高一下期中试题
- 格式:doc
- 大小:137.50 KB
- 文档页数:6
2022-2023学年四川省绵阳市高一下学期期中数学试题一、单选题1.设复数(1)z i i =⋅-,则z 的虚部是()A .1B .iC .-1D .-i【答案】C【分析】结合复数的四则运算,计算z ,得到虚部,即可.【详解】1i z =--,所以z 的虚部为-1,故选C .【点睛】本道题考查了复数的运算,关键化简复数z ,难度较容易.2.平面向量()1,2a =- ,()2,b x =- ,若//a b,则x 等于()A .4B .2C .1-D .4-【答案】A【分析】根据向量共线列方程,从而求得x .【详解】由于//a b,所以()()1224x x ⋅=-⋅-⇒=.故选:A3.若函数()()sin f x x ϕ=+是奇函数,则ϕ可取的一个值为()A .π-B .2π-C .4πD .3π【答案】A【分析】sin x 的图象左右平移π,k k Z ∈仍为奇函数,即可求得ϕ.【详解】sin x 的图象左右平移π,k Z k ∈仍为奇函数,则π,k k Z ϕ=∈.故选:A.4.在ABC 中,若cos a B c =,则ABC 的形状是()A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形【答案】B【分析】首先根据正弦定理边化角得到()sin cos sin sin A B C A B ==+,再结合三角函数恒等变换得到cos 0A =,即可得到答案.【详解】因为cos a B c =,所以()sin cos sin sin sin cos cos sin A B C A B A B A B ==+=+,所以cos sin 0=A B .因为sin 0B >,所以cos 0A =.又因为00A <<18 ,所以90A = ,ABC 为直角三角形.故选:B5.已知3cos 123πθ⎛⎫-= ⎪⎝⎭,则sin 23πθ⎛⎫+= ⎪⎝⎭()A .29-B .13-C .29D .13【答案】B 【分析】由223122πππθθ⎛⎫+=-+ ⎪⎝⎭,结合诱导公式和二倍角公式求解即可.【详解】由题,因为223122πππθθ⎛⎫+=-+ ⎪⎝⎭,所以2231sin 2sin 2cos 22cos 1213122121233πππππθθθθ⎛⎫⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=-+=-=--=⨯-=- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎝⎭,故选:B6.关于函数()tan f x x =的性质,下列叙述不正确的是()A .()f x 的最小正周期为2πB .()f x 是偶函数C .()f x 的图像关于直线()2k x k Z π=∈对称D .()f x 在每一个区间,,2k k k Z πππ⎛⎫+∈ ⎪⎝⎭内单调递增【答案】A【分析】由周期函数和奇偶性的定义,以及正切函数的对称轴和正切函数的单调性可逐项进项判定.【详解】因为1tan ()22tan f x x f x x ππ⎛⎫⎛⎫+=+=≠ ⎪ ⎪⎝⎭⎝⎭,所以A 错;()|tan()||tan |()f x x x f x -=-==,所以函数()f x 是偶函数,B 正确;由()|tan |f x x =的图像可知,C 、D 均正确,故选:A.【点睛】本题考查三角函数的性质,熟练掌握正切函数的奇偶性、单调性、对称轴和对称中心是解题的关键,属于中档题.7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是()A .()2,6-B .(6,2)-C .(2,4)-D .(4,6)-【答案】A【分析】首先根据题中所给的条件,结合正六边形的特征,得到AP 在AB方向上的投影的取值范围是(1,3)-,利用向量数量积的定义式,求得结果.【详解】AB的模为2,根据正六边形的特征,可以得到AP 在AB方向上的投影的取值范围是(1,3)-,结合向量数量积的定义式,可知AP AB ⋅ 等于AB 的模与AP 在AB方向上的投影的乘积,所以AP AB ⋅的取值范围是()2,6-,故选:A.【点睛】该题以正六边形为载体,考查有关平面向量数量积的取值范围,涉及到的知识点有向量数量积的定义式,属于简单题目.8.已知函数()sin 3f x x πω⎛⎫=+⎪⎝⎭,(0ω>)在区间25,36ππ⎡⎤-⎢⎥⎣⎦上是增函数,且在区间[0,]π上恰好取得一次最大值1,则ω的取值范围是()A .10,5⎛⎤⎥⎝⎦B .13,25⎡⎤⎢⎥⎣⎦C .11,65⎡⎤⎢⎥⎣⎦D .15,22⎡⎫⎪⎢⎣⎭【答案】C【解析】解法一:(复合函数法)令3X x πω=+,根据2536x ππ-≤≤,得出253363X πωππωπ-+≤≤+.