1)回顾一元二次方程的一般形式:$ax^2 + bx + c =0$($a≠0$)。
(2)提问一元二次方程的配方法。
2、公式推导(1)将一元二次方程$ax^2 + bx + c = 0$($a≠0$)进行配方:\\begin{align}ax^2 + bx + c &= 0\\ax^2 + bx &= c\\x^2 +\frac{b}{a}x &=\frac{c}{a}\\x^2 +\frac{b}{a}x +(\frac{b}{2a})^2 &=(\frac{b}{2a})^2 \frac{c}{a}\\(x +\frac{b}{2a})^2 &=\frac{b^2 4ac}{4a^2}\end{align}\(2)当$b^2 4ac≥0$时,开方得到求根公式:$x =\frac{b ±\sqrt{b^2 4ac}}{2a}$3、公式讲解(1)强调公式中$a$、$b$、$c$的含义。
(2)说明判别式$b^2 4ac$的作用:判断方程根的情况。
4、例题讲解例 1:用公式法解方程$x^2 4x 5 = 0$(1)分析:$a = 1$,$b =-4$,$c =-5$(2)计算判别式:$b^2 4ac =(-4)^2 4×1×(-5) = 36 > 0$,方程有两个不相等的实数根。
(3)代入求根公式:$x =\frac{4 ±\sqrt{36}}{2×1} =\frac{4 ± 6}{2}$,解得$x_1 = 5$,$x_2 =-1$5、课堂练习让学生练习用公式法解下列方程:(1)$x^2 + 2x 3 = 0$(2)$2x^2 5x + 1 = 0$6、课堂小结(1)总结公式法解二元一次方程的步骤。
8.1二元一次方程组一、学习内容:教材课题 二元一次方程组二、学习目标:1、认识二元一次方程和二元一次方程组;2、了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.三、自学探究1、例题:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?思考:这个问题中包含了哪些必须同时满足的条件?设胜的场数是x ,负的场数是y ,你能用方程把这些条件表示出来吗? 由问题知道,题中包含两个必须同时满足的条件: 胜的场数+负的场数=总场数, 胜场积分+负场积分=总积分.这两个条件可以用方程 , 表示.观察上面两个方程可看出,每个方程都含有 未知数(x 和y ),并且未知数的 都是1,像这样的方程叫做二元一次方程. (P 93)把两个方程合在一起,写成x +y =22 ①2x +y =40 ②像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组. (P 94) 2、探究讨论:8.1满足方程①,且符合问题的实际意义的x 、y 的值有哪些?把它们填入表中.一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.思考:上表中哪对x 、y 的值还满足方程② x=18 y=4既满足方程①,又满足方程②,也就是说它们是方程①与方程②的公共解。
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 四、自我检测1、 教材P94 练习2、已知方程:①2x+1y=3;②5xy-1=0;③x 2+y=2;④3x-y+z=0;⑤2x-y=3;⑥x+3=5,•其中是二元一次方程的有___ ___.(填序号即可)3、下列各对数值中是二元一次方程x +2y=2的解是( )A⎩⎨⎧==02y x B ⎩⎨⎧=-=22y x C ⎩⎨⎧==10y x D ⎩⎨⎧=-=01y x 变式:其中是二元一次方程组⎩⎨⎧-=+=+2222y x y x 解是( )五、学习小结:本节课学习了哪些内容?你有哪些收获?(什么叫二元一次方程?什么叫二元一次方程组?什么叫二元一次方程组的解?) 六、反馈检测1、方程(a +2)x +(b -1)y = 3是二元一次方程,试求a 、 b 的取值范围.2、若方程752312=+--n m y x 是二元一次方程.求m 、n 的值3、 已知下列三对值:x =-6 x =10 x =10 y =-9 y =-6 y =-1 (1) 哪几对数值使方程21x -y =6的左、右两边的值相等?(2) 哪几对数值是方程组 的解?4、 求二元一次方程3x +2y =19的正整数解.21x -y =6 2x +31y =-118.2 消元----二元一次方程组的解法(一)一、学习内容:教材课题 P96-97 消元----二元一次方程组的解法 二、学习目标:1.会用代入法解二元一次方程组.2.