全国高中数学联赛竞赛大纲精稿及全部定理内容
- 格式:doc
- 大小:40.50 KB
- 文档页数:3
全国高中数学联赛竞赛大纲及全部定理内容一、平面几何1、数学竞赛大纲所确定的所有内容。
补充要求:面积和面积方法。
2、几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
3、几个重要的极值:到三角形三顶点距离之和最小的点--费马点。
到三角形三顶点距离的平方和最小的点--重心。
三角形内到三边距离之积最大的点--重心。
4、几何不等式。
5、简单的等周问题。
了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。
在周长一定的简单闭曲线的集合中,圆的面积最大。
在面积一定的n边形的集合中,正n边形的周长最小。
在面积一定的简单闭曲线的集合中,圆的周长最小。
6、几何中的运动:反射、平移、旋转。
7、复数方法、向量方法。
平面凸集、凸包及应用。
二、代数1、在一试大纲的基础上另外要求的内容:周期函数与周期,带绝对值的函数的图像。
三倍角公式,三角形的一些简单的恒等式,三角不等式。
2、第二数学归纳法。
递归,一阶、二阶递归,特征方程法。
函数迭代,求n次迭代,简单的函数方程。
3、n个变元的平均不等式,柯西不等式,排序不等式及应用。
4、复数的指数形式,欧拉公式,棣美弗定理,单位根,单位根的应用。
5、圆排列,有重复的排列与组合,简单的组合恒等式。
6、一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。
7、简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。
三、立体几何1、多面角,多面角的性质。
三面角、直三面角的基本性质。
2、正多面体,欧拉定理。
3、体积证法。
4、截面,会作截面、表面展开图。
四、平面解析几何1、直线的法线式,直线的极坐标方程,直线束及其应用。
2、二元一次不等式表示的区域。
3、三角形的面积公式。
4、圆锥曲线的切线和法线。
5、圆的幂和根轴。
五、其它抽屉原理。
容斤原理。
极端原理。
集合的划分。
高中数学竞赛大纲【高中数学竞赛应该掌握的内容和知识点(共17大点,101小点,244小小点)】1.**(set)5.1.3不动点法,迭代法1.1**的阶,**之间的关系。
5.1.4数学归纳法,递归法1.2**的分划1.3子集,子集族1.4容斥原理6(不等式(inequality)6.1解不等式2.函数(function)6.2重要不等式2.1函数的定义域、值域6.2.1均值不等式2.2函数的性质6.2.2柯西不等式2.2.1单调性6.2.3排序不等式2.2.2奇偶性6.2.4契比雪夫不等式2.2.3周期性6.2.5赫尔德不等式2.2.4凹凸性6.2.6权方和不等式2.2.5连续性6.2.7幕平均不等式2.2.6可导性6.2.8琴生不等式2.2.7有界性6.2.9Schur不等式2.2.8收敛性6.2.10嵌入不等式2.3初等函数6.2.11卡尔松不等式2.3.1一次、二次、三次函数6.3证明不等式的常用方法2.3.2幕函数6.3.1利用重要不等式2.3.3双勾函数6.3.2调整法2.3.4指数、对数函数6.3.3归纳法2.4函数的迭代6.3.4切线法2.5函数方程6.3.5展开法6.3.6局部法3.三角函数(trigonometricfunction)6.3.7反证法3.1三角函数图像与性质6.3.8其他3.2三角函数运算3.3三角恒等式、不等式、最值7.解析几何(analyticgeometry)3.4正弦、余弦定理7.1直线与二次曲线方程3.5反三角函数7.2直线与二次曲线性质3.64.向量(vector)4.1向量的运算8(立体几何(solidgeometry)4.2向量的坐标表示,数量积8.1空间中元素位置关系8.2空间中距离和角的计算5.数列(sequence)8.3棱柱,棱锥,四面体性质5.1数列通项公式求解8.4体积,表面积5.1.1换元法8.5球,球面5.1.2特征根法8.6三面角8.7空间向量10.5偏导数9.排歹U,组合,概率(permutations,11.复数(complexnumbers)combinatorics,probability)11.1复数概念及基本运算9.1排列组合的基本公式11.2复数的几个形式9.1.1加法、乘法原理11.2.1复数的代数形式9.1.2无重复的排列组合11.2.2复数的三角形式9.1.3可重复的排列组合11.2.3复数的指数形式9.1.4圆排列、项链排列11.2.4复数的几何形式9.1.5一类不定方程非负整数解的个数11.3复数的几何意义,复平面9.1.6错位排列数11.4复数与三角,复数与方程9.1.7Fibonacci数11.5单位根及应用9.1.8Catalan数9.2计数方法12.