再根据sin y X =的单调性得出25,,336322πωππωπππ⎡⎤⎡⎤-++⊆-⎢⎥⎢⎥⎣⎦⎣⎦,解得15ω≤.又因为0x π≤≤时,33X πππω≤≤+,函数在区间,33πππω⎡⎤+⎢⎥⎣⎦恰好取一次最大值1,可得5232ππππω≤+<,即可解得11366ω≤≤.解法二:(特殊值法)带入特殊值当12ω=,112ω=,逐项排除即可.【详解】解:解法一:(复合函数法)令3X x πω=+,2536x ππ-≤≤,则253363X πωππωπ-+≤≤+.所以函数sin y X =在区间25,3363πωππωπ⎡⎤-++⎢⎥⎣⎦上单调递增,从而可得25,,336322πωππωπππ⎡⎤⎡⎤-++⊆-⎢⎥⎢⎥⎣⎦⎣⎦,则22335632ππωππωππ⎧-≤-+⎪⎪⎨⎪+≤⎪⎩,解得15ω≤.当0x π≤≤时,33X πππω≤≤+,所以函数sin y X =在区间,33πππω⎡⎤+⎢⎥⎣⎦恰好取一次最大值1,所以5232ππππω≤+<,解得11366ω≤≤.综上所知1165ω≤≤.故选:C解法二:(特殊值法)当12ω=时,令23x X π=+,2536x ππ-≤≤,则304X π≤≤,则函数sin y X =在区间30,4π⎡⎤⎢⎥⎣⎦上不单调,所以12ω=不合题意,排除B 、D .当112ω=时,令123x X π=+,0x π≤≤,则5312X ππ≤≤,则函数sin y X =在区间5,312ππ⎡⎤⎢⎥⎣⎦取不到最大值1,所以112ω=不合题意,排除A .故选:C【点睛】本题考查利用正弦型函数的单调性和最值求参数ω的取值,属于基础题.二、多选题9.下列说法中正确的是()A .若||0a = ,则0a=B .0AB BA += C .若21,e e 为单位向量,则12e e = D .||aa是与非零向量a 共线的单位向量【答案】ABD【分析】对于选项AC ,利用零向量和单位向量的定义即可判断出正误;对于选项B ,利用向量的运算法则即可判断出正误;对于选项D ,利用单位向量及共线向量的判断方法即可得到结果的正误.【详解】选项A ,因为||0a = ,根据零向量的定义知,0a=,故选项A 正确;选项B ,根据向量加法的运算法则知,0AB BA +=,故选项B 正确;选项C ,21,e e 为单位向量,则有12e e = ,但1e 与2e可以方向不同,根据向量相等的定义知,选项C错误;选项D ,因||aa的模长为1,且与向量a 同向,故选项D 正确.故选:ABD10.在△ABC 中,根据下列条件解三角形,其中恰有一解的是()A .7,36b c C π===,B .564b c C π===,,C .6333a b B π===,,D .20156a b B π===,,【答案】BC【分析】根据三角形解的个数的判定条件直接计算可得.【详解】A 选项有无穷多解,显然错误;B 中,因为52sin 2b C =,C 为锐角,所以sin b C b c <<,所以该三角形有一解,B 正确;C 中,因为sin 33a B =,B 为锐角,所以sin b a B =,所以该三角形有一解,C 正确;D 中,因为sin 10a B =,B 为锐角,所以sin a B b a <<,所以该三角形有两解,D 错误.故选:BC11.已知函数()()πsin 02||0f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭,,的部分图象如图所示,下列说法正确的是()A .函数()y f x =的图象关于点π,012⎛⎫- ⎪⎝⎭对称B .函数()y f x =的图象关于直线5π12x =-对称C .函数()y f x =在2ππ,36⎡⎤--⎢⎥⎣⎦单调递减D .该图象向右平移π12个单位可得2sin 3y x =的图象【答案】AD【分析】根据图象求出()y f x =的解析式,然后根据正弦函数的知识判断ABC ,根据图象的平移变换可判断D.【详解】由图象可得()f x 的最大值为2,即2A =,2πππ4412T ω⎛⎫==- ⎪⎝⎭,即3ω=,所以()()2sin 3f x x ϕ=+,因为π212f ⎛⎫= ⎪⎝⎭,所以ππ2π,Z 42k k ϕ+=+∈,所以π2π,Z 4k k ϕ=+∈,因为π||2ϕ<,所以π4ϕ=,所以()π2sin 34f x x ⎛⎫=+ ⎪⎝⎭,对于A ,因为0π12f ⎛-⎫= ⎪⎝⎭,所以函数()y f x =的图象关于点π,012⎛⎫- ⎪⎝⎭对称,故正确;对于B ,因为()25π12sin π0f ⎛⎫- ⎪⎝=-=⎭,所以错误;对于C ,当2ππ,36x ⎡⎤∈--⎢⎥⎣⎦时,π7ππ3,444x ⎡⎤+∈--⎢⎥⎣⎦,所以函数()y f x =在2ππ,36⎡⎤--⎢⎥⎣⎦上不单调,故错误;对于D ,该图象向右平移π12个单位可得ππ2sin 32sin 3124y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦的图象,故正确,故选:AD12.