初步体会解二元一次方程组的基本思想――“消元”. 3.通过研究解决问题的方法,培养合作交流意识与探究精神三、自学探究1、复习提问:篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?如果只设一个末知数:胜x 场,负(22-x)场,列方程为: ,解得x= .在上节课中,我们可以设出两个未知数,列出二元一次方程组,设胜的场数是x ,负的场数是y , x +y =22 2x +y =40 那么怎样求解二元一次方程组呢?2、思考:上面的二元一次方程组和一元一次方程有什么关系?可以发现,二元一次方程组中第1个方程x +y =22写成y =22-x ,将第2个方程2x +y =40的y 换为22-x ,这个方程就化为一元一次方程40)22(2=-+x x .二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数.这种将未知数的个数由多化少、逐一解决的想法,叫做消元思想.3、归纳:上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.例1 用代入法解方程组 x -y =3 ① 3x -8y =14 ② 解后反思:(1)选择哪个方程代人另一方程?其目的是什么? (2)为什么能代?(3)只求出一个未知数的值,方程组解完了吗?(4)把已求出的未知数的值,代入哪个方程来求另一个未知数的值较简便? (5)怎样知道你运算的结果是否正确呢?(与解一元一次方程一样,需检验.其方法是将求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是否相等.检验可以口算,也可以在草稿纸上验算) 四、自我检测教材P98练习 1、2 五、学习小结用代入消元法解二元一次方程组的步骤:(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来. (2)把(1)中所得的方程代入另一个方程,消去一个未知数. (3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解. 六、反馈检测1.已知x =2,y =2是方程ax -2y =4的解,则a =________.2.已知方程x -2y =8,用含x 的式子表示y ,则y =_________________,用含y 的式子表示x ,则x =________________3.解方程组21,328y x x y =-⎧⎨-=⎩把①代入②可得_______4.若x 、y 互为相反数,且x +3y =4,,3x -2y =_____________. 5.解方程组 y =3x -1 6 . 4x -y =52x +4y =24 3(x -1)=2y -37.已知12-==y x 是方程组54+=-=+a by x by ax 的解.求a 、b 的值.8.2 消元----二元一次方程组的解法(二)一、学习内容:教材课题 P97-98二、学习目标:1、熟练地掌握用代人法解二元一次方程组;2、进一步理解代人消元法所体现出的化归意识;3、体会方程是刻画现实世界的有效数学模型.三、自学探究:1、复习旧知:解方程组25437x y x y +=⎧⎨+=⎩,;2、结合你的解答,回顾用代人消元法解方程组的一般步骤3、探究思考例:根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250 g)两种产品的销售数量比(按瓶计算)为2:5.某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶?解:设这些消毒液应分装x 大瓶和y 小瓶,则(列出方程组为):思考讨论:问题1:此方程与我们前面遇到的二元一次方程组有什么区别? 问题2:能用代入法来解吗?问题3:选择哪个方程进行变形?消去哪个未知数? 写出解方程组过程:质疑:解这个方程组时,可以先消去X 吗?试一试。
【导语】教案是教师为顺利⽽有效地开展教学活动,根据课程标准,教学⼤纲和教科书要求及学⽣的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学⽅法等进⾏的具体设计和安排的⼀种实⽤性教学⽂书。
©⽆忧考⽹准备了以下内容,供⼤家参考!篇⼀:应⽤⼆元⼀次⽅程组——鸡兔同笼 教学⽬标: 知识与技能⽬标: 通过对实际问题的分析,使学⽣进⼀步体会⽅程组是刻画现实世界的有效数学模型,初步掌握列⼆元⼀次⽅程组解应⽤题.初步体会解⼆元⼀次⽅程组的基本思想“消元”。
培养学⽣列⽅程组解决实际问题的意识,增强学⽣的数学应⽤能⼒。