平面几何(planegeometry)9.2.1映射法12.1几个重要的平面几何定理9.2.2容斥原理12.1.1梅勒劳斯定理9.2.3递推法12.1.2塞瓦定理9.2.4折线法12.1.3托勒密定理9.2.5算两次法12.1.4西姆松定理9.2.6母函数法12.1.5斯特瓦尔特定理9.3证明组合恒等式的方法12.1.6张角定理9.3.1Abel法12.1.7欧拉定理9.3.2算子方法12.1.8九点圆定理9.3.3组合模型法12.2圆幕,根轴9.3.4归纳与递推方法12.3三角形的巧合点9.3.5母函数法12.3.1内心9.3.6组合互逆公式12.3.2外心12.3.3重心9.4二项式定理12.3.6费马点9.5.2互逆事件概率12.4调和点列9.5.3条件概率9.5.4全概率公式,贝叶斯公式12.5圆内接调和四边形9.5.5现代概率,几何概率12.6几何变换12.6.1平移变换9.6数学期望12.6.2旋转变换10.极限,导数(lim让s,derivatives)12.6.3位似变换10.1极限定义,求法12.6.4对称变换(反射变换)10.2导数定义,求法12.6.5反演变换10.3导数的应用12.6.6配极变换10.3.1判断单调性12.7几何不等式12.8平面几何常用方法10.3.2求最值12.8.1纯几何方法10.3.3判断凹凸性10.4洛比达法则12.8.2三角法12.8.3解析法15.13.1.3无穷递降法12.8.4复数法15.13.1.4反证法12.8.5向量法15.13.1.5不等式估计法12.8.6面积法15.13.1.6配方法,因式分解法15.13.2重要不定方程13.多项式(polynomials)15.13.2.1一次不定方程(组)15.13.2.2勾股方程13.1多项式恒等定理13.2多项式的根及应用15.13.2.3Pell方程13.2.1韦达定理15.14p进制进位制,p进制表示16.组合问题(combinatorics)13.2.2虚根成对原理13.3多项式的整除,互质16.1组合计数问题(参见9.1,9.2)13.4拉格朗日插值多项式16.2组合恒等式,不等式(参见9.3)13.7单位根16.5操作变换,对策问题13.8不可约多项式,最简多项式16.6组合几何16.6.1凸包14.数学归纳法(mathematicalinduction)16.6.2覆盖14.1第一数学归纳法14.2第二数学归纳法16.6.3分割16.6.4整点14.3螺旋归纳法16.7图论14.4跳跃归纳法14.5反向归纳法16.7.1图的定义,性质14.6最小数原理16.7.2简单图,连通图16.7.3完全图,树16.7.4二部图,k部图7.初等数论(elementarynumbertheory)15.1整数,整除16.7.5托兰定理15.2同余16.7.6染色与拉姆塞问题16.7.7欧拉与哈密顿问题15.3素数,合数15.4算术基本定理16.7.8有向图,竞赛图15.5费马小定理,欧拉定理16.8组合方法16.8.1映射法,对应法,枚举法15.6拉格朗日定理,威尔逊定理16.8.2算两次法15.7裴蜀定理15.8平方数16.8.3递推法15.9中国剩余定理16.8.4抽屉原理16.8.5极端原理15.10高斯函数16.8.6容斥原理15.11指数,阶,原根15.12二次剩余理论16.8.7平均值原理15.12.1二次剩余定理及性质16.8.8介值原理15.12.2Legendre符号16.8.9母函数法15.12.3Gauss二次互反律16.8.13反证法15.13.1.1同余法15.13.1.2构造法16.8.14构造法16.8.15数学归纳法17.1微积分,泰勒展开17.2矩阵,行列式16.8.16调整法17.3空间解析几何16.8.17最小数原理16.8.18组合计数法17.4连分数17.5级数,p级数,调和级数,幕级数17.其他(others)(了解即可,不作要求)17.6其他1、平面几何基本要求:掌握初中数学竞赛大纲所确定的所有内容。
高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛〔一试〕所涉及的知识范围不超出教育部2000年【全日制普通高级中学数学教学大纲】中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试〔二试〕与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n 次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