已知函数()sin cos f x x x =+,以下结论正确的是()A .它是偶函数B .它是周期为2π的周期函数C .它的值域为1,2⎡⎤-⎣⎦D .它在()-π,2π这个区间有且只有2个零点【答案】ACD【分析】根据函数奇偶性定义可知,()()f x f x -=,即A 正确;由周期函数得定义可知,()2πf x +与()f x 不一定相等,故B 错误;将函数()f x 写成分段函数的形式并画出函数图像可得C 正确;结合C 以及偶函数的性质,可判断D 正确.【详解】由于()()sin cos()sin cos f x x x f x x x -=-+-==+,所以它是偶函数,故A 正确;由于π7π2,044f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,它们不相等,所以它不是周期为2π的周期函数,即B 错误;现在来考察这个函数在[]0,2πx ∈内的情况.当π30,π,2π22x ⎡⎤⎡⎤∈⋃⎢⎥⎢⎥⎣⎦⎣⎦时,()πsin cos sin cos 2sin 4f x x x x x x ⎛⎫=+=+=+ ⎪⎝⎭当π3,π22x ⎡⎤∈⎢⎥⎣⎦时,()πsin cos sin cos 2sin 4f x x x x x x ⎛⎫=+=-=- ⎪⎝⎭分别画出以上两个函数图象,并截取相关部分如图:由此可知函数值域为1,2⎡⎤-⎣⎦,即选项C 正确;又由于这个函数是偶函数,它在[]π,π-内没有零点,而在[]π,2π有2个零点,故D 正确.故选:ACD.【点睛】方法点睛:在求解含有绝对值的三角函数值域问题时,可以想尽一切办法先把绝对值去掉,然后结合其他函数性质进行求解即可.例如在判断C 选项时,首先可讨论[]0,2πx ∈时的函数解析式,画出图形;当[]2π4πx ∈,时图像重复[]0,2πx ∈的图像,而[]2π0x ∈-,时,关于y 轴作出对称图像即可.三、填空题13.已知复数21iz i=-,则z =________.【答案】2【详解】试题分析:()()()()21211111i i iz i i i i i i +===+=-+--+,所以 2.z =【解析】复数模的概念与复数的运算.14.已知非零向量a 与b 的夹角为23π,2b = ,若()a ab ⊥+ ,则a = ______.【答案】1【解析】由()a a b ⊥+,得到22cos 03a ab π+= ,进而得到20a a -= ,即可求解.【详解】由()a a b ⊥+ ,可得()0a a b ⋅+= ,所以20+⋅= a a b ,即22cos03a ab π+= ,又由2b = ,可得20a a -=,解得0a = (舍)或1a = .故答案为:1.【点睛】本题主要考查了向量的数量积的运算,以及向量垂直条件的运算,其中解答中熟记向量的数量积的运算公式和向量垂直条件的运算方法是解答的关键,着重考查推理与运算能力.15.化简:()40103sin tan ︒︒-=________.【答案】-1【详解】原式sin10sin 40 (3cos10=-︒︒︒)()sin402sin40 sin1 03cos1 0cos10cos10︒︒︒︒︒︒=-=(13sin1 0 cos1 0)22︒︒-2sin40sin80cos 401cos10cos10-︒-︒︒︒︒===-.故答案为1-【点睛】本题的关键点有:先切化弦,再通分;利用辅助角公式化简;同角互化.16.如图,直角三角形PQR 的三个顶点分别在等边三角形ABC 的边AB 、BC 、CA 上,且23PQ =,2QR =,2PQR π∠=,则AB 长度的最大值为_________【答案】4213【分析】选取角度作为变量,运用正弦定理将线段表示为角度的函数,进而运用三角函数的知识求解最值可得出结果.【详解】正三角形ABC 中,,60AB BC B C =∠=∠=︒,设QRC θ∠=,则根据题意有:180120RQC C QRC θ∠=︒-∠-∠=︒-,9030BQP RQC θ∠=︒-∠=-︒BPQ 中,180150BPQ B BQP θ∠=︒-∠-∠=︒-BQP 中,根据正弦定理得:()23·sin 150·sin sin sin sin sin 60BQ PQ PQ BPQBQ BPQ B B θ︒-∠=∴==∠∠∠︒RQC 中,根据正弦定理得:·sin 2sin sin sin sin sin 60CQ RQ RQ QRC CQ QRC C C θ∠=∴==∠∠∠︒()23·sin 1502sin sin 60sin 60AB BC BQ QC θθ︒-∴==+=+︒︒化简计算得:()421sin 3AB θϕ=+(3tan 5ϕ=)当()sin 1θϕ+=时,AB 有最大值4213.