过程与⽅法⽬标: 经历和体验列⽅程组解决实际问题的过程,进⼀步体会⽅程(组)是刻画现实世界的有效数学模型。
情感态度与价值观⽬标: 1.进⼀步丰富学⽣数学学习的成功体验,激发学⽣对数学学习的好奇⼼,进⼀步形成积极参与数学活动、主动与他⼈合作交流的意识. 2.通过"鸡兔同笼",把同学们带⼊古代的数学问题情景,学⽣体会到数学中的"趣";进⼀步强调课堂与⽣活的联系,突出显⽰数学教学的实际价值,培养学⽣的⼈⽂精神。
重点: 经历和体验列⽅程组解决实际问题的过程;增强学⽣的数学应⽤能⼒。
难点: 确⽴等量关系,列出正确的⼆元⼀次⽅程组。
教学流程: 课前回顾 复习:列⼀元⼀次⽅程解应⽤题的⼀般步骤 情境引⼊ 探究1:今有鸡兔同笼, 上有三⼗五头, 下有九⼗四⾜, 问鸡兔各⼏何? “雉兔同笼”题:今有雉(鸡)兔同笼,上有35头,下有94⾜,问雉兔各⼏何? (1)画图法 ⽤表⽰头,先画35个头 将所有头都看作鸡的,⽤表⽰腿,画出了70只腿 还剩24只腿,在每个头上在加两只腿,共12个头加了两只腿 四条腿的是兔⼦(12只),两条腿的是鸡(23只) (2)⼀元⼀次⽅程法: 鸡头+兔头=35 鸡脚+兔脚=94 设鸡有x只,则兔有(35-x)只,据题意得: 2x+4(35-x)=94 ⽐算术法容易理解 想⼀想:那我们能不能⽤更简单的⽅法来解决这些问题呢? 回顾上节课学习过的⼆元⼀次⽅程,能不能解决这⼀问题? (3)⼆元⼀次⽅程法 今有鸡兔同笼,上有三⼗五头,下有九⼗四⾜,问鸡兔各⼏何? (1)上有三⼗五头的意思是鸡、兔共有头35个, 下有九⼗四⾜的意思是鸡、兔共有脚94只. (2)如设鸡有x只,兔有y只,那么鸡兔共有(x+y)只; 鸡⾜有2x只;兔⾜有4y只. 解:设笼中有鸡x只,有兔y只,由题意可得: 鸡兔合计头xy35⾜2x4y94 解此⽅程组得: 练习1: 1.设甲数为x,⼄数为y,则“甲数的⼆倍与⼄数的⼀半的和是15”,列出⽅程为_2x+05y=15 2.⼩刚有5⾓硬币和1元硬币各若⼲枚,币值共有六元五⾓,设5⾓有x枚,1元有y枚,列出⽅程为05x+y=65. 三、合作探究 探究2:以绳测井。
初二数学二元一次方程教案理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.一起看看初二数学二元一次方程教案!欢迎查阅!初二数学二元一次方程教案1一.复习引入1.前面我们学习过解一元二次方程的〝直接开平方法〞,比如,方程(1)_2=4 (2)(_-2)2=7提问1 这种解法的(理论)依据是什么?提问2 这种解法的局限性是什么?(只对那种〝平方式等于非负数〞的特殊二次方程有效,不能实施于一般形式的二次方程.)2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够〝直接开平方〞的形式.)(学生活动)用配方法解方程 2_2+3=7_(老师点评)略总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(_+p)2=q的形式,如果q≥0,方程的根是_=-p±q;如果q 0,方程无实根.二.探索新知用配方法解方程:(1)a_2-7_+3=0 (2)a_2+b_+3=0如果这个一元二次方程是一般形式a_2+b_+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知a_2+b_+c=0(a≠0),试推导它的两个根_1=-b+b2-4ac2a,_2=-b-b2-4ac2a(这个方程一定有解吗?什么情况下有解?)分析:因为前面具体数字已做得很多,我们现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:a_2+b_=-c二次项系数化为1,得_2+ba_=-ca配方,得:_2+ba_+(b2a)2=-ca+(b2a)2即(_+b2a)2=b2-4ac4a2∵4a2 0,当b2-4ac≥0时,b2-4ac4a2≥0∴(_+b2a)2=(b2-4ac2a)2直接开平方,得:_+b2a=±b2-4ac2a即_=-b±b2-4ac2a∴_1=-b+b2-4ac2a,_2=-b-b2-4ac2a由上可知,一元二次方程a_2+b_+c=0(a≠0)的根由方程的系数a,b,c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式a_2+b_+c=0,当b2-4ac≥0时,将a,b,c代入式子_=-b±b2-4ac2a就得到方程的根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根.