三、高中数学竞赛根底知识第一章 集合与简易逻辑一、根底知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否那么称x 不属于A ,记作A x ∉。
全国高中数学联赛竞赛大纲(修订稿)在“普及的基础上不断提高”的方针指引下,全国数学竞赛活动方兴未艾,特别是连续几年我国选手在国际数学奥林匹克中取得了可喜的成绩,使广大中小学师生和数学工作者为之振奋,热忱不断高涨,数学竞赛活动进入了一个新的阶段。
为了使全国数学竞赛活动持久、健康、逐步深入地开展,应广大中学师生和各级数学奥林匹克教练员的要求,特制定《数学竞赛大纲》以适应当前形势的需要。
本大纲是在国家教委制定的全日制中学“数学教学大纲”的精神和基础上制定的。
《教学大纲》在教学日的一栏中指出:“要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性”。
具体作法是:“对学有余力的学生,要通过课外活动或开设选修课等多种方式,充分发展他们的数学才能”,“要重视能力的培养......,着重培养学生的运算能力、逻辑思维能力和空间想象能力,要使学生逐步学会分析、综合、归纳、演绎、概括、抽象、类比等重要的思想方法。
同时,要重视培养学生的独立思考和自学的能力”。
《教学大纲》中所列出的内容,是教学的要求,也是竞赛的最低要求。
在竞赛中对同样的知识内容的理解程度与灵活运用能力,特别是方法与技巧掌握的熟练程度,有更高的要求。
而“课堂教学为主,课外活动为辅”是必须遵循的原则。
因此,本大纲所列的课外讲授内容必须充分考虑学生的实际情况,分阶段、分层次让学生逐步地去掌握,并且要贯彻“少而精”的原则,这样才能加强基础,不断提高。
一试全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。
二试1、平面几何基本要求:掌握初中数学竞赛大纲所确定的所有内容。
补充要求:面积和面积方法。
几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
几个重要的极值:到三角形三顶点距离之和最小的点--费马点。
到三角形三顶点距离的平方和最小的点--重心。
高中数学竞赛公式定理大全包括但不限于:
1. 集合运算的分配律与反演律(摩根律)、容斥原理、有限等集的性质。
2. 直线与方程:克莱姆法则、二维对称点坐标公式、二维投影点坐标公式、直线的参数方程、交轨法、定比分点公式。
3. 圆锥曲线:阿波罗尼斯圆、圆的直径式方程、曲线系、圆幂定理、调和点列、椭圆和双曲线的第二定义、各种切割线方程、特殊类型的双曲线、抛物线的各种几何性质、阿基米德三角形、齐次化方法、双根式、仿射变换、隐函数、蒙日圆、等角定理、二次锥面形成圆锥曲线的过程、极点与极线。
4. 立体几何:祖暅原理、用行列式求平面的法向量、三维对称点坐标公式、三维投影点坐标公式、直角四面体勾股定理、四面体余弦定理、三射线定理、三余弦定理、三面角余弦定理、三正弦定理、平行六面体的性质、立体几何中的正余弦定理。
5. 导数与极限:夹逼定理、洛必达法则、极限运算法则、常用极限、对数求导法则、隐函数求导、多个极值判定法、抽象函数的构造、对数平均不等式、指数平均不等式。
6. 数列:等差数列中,S奇=na中,例如S13=13a7;等差数列中,S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差;等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立;等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q;数列的终
极利器,特征根方程等。
7. 其他公式和定理:三角形垂心爆强定理;维维安尼定理;爆强思路;常用结论;爆强公式;函数y=(lnx)/x在(0,e)上单调递增,在(e,+无穷)上单调递减等。
这些公式和定理是高中数学竞赛的重要知识点,需要学生熟练掌握和应用。
同时,学生还需要具备灵活运用知识的能力和创造性思维,才能取得优异的成绩。
1、数学竞赛考纲二试1、平面几何根本要求:掌握高中数学竞赛大纲所确定的所有内容。
补充要求:面积和面积方法。
几个重要定理:梅涅劳斯定理、、、。
几个重要的极值:到三角形三极点距离之和最小的点--。
到三角形三极点距离的平方和最小的点 --。
三角形内到三边距离之积最大的点-- 重心。
几何不等式。