例1 用公式法解下列方程:(1)2_2-_-1=0 (2)_2+1.5=-3_(3)_2-2_+_=0 (4)4_2-3_+2=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.补:(5)(_-2)(3_-5)=0三.巩固练习教材第_页练习1.(1)(3)(5)或(2)(4)(6).四.课堂小结本节课应掌握:(1)求根公式的概念及其推导过程;(2)公式法的概念;(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a 2)找出系数a,b,c,注意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.(4)初步了解一元二次方程根的情况.五.作业布置教材第_页习题4初二数学二元一次方程教案2通过复习用配方法.公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.重点用因式分解法解一元二次方程.难点让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.一.复习引入(学生活动)解下列方程:(1)2_2+_=0(用配方法) (2)3_2+6_=0(用公式法)老师点评:(1)配方法将方程两边同除以2后,_前面的系数应为_,_的一半应为_,因此,应加上(_)2,同时减去(_)2.(2)直接用公式求解.二.探索新知(学生活动)请同学们口答下面各题.(老师提问)(1)上面两个方程中有没有常数项?(2)等式左边的各项有没有共同因式?(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解.因此,上面两个方程都可以写成:(1)_(2_+1)=0 (2)3_(_+2)=0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)_=0或2_+1=0,所以_1=0,_2=-_.(2)3_=0或_+2=0,所以_1=0,_2=-2.(以上解法是如何实现降次的?)因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.例1 解方程:(1)10_-4.9_2=0 (2)_(_-2)+_-2=0 (3)5_2-2_-_=_2-2_+34 (4)(_-1)2=(3-2_)2思考:使用因式分解法解一元二次方程的条件是什么?解:略 (方程一边为0,另一边可分解为两个一次因式乘积.)练习:下面一元二次方程解法中,正确的是( )A.(_-3)(_-5)=10_2,∴_-3=10,_-5=2,∴_1=_,_2=7B.(2-5_)+(5_-2)2=0,∴(5_-2)(5_-3)=0,∴_1=25,_2=35C.(_+2)2+4_=0,∴_1=2,_2=-2D._2=_,两边同除以_,得_=1三.巩固练习教材第_页练习1,2.四.课堂小结本节课要掌握:(1)用因式分解法,即用提取公因式法.十字相乘法等解一元二次方程及其应用.(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.五.作业布置教材第_页习题6,8,10,_初二数学二元一次方程教案31.掌握一元二次方程的根与系数的关系并会初步应用.2.培养学生分析.观察.归纳的能力和推理论证的能力.3.渗透由特殊到一般,再由一般到特殊的认识事物的规律.4.培养学生去发现规律的积极性及勇于探索的精神.重点根与系数的关系及其推导难点正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和.两根的积与系数的关系.一.复习引入1.已知方程_2-a_-3a=0的一个根是6,则求a及另一个根的值.2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?3.由求根公式可知,一元二次方程a_2+b_+c=0(a≠0)的两根为_1=-b+b2-4ac2a,_2=-b-b2-4ac2a.观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac.两根之间通过什么计算才能得到更简洁的关系?二.探索新知解下列方程,并填写表格:方程 _1 _2 _1+_2 _1?_2_2-2_=0_2+3_-4=0_2-5_+6=0观察上面的表格,你能得到什么结论?(1)关于_的方程_2+p_+q=0(p,q为常数,p2-4q≥0)的两根_1,_2与系数p,q之间有什么关系?(2)关于_的方程a_2+b_+c=0(a≠0)的两根_1,_2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格:方程 _1 _2 _1+_2 _1?_22_2-7_-4=03_2+2_-5=05_2-__+6=0小结:根与系数关系:(1)关于_的方程_2+p_+q=0(p,q为常数,p2-4q≥0)的两根_1,_2与系数p,q的关系是:_1+_2=-p,_1?_2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)(2)形如a_2+b_+c=0(a≠0)的方程,可以先将二次项系数化为1,再利用上面的结论.即:对于方程a_2+b_+c=0(a≠0)∵a≠0,∴_2+ba_+ca=0∴_1+_2=-ba,_1?_2=ca(可以利用求根公式给出证明)例1 不解方程,写出下列方程的两根和与两根积:(1)_2-3_-1=0 (2)2_2+3_-5=0(3)__2-2_=0 (4)2_2+6_=3(5)_2-1=0 (6)_2-2_+1=0例2 不解方程,检验下列方程的解是否正确?(1)_2-__+1=0 (_1=2+1,_2=2-1)(2)2_2-3_-8=0 (_1=7+734,_2=5-734)例3 已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)例4 已知方程2_2+k_-9=0的一个根是-3,求另一根及k的值.变式一:已知方程_2-2k_-9=0的两根互为相反数,求k;变式二:已知方程2_2-5_+k=0的两根互为倒数,求k.三.课堂小结1.根与系数的关系.2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零.四.作业布置1.不解方程,写出下列方程的两根和与两根积.(1)_2-5_-3=0 (2)9_+2=_2 (3)6_2-3_+2=0(4)3_2+_+1=02.已知方程_2-3_+m=0的一个根为1,求另一根及m的值.3.已知方程_2+b_+6=0的一个根为-2,求另一根及b的值初二数学二元一次方程教案4教学目标1.知识与技能能应用所学的函数知识解决现实生活中的问题,会建构函数〝模型〞.2.过程与方法经历探索一次函数的应用问题,发展抽象思维.3.情感.态度与价值观培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值.重.难点与关键1.重点:一次函数的应用.2.难点:一次函数的应用.3.关键:从数形结合分析思路入手,提升应用思维.教学方法采用〝讲练结合〞的教学方法,让学生逐步地熟悉一次函数的应用.教学过程一.范例点击,应用所学【例5】小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间_(单位:•分)变化的函数关系式,并画出函数图象.y=【例6】A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C.D两乡.从A城往C.D两乡运肥料的费用分别为每吨20元和25元;从B城往C.D•两乡运肥料的费用分别为每吨_元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,•怎样调运总运费最少?解:设总运费为y元,A城往运C乡的肥料量为_吨,则运往D乡的肥料量为(200-_)吨.B城运往C.D乡的肥料量分别为(240-_)吨与(60+_)吨.y与_的关系式为:y=•20_+25(200-_)+_(240-_)+24(60+_),即y=4_+10_0(0≤_≤200).由图象可看出:当_=0时,y有最小值10_0,因此,从A城运往C乡0吨,运往D•乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10_0元.拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?二.随堂练习,巩固深化课本P_9练习.三.课堂总结,发展潜能由学生自我评价本节课的表现.四.布置作业,专题突破课本P_0习题_.2第9,10,_题.板书设计_.2.2一次函数(4)1.一次函数的应用例:初二数学二元一次方程教案。
二元一次方程公开课教案【优秀8篇】教学建议这次帅气的为您整理了8篇《二元一次方程公开课教案》,希望可以启发、帮助到大朋友、小朋友们。
元一次方程教学设计篇一一、教材分析《·》本课内容是在学生掌握了二元一次方程组有关概念之后的学习内容,用代入消元法解二元一次方程组是学生接触到的解方程组的第一种方法,是解二元一次方程组的方法之一,消元体现了“化未知为已知”的重要思想,它是学习本章的重点和难点。