简单的。
认识下述定理:在周长必然的n 边形的会集中,正n 边形的面积最大。
在周长必然的的会集中,圆的面积最大。
在面积必然的n 边形的会集中,正n 边形的周长最小。
在面积必然的简单闭曲线的会集中,圆的周长最小。
几何中的运动:反射、平移、旋转。
方法、方法。
平面、及应用。
2、代数在一试大纲的基础上其他要求的内容:周期函数与周期,带的函数的图像。
,三角形的一些简单的恒等式,三角不等式。
,一阶、二阶递归,法。
函数,求 n 次迭代,简单的函数方程。
n个变元的平均不等式,,及应用。
复数的指数形式,欧拉公式,,单位根,单位根的应用。
圆排列,有重复的排列与组合,简单的组合恒等式。
一元 n 次方程〔多项式〕根的个数,根与系数的关系,实系数方程虚根成对定理。
简单的初等数论问题,除初中大纲中所包括的内容外,还应包括,,欧几里得除法,非负最小完好节余类,,,,,格点及其性质。
3、立体几何多面角,多面角的性质。
三面角、直三面角的根本性质。
正多面体,欧拉定理。
体积证法。
截面,会作截面、表面张开图。
4、平面剖析几何直线的式,直线的,直线束及其应用。
二元一次不等式表示的地域。
三角形的。
圆锥曲线的切线和法线。
圆的幂和根轴。
5、其他。
会集的划分。
覆盖。
西姆松线的存在性及性质()。
及其逆定理。
一、平面几何1.梅涅劳斯定理〔 Menelaus 〕定理〔简称梅氏定理〕是由数学家梅涅劳斯第一证明的。
它指出:若是一条直线与△ABC的三边AB、BC、CA或其延长线交于(AF/FB) ×(BD/DC) ×(CE/EA)=1 。
或:设X、 Y、 Z 分别在△ ABC线上,那么X、Y、Z 共线的是 (AZ/ZB)*(BX/XC)*(CY/YA)=1。
全国高中数学联赛竞赛大纲中国数学会普及工作委员会制定在"普及的基础上不断提高"的方针指引下,全国数学竞赛活动方兴未艾,特别是连续几年我国选手在国际数学奥林匹克中取得了可喜的成绩,使广大中小学师生和数学工作者为之振奋,热忱不断高涨,数学竞赛活动进入了一个新的阶段。
为了使全国数学竞赛活动持久、健康、逐步深入地开展,应广大中学师生和各级数学奥林匹克教练员的要求,特制定《数学竞赛大纲》以适应当前形势的需要。
本大纲是在国家教委制定的全日制中学"数学教学大纲"的精神和基础上制定的。
《教学大纲》在教学日的一栏中指出:"要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性"。
具体作法是:"对学有余力的学生,要通过课外活动或开设选修课等多种方式,充分发展他们的数学才能","要重视能力的培养......,着重培养学生的运算能力、逻辑思维能力和空间想象能力,要使学生逐步学会分析、综合、归纳、演绎、概括、抽象、类比等重要的思想方法。
同时,要重视培养学生的独立思考和自学的能力"。
《教学大纲》中所列出的内容,是教学的要求,也是竞赛的最低要求。
在竞赛中对同样的知识内容的理解程度与灵活运用能力,特别是方法与技巧掌握的熟练程度,有更高的要求。
而"课堂教学为主,课外活动为辅"是必须遵循的原则。
因此,本大纲所列的课外讲授内容必须充分考虑学生的实际情况,分阶段、分层次让学生逐步地去掌握,并且要贯彻"少而精"的原则,这样才能加强基础,不断提高。
一试全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。
二试1、平面几何基本要求:掌握初中数学竞赛大纲所确定的所有内容。
补充要求:面积和面积方法。
高中数学竞赛大纲应该掌握的内容和知识点1.集合(set)1.1集合的阶,集合之间的关系。
1.2集合的分划1.3子集,子集族1.4容斥原理2.函数(function)2.1函数的定义域、值域2.2函数的性质2.2.1单调性2.2.2奇偶性2.2.3周期性2.2.4凹凸性2.2.5连续性2.2.6可导性2.2.7有界性2.2.8收敛性2.3初等函数2.3.1一次、二次、三次函数2.3.2幂函数2.3.3双勾函数2.3.4指数、对数函数2.4函数的迭代2.5函数方程3.三角函数(trigonometric function)3.1三角函数图像与性质3.2三角函数运算3.3三角恒等式、不等式、最值3.4正弦、余弦定理3.5反三角函数3.6三角方程4.向量(vector)4.1向量的运算4.2向量的坐标表示,数量积5.数列(sequence)5.1数列通项公式求解5.1.1换元法5.1.2特征根法5.1.3不动点法,迭代法5.1.4数学归纳法,递归法6.