学完以后可以帮助我们解决一些实际的问题,也是为了今后学习函数、线性方程组及高次方程组奠定了基础。
二、教学目标1、使学生学会用代入消元法解二元一次方程组。
2、理解代入消元法的基本思想;了解化“未知为已知”的转化过程,体会化归思想。
三、教学重难点1、重点:用代入法解二元一次方程组。
2、难点:在“消元”的过程中能够判断消去哪个未知数,使得解方程组的运算转为较简便的过程。
四、教学过程(1)复习引入在上节课中我们学习了二院一次方程组的有关概念,并学习了二元一次方程组的概念还学会判断一组值是否是二元一次方程组的解的问题,同学们还记得二元一次方程组和二元一次方程组的解的概念吗?追问二元一次方程组既然有解那么它们的解又怎么求呢?设计意图:让学生复习巩固二元一次方程组和二元一次方程组解的概念,追问其他一个抛砖引玉的效果,激起学生的学习兴趣,引出课题。
(2)探究新知此过程通过播放洋葱视频中的代入消元法片段视频,播放致列出二元一次方程组和一元一次后点击暂停,先让学生考虑想清楚两个问题。
一个问题是为什么能用一元一次方程解决的实际问题我们要用二元一次方程组来解决?第二个问题观察二元一次方程组和一元一次方程组之间有何异同?学生想清楚这两个问题后,渗透消元的思想,然后继续播放视频让学生知道二元一次方程组完整的解题过程,并在每一步做出相应的解释,怎么变化而来。
播放视频完后先让学生自主总结归纳解二元一次方程组的基本步骤,教师引导总结。
接着完成配套的3个习题,强化训练。
2014/4/18 伊智教育小芸老师 二元一次方程教学目标:二元一次方程概念以及两种解法的熟练掌握;并使学生了解二元一次方程实际应用的几种形式(工程问题、行程问题:追赶和相遇、销售问题、配套问题等)重点:代入消元法、加减消元法、二元一次方程实际应用难点:二元一次方程实际应用知识点:授课方式:合作探究、引导法、讲解法教学过程:一、导入1、类比复习一元一次方程和二元一次方程的概念a 含有一个未知数并且未知数的次数为一次的整式方程叫一元一次方程,它的特征:①含有一个未知数;②未知数的次数是一次;③方程两边都是整式。
b 二元一次方程有怎样的特征(例子: x-2y=8 3x+5y=36)①含有两个未知数;②未知数的次数是一次;③方程两边都是整式。
2、师:对于方程xy+7=4y ,它是不是二元一次方程?明确:xy (板书用其他颜色标出)作为一个单项式,它的次数是两次,故不是二元一次方程。
师:你认为二元一次方程有哪几个是关键?明确:两个未知数,项的次数是一次3、对应练习:(a)下面哪些是二元一次方程。
(1) 3x+y=8; (2) x+y 2=0; (3) x=y 2 +4; (4)3221=+y x (5) b+1=a 31; (6) xy+y=2; (7)3x +2y=0. (8)132=-y x(b) 是二元一次方程,试求a 的值。
4、检验跟:板书方程2320a b =+,提问学生下列各组数是不是方程的解1(2)2a x a y -+-=(1)43ab=⎧⎨=⎩(2)5103ab=⎧⎪⎨=-⎪⎩(3)10060ab=⎧⎨=⎩明确:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解.师:你还能说出2320a b=+它的其他解吗?,它的解可以有多少?明确:一般情况下,一个二元一次方程有无数个解.二、复习一个未知数用另一个未知数来表示师:只有当二元一次方程中的一个位置数确定了,才能确定另一个未知数,所以为了计算的简便,我们常常会用一个未知数去表示另一个未知数(老师板书下面例子)对2x+y=8 把2x移项得 y=8-2x例:已知方程3210x y+=.(1)用关于x的代数式表示y;用关于y的代数式表示x(2)求当2,0,3x=-时,对应的y的值;(3)你能写出方程3210x y+=的三个解吗?三、复习代入消元法解二元一次方程师:二元一次方程组的解法,即解二元一次方程的方法;有什么方法能解二元一次方程组。
先来复习第一种-----代入消元法(板书)(a)教师板书并讲解下面的例子(1)92x yy x……①………②ì+=ïïíï=ïî(2)35,23 1.x yx yì-=ïïíï-=ïî明确:将方程组中的一个方程的某个未知数用含有另一个未知数的代数式表示,并代入到另一个方程中,消去一个未知数,得到一元一次方程,最后求得方程组的解,这种解方程组的方法叫做代入消元法,简称代入法。
(b)学生到黑板做好下面的练习。