不等式(inequality)6.1解不等式6.2重要不等式6.2.1均值不等式6.2.2柯西不等式6.2.3排序不等式6.2.4契比雪夫不等式6.2.5赫尔德不等式6.2.6权方和不等式6.2.7幂平均不等式6.2.8琴生不等式6.2.9 Schur不等式6.2.10嵌入不等式6.2.11卡尔松不等式6.3证明不等式的常用方法6.3.1利用重要不等式6.3.2调整法6.3.3归纳法6.3.4切线法6.3.5展开法6.3.6局部法6.3.7反证法6.3.8其他7.解析几何(analytic geometry)7.1直线与二次曲线方程7.2直线与二次曲线性质7.3参数方程7.4极坐标系8.立体几何(solid geometry)8.1空间中元素位置关系8.2空间中距离和角的计算8.3棱柱,棱锥,四面体性质8.4体积,表面积8.5球,球面8.6三面角8.7空间向量9.排列,组合,概率(permutations, combinatorics, probability)9.1排列组合的基本公式9.1.1加法、乘法原理9.1.2无重复的排列组合9.1.3可重复的排列组合9.1.4圆排列、项链排列9.1.5一类不定方程非负整数解的个数9.1.6错位排列数9.1.7 Fibonacci数9.1.8 Catalan数9.2计数方法9.2.1映射法9.2.2容斥原理9.2.3递推法9.2.4折线法9.2.5算两次法9.2.6母函数法9.3证明组合恒等式的方法9.3.1 Abel法9.3.2算子方法9.3.3组合模型法9.3.4归纳与递推方法9.3.5母函数法9.3.6组合互逆公式9.4二项式定理9.5概率9.5.1独立事件概率9.5.2互逆事件概率9.5.3条件概率9.5.4全概率公式,贝叶斯公式9.5.5现代概率,几何概率9.6数学期望10.极限,导数(limits, derivatives)10.1极限定义,求法10.2导数定义,求法10.3导数的应用10.3.1判断单调性10.3.2求最值10.3.3判断凹凸性10.4洛比达法则10.5偏导数11.复数(complex numbers)11.1复数概念及基本运算11.2复数的几个形式11.2.1复数的代数形式11.2.2复数的三角形式11.2.3复数的指数形式11.2.4复数的几何形式11.3复数的几何意义,复平面11.4复数与三角,复数与方程11.5单位根及应用12.平面几何(plane geometry)12.1几个重要的平面几何定理12.1.1梅勒劳斯定理12.1.2塞瓦定理12.1.3托勒密定理12.1.4西姆松定理12.1.5斯特瓦尔特定理12.1.6张角定理12.1.7欧拉定理12.1.8九点圆定理12.2圆幂,根轴12.3三角形的巧合点12.3.1内心12.3.2外心12.3.3重心12.3.4垂心12.3.5旁心12.3.6费马点12.4调和点列12.5圆内接调和四边形12.6几何变换12.6.1平移变换12.6.2旋转变换12.6.3位似变换12.6.4对称变换(反射变换)12.6.5反演变换12.6.6配极变换12.7几何不等式12.8平面几何常用方法12.8.1纯几何方法12.8.2三角法12.8.3解析法12.8.4复数法12.8.5向量法12.8.6面积法13.多项式(polynomials)13.1多项式恒等定理13.2多项式的根及应用13.2.1韦达定理13.2.2虚根成对原理13.3多项式的整除,互质13.4拉格朗日插值多项式13.5差分多项式13.6牛顿公式13.7单位根13.8不可约多项式,最简多项式14.数学归纳法(mathematical induction)14.1第一数学归纳法14.2第二数学归纳法14.3螺旋归纳法14.4跳跃归纳法14.5反向归纳法14.6最小数原理7.初等数论(elementary number theory)15.1整数,整除15.2同余15.3素数,合数15.4算术基本定理15.5费马小定理,欧拉定理15.6拉格朗日定理,威尔逊定理15.7裴蜀定理15.8平方数15.9中国剩余定理15.10高斯函数15.11指数,阶,原根15.12二次剩余理论15.12.1二次剩余定理及性质15.12.2 Legendre符号15.12.3 Gauss二次互反律15.13不定方程15.13.1不定方程解法15.13.1.1同余法15.13.1.2构造法15.13.1.3无穷递降法15.13.1.4反证法15.13.1.5不等式估计法15.13.1.6配方法,因式分解法15.13.2重要不定方程15.13.2.1一次不定方程(组)15.13.2.2勾股方程15.13.2.3 Pell方程15.14 p进制进位制,p进制表示16.组合问题(combinatorics)16.1组合计数问题(参见9.1,9.2)16.2组合恒等式,不等式(参见9.3)16.3存在性问题16.4组合极值问题16.5操作变换,对策问题16.6组合几何16.6.1凸包16.6.2覆盖16.6.3分割16.6.4整点16.7图论16.7.1图的定义,性质16.7.2简单图,连通图16.7.3完全图,树16.7.4二部图,k部图16.7.5托兰定理16.7.6染色与拉姆塞问题16.7.7欧拉与哈密顿问题16.7.8有向图,竞赛图16.8组合方法16.8.1映射法,对应法,枚举法16.8.2算两次法16.8.3递推法16.8.4抽屉原理16.8.5极端原理16.8.6容斥原理16.8.7平均值原理16.8.8介值原理16.8.9母函数法16.8.10染色方法16.8.11赋值法16.8.12不变量法16.8.13反证法16.8.14构造法16.8.15数学归纳法16.8.16调整法16.8.17最小数原理16.8.18组合计数法17.其他(others)(了解即可,不作要求)17.1微积分,泰勒展开17.2矩阵,行列式17.3空间解析几何17.4连分数17.5级数,p级数,调和级数,幂级数17.6其他1、平面几何基本要求:掌握初中数学竞赛大纲所确定的所有内容。
全国高中数学联赛竞赛大纲(修订稿)及定理内容命题要求:根据现行“高中数学竞赛大纲”的要求,“全国高中数学联赛(一试)”所涉及的知识范围不超过教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高.主要考查学生对基本知识和基本技能的掌握情况,以及综合运用和灵活运用的能力。
试卷包括6道选择题,6道填空题和3道解答题,全卷满分为150分。
“全国高中数学联赛加试(二试)”与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲以外的内容,试卷包括3道解答题,其中一道是平面几何题,全卷满分为150分。
参赛对象:在校高中学生,坚持以自愿原则报名参加竞赛。
参加“全国高中数学联赛”的学生可以自愿选择是否参加“联赛加试”。
但是有意参加全国中学数学冬令营的学生必须两次考试都参加,并把两次考试的总分作为选拔冬令营营员的标准。
《教学大纲》中所列出的内容,是教学的要求,也是竞赛的最低要求。
在竞赛中对同样的知识内容的理解程度与灵活运用能力,特别是方法与技巧掌握的熟练程度,有更高的要求。
而“课堂教学为主,课外活动为辅”是必须遵循的原则。
因此,本大纲所列的课外讲授内容必须充分考虑学生的实际情况,分阶段、分层次让学生逐步地去掌握,并且要贯彻“少而精”的原则,这样才能加强基础,不断提高。
一试全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。
二试1、平面几何基本要求:掌握初中数学竞赛大纲所确定的所有内容。
补充要求:面积和面积方法。
几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
几个重要的极值:到三角形三顶点距离之和最小的点--费马点。
到三角形三顶点距离的平方和最小的点--重心。
三角形内到三边距离之积最大的点--重心。
几何不等式。
简单的等周问题。
了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。
1、数学竞赛考纲二试1、平面几何基本要求:掌握高中数学竞赛大纲所确定的所有内容。
补充要求:面积和面积方法。
几个重要定理:梅涅劳斯定理、、、。
几个重要的极值:到三角形三顶点距离之和最小的点--。
到三角形三顶点距离的平方和最小的点--。
三角形内到三边距离之积最大的点--重心。
几何不等式。
简单的。
了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。
在周长一定的的集合中,圆的面积最大。
在面积一定的n边形的集合中,正n边形的周长最小。
在面积一定的简单闭曲线的集合中,圆的周长最小。
几何中的运动:反射、平移、旋转。
方法、方法。
平面、及应用。
2、代数在一试大纲的基础上另外要求的内容:周期函数与周期,带的函数的图像。
,三角形的一些简单的恒等式,三角不等式。
,一阶、二阶递归,法。
函数,求n次迭代,简单的函数方程。
n个变元的平均不等式,,及应用。
复数的指数形式,欧拉公式,,单位根,单位根的应用。
圆排列,有重复的排列与组合,简单的组合恒等式。
一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。
简单的初等数论问题,除初中大纲中所包括的内容外,还应包括,,欧几里得除法,非负最小完全剩余类,,,,,格点及其性质。