(1)23321y xx y=-⎧⎨+=⎩(2)⎩⎨⎧-=-=+42357yxyx学生概括代入消元法解二元一次方程的一般步骤①用一个未知数表示另一个未知数;②把新的方程代入另一个方程,得到一元一次方程(代入消元);③解一元一次方程,求出一个未知数的值;④把这个未知数的值代入一次式,求出另一个未知数的值;⑤检验,并写出方程组的解.四、复习加减消元法解二元一次方程(a )师:除了上面学的代入消元,解二元一次方程还有另一种方法-----加减消元法(板书)教师板书并讲解下面的例子(1)(2) ⎩⎨⎧=+=-1332y x y x明确:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
(b )学生到黑板做好下面的练习(1)⎩⎨⎧=+=-8312034y x y x (2)⎪⎩⎪⎨⎧=+=-2132132y x y x师:学习了二元一次方程组的解法后,同学们是不是感到加减消元法比代入消元法方便好用。
但用加减消元法解方程组常常受到符号问题的困扰。
五、堂上练习1、用适当的方法解二元一次方程组:(1)⎩⎨⎧-=-=5243n m n m (2)⎩⎨⎧=+=-74823x y y x(3)(4)233418x y x y ⎧=⎪⎨⎪+=⎩2、在二元一次方程7x-5y=3中,y是x的2倍,求x、y的值。
六、二元一次方程的实际应用1数字问题例:一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.练:(a)甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数各是多少?(b)鸡兔同笼,共有12个头,36只腿,则笼中有鸡和兔多少只?2利润问题例:件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?练、(1)甲、乙两个文具店销售笔记本。
甲店进货价比乙店进货价便宜10%,甲店按20%的利润定价,乙店按15%的利润定价,甲店定价比乙店定价便宜11.20元,问甲店的进货价是多少元?(2)打折前,買60件A牌商品和30件B牌商品用了1080元,買50件A牌商品和10件B牌用了840元。
打折後,買500件A平牌商品和500件B牌商品用了9600元。
比不打折少花多少錢?3配套问题例:有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?练:(1)车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使一个螺栓配套两个螺帽,应如何分配工人才能使螺栓和螺帽刚好配套?(2)学生在手工实践课中,遇到这样一个问题:要用20张白卡纸制作包装纸盒,每张白卡纸可以做盒身2个,或者做盒底盖3个,如果1个盒身和2个盒底盖可以做成一个包装纸盒,那么能否将这些白卡纸分成两部分,一部分做盒身,一部分做盒底盖,使做成的盒身和盒底盖正好配套?请你设计一种分法.(3)以往的统计资料,甲、乙两种作物的单位面积产量的比是1:1.5,现要把一块长200 米,宽100米的长方形的土地,分为两块小长方形土地,分别种植这两种作物,怎样划分这块土地使甲、乙两种作物的总产量的比是3:4(结果取整数)?4行程问题例:某条高速公路上依次排列着A、B、C三个加油站,A到B的距离为120千米,B到C的距离也是120千米.分别在A、C两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A、C两个加油站驶去,结果往B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?练:一船顺水航行45千米需要3小时,逆水航行65千米需要5小时,若设船在静水中的速度为x 千米/小时,水流的速度为y㎞/h,则x、y的值分别是多少?5工程问题例:服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?练:某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?6增长、调运问题例:中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?练:(1)学校现有学生数1290人,与去年相比,男生增加20%,女生减少10%,学生总数增加7. 5%,问现在学校中男、女生各是多少?(2)某工厂第一车间比第二车间人数的54少30人,如果从第二车间调出10人到第一车间, 则第一车间的人数是第二车间的43,问这两车间原有多少人?学生总结二元一次方程实际应用的步骤,教师补充。
五、课堂总结通过这节课的复习,你有什么收获?还有什么困惑?这节课我们学习了:1、2、3、。