3、立体几何多面角,多面角的性质。
三面角、直三面角的基本性质。
正多面体,欧拉定理。
体积证法。
截面,会作截面、表面展开图。
4、平面解析几何直线的式,直线的,直线束及其应用。
二元一次不等式表示的区域。
三角形的。
圆锥曲线的切线和法线。
圆的幂和根轴。
5、其它。
集合的划分。
覆盖。
西姆松线的存在性及性质()。
及其逆定理。
一、平面几何1.梅涅劳斯定理(Menelaus)定理(简称梅氏定理)是由数学家梅涅劳斯首先证明的。
它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。
或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的是(AZ/ZB)*(BX/XC)*(CY/YA)=1 。
全国高中数学联赛竞赛大纲及全部定理内容
一、平面几何
1、数学竞赛大纲所确定的所有内容。
补充要求:面积和面积方法。
2、几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
3、几个重要的极值:到三角形三顶点距离之和最小的点--费马点。
到三角形三顶点距离的平方和最小的点--重心。
三角形内边距离之积最大的点--重心。
4、几何不等式。
5、简单的等周问题。
了解下述定理:
在周长一定的n边形的集合中,正n边形的面积最大。
在周长一定的简单闭曲线的集合中,圆的面积最大。
在面积一定的n边形的集合中,正n边形的周长最小。
在面积一定的简单闭曲线的集合中,圆的周长最小。
6、几何中的运动:反射、平移、旋转。
7、复数方法、向量方法。
平面凸集、凸包及应用。
二、代数
1、在一试大纲的基础上另外要求的内容:
周期函数与周期,带绝对值的函数的图像。
三倍角公式,三角形的一些简单的恒等式,三角不等式。
2、第二数学归纳法。
递归,一阶、二阶递归,特征方程法。
函数迭代,求n次迭代,简单的函数方程。
3、n个变元的平均不等式,柯西不等式,排序不等式及应用。
4、复数的指数形式,欧拉公式,棣美弗定理,单位根,单位根的应用。
5、圆排列,有重复的排列与组合,简单的组合恒等式。
6、一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。
7、简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。
三、立体几何
1、多面角,多面角的性质。
三面角、直三面角的基本性质。
2、正多面体,欧拉定理。
3、体积证法。
4、截面,会作截面、表面展开图。
四、平面解析几何
1、直线的法线式,直线的极坐标方程,直线束及其应用。
2、二元一次不等式表示的区域。
3、三角形的面积公式。
4、圆锥曲线的切线和法线。
5、圆的幂和根轴。
五、其它
抽屉原理。
容斤原理。
极端原理。
集合的划分。
覆盖。
数学竞赛中涉及的重要定理
1、第二数学归纳法:
有一个与自然数n有关的命题,如果:
(1)当n=1时,命题成立;
(2)假设当n≤k时命题成立,由此可推得当n=k+1时,命题也成立。
那么,命题对于一切自然数n来说都成立。
2、棣美弗定理:
设复数z=r(cosθ+isinθ),其n 次方z^n = r^n (cos(nθ)+isin(nθ)),其中n 为正整数。
3、无穷递降法:
证明方程无解的一种方法。
其步骤为:
假设方程有解,并设X 为最小的解。
从X 推出一个更小的解Y 。
从而与X 的最小性相矛盾。
所以,方程无解。
4、 同余:
两个整数a ,b ,若它们除以整数m 所得的余数相等,则称a ,b 对于模m 同余,记作 a ≡ b (mod m) ,
读作a 同余于b 模m ,或读作a 与b 关于模m 同余。
比如 26 ≡ 14 (mod 12)
【定义】设m是大于1的正整数,a,b 是整数,如果m|(a-b),则称a 与b 关于模m 同余,记作a≡b(mod m),读作a 同余于b 模m 如下事实:
(1)若a≡0(mod m),则m|a ; (2)a≡b(mod m)等价于a 与b 分别用m 去除,余数相同.
5、欧几里得除法:
即辗转相除法。
详见高中数学课标人教B 版必修三
6、完全剩余类:
从模n 的每个剩余类中各取一个数,得到一个由n 个数组成的集合,叫做模n 的一个完全剩余系。
例如,一个数除以4数只能是0,1,2,3,{0,1,2,3}和{4,5,-2,11}是模4的完全剩余系。
可以看出0和4,1和5,2和-2,3和11关于同余,这4组数分别属于4个剩余类。
7、 高斯函数:
f(x)=ae-(x-b)^2/c^2 其中a 、b 与c 为实数常数 ,且a > 0.
8、费马小定理:
假如p 是质数,且(a,p)=1,那么 a^(p-1) ≡1(mod p ) 假如p 是质数,且a,p 互质,那么 a 的(p-1)次方除以p 的余数恒等。
9、欧拉函数:
φ函数的值:通式:φ(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…..(1-1/pn),其中p1, p 2…pn 为x 的所有质因数,x 是不为0的整φ(1)=1(唯一和1互质的数就是1本身)。
若n 是质数p 的k 次幂,φ(n)=p^k -p^(k-1)=(p-1)p^(k-1),因为除了p 的倍数外,其他数都跟n 互质。
欧拉函数是积性函数——若m,n 互质,φ(mn)=φ(m)φ(n)。
特殊性质:当n 为奇数时,φ(2n)=φ(n), 证明于上述类似。
10、孙子定理:
此定理的一般形式是设m = m1 ,… ,mk 为两两互素的正整数,m =m1,…mk ,m =miMi ,i =1,2,… ,k 。
则同组x≡b1(modm1),…,x≡bk(modmk)的解为x≡M'1M1b1+…+M'kMkbk (modm )。
式中M'iMi≡1 (modmi ),i =1,2,…,
11、裴蜀定理:
对任何整数a 、b 和它们的最大公约
数d ,关于未知数x 和y 的线性丢番图方程(称为裴蜀等式):若a,b 是整数,且(a,b)=d,那么对于任意的整数x,y,ax+by 都一定是倍数,特别地,一定存在整数x,y,使ax+by=d 成立。
它的一个重要推论是:a,b 互质的充要条件是存在整数x,y 使ax+by=1.
11、梅涅劳斯定理:
如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、
E 、
F 且D 、E 、F 三点共线,则
FB AF EA CE DC BD ••=1 12、梅涅劳斯定理的逆定理:
如果在△ABC 的三边BC 、CA 、AB 或其延长线上
有点D 、E 、F ,且满足FB AF EA CE DC BD ••=1,则D 、E 、F 三点共线。
13、塞瓦定理:
设O 是△ABC 内任意一点,AO 、BO 、CO 分别交对边于N 、P 、
M ,则1=••PA CP NC BN MB AM
14、塞瓦定理的逆定理:
设M 、N 、P 分别在△ABC 的
边AB 、BC 、CA 上,且满足1=••PA CP NC BN MB AM ,则AN 、BP 、CM 相交于一点。
15、广勾股定理的两个推论:
推论1:平行四边形对角线的平方和等于四边平方和。
推论2:设△ABC 三边长分别为a 、b 、c ,对应边上中线长分别为m a 、m b 、m c
则:m a =2222221a c b -+;m b =2222221b c a -+;m c =2
222221c b a -+
16、三角形内、外角平分线定理:
内角平分线定理:如图:如果∠1=∠2,则有AC AB DC
BD = 外角平分线定理:如图,AD 是△ABC 中∠A 的外角平分线交BC 的延长线与D ,
则有
AC AB DC BD = 17、托勒密定理:
四边形ABCD 是圆内接四边形,则有AB ·CD+AD ·BC=AC ·BD
18、三角形位似心定理:
如图,若△ABC 与△DEF 位似,则通过对应点的三直线AD 、BE 、CF 共点于P
19、正弦定理、
在△ABC 中有R C c B b A a 2sin sin sin ===(R 为△ABC 外接圆半径)
余弦定理:
a 、
b 、
c 为△ABC 的边,则有:
a 2=
b 2+
c 2-2bc ·cosA; b 2=a 2+c 2-2ac ·cosB; c 2=a 2+b 2-2ab ·cosC;
20、西姆松定理:
点P 是△ABC 外接圆周上任意一点,PD ⊥BC ,PE ⊥AC ,PF ⊥AB ,D 、E 、F 为垂足,则D 、E 、F 三点共线,此直线称为西线。
21、欧拉定理:
△ABC 的外接圆圆心为O ,半径为R ,内切圆圆心为I ,半径为r,记OI=d,则有:d 2=R 2-2Rr.
22、巴斯加线定理:
圆内接六边形ABCDEF (不论其六顶点排列次序如何),其三组对边AB 与DE 、BC 与EF 、CD 与FA 的交点P 、Q 、R 共线。