故答案为:4213.四、解答题17.已知向量()1,2a =-,()3,1b =-,求:(1)求向量a b +与a b - ;(2)求向量a 与b的夹角.【答案】(1)()2,1a b +=--,()4,3a b -=- (2)135【分析】(1)利用向量的坐标运算可得答案;(2)利用向量的夹角公式可得答案.【详解】(1)()2,1a b +=-- ,()4,3a b -=- .(2)5a = ,5a = ,325a b ⋅=--=-,52cos 2510a b a bθ⋅-===-⨯ ,∴135θ= .18.已知函数22()23sin cos cos sin f x x x x x =+-.(1)求函数()f x 的最小正周期及单调递减区间;(2)求()f x 在区间π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值.【答案】(1)π,π2ππ,π63k k ⎡⎤++⎢⎥⎣⎦,Zk ∈(2)最大值为2,最小值为1-.【分析】(1)将简函数为π()2sin(2)6f x x =+,再利用三角函数sin y x =的图像与性质即可求出结果;(2)通过x 的范围,求出π26x +的范围,再利用三角函数sin y x =的图像与性质即可求出结果;【详解】(1)因为22π()23sin cos cos sin 3sin2cos22sin(2)6f x x x x x x x x =+-=+=+,所以函数()f x 的最小正周期为2π2ππ2T ω===,由ππ63π2π22π,Z 22k x k k +≤+≤+∈得到π2πππ63k x k +≤≤+,Z k ∈.所以函数()f x 的单调减区间为π2ππ,π63k k ⎡⎤++⎢⎥⎣⎦,Z k ∈.(2)因为π()2sin(2)6f x x =+,当π0,2x ⎡⎤∈⎢⎥⎣⎦时,ππ7π2,666x ⎡⎤+∈⎢⎥⎣⎦,根据函数sin y x =的图像与性质知,π1sin 2,162x ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,所以()f x 的最大值为2,最小值为1-.19.在①222cos sin sin 1sin sin A B C B C ++=+;②2cos cos cos c A a B b A =+;③sin cos 6a C c A π⎛⎫=- ⎪⎝⎭这三个条件中任选一个,解答下面两个问题.(1)求角A ;(2)在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,()c b c <,若已知27a =,33ABC S = ,求,b c 的值.【答案】(1)3A π=(2)2b =,6c =【分析】(1)若选①,首先转化221cos sin A A -=,再利用正弦定理边角互化,结合余弦定理求角A ;若选②,首先将边化为角,再结合三角函数恒等变形,化简后求角A ;若选③,首先将边化为角,再利用两角差的余弦公式展开,结合辅助角公式,化简求角A ;(2)首先根据面积公式求bc ,再结合余弦定理求b c +,即可求解,b c 的值.【详解】(1)若选①:由已知得:222sin sin 1cos sin sin B C A B C+=-+222sin sin sin sin sin B C A B C +=+由正弦定理可得222b c a bc +=+,可得222b c a bc +-=,由余弦定理可得2221cos 22b c a A bc +-==,因为0A π<<,所以3A π=.若选②:因为2cos cos cos c A a B b A=+由正弦定理可得2sin cos sin cos sin cos C A A B B A =+,所以()2sin cos sin sin C A A B C=+=因为0C π<<,所以sin 0C >,所以1cos 2A =,因为0A π<<,所以3A π=若选③:因为sin cos 6a C c A π⎛⎫=- ⎪⎝⎭,由正弦定理得sin sin sin cos 6A C C A π⎛⎫=- ⎪⎝⎭因为0C π<<,所以sin 0C >,故可得31sin cos cos sin 622A A A A π⎛⎫=-=+ ⎪⎝⎭,即13sin cos 22A A =,所以tan 3A =,因为0A π<<,所以3A π=;(2)由(1)可得3A π=,13sin 3324ABC S bc A bc ===△,所以12bc =,由余弦定理得:()22222cos 328a b c bc A b c bc =+-=+-=,所以8+=b c ,又因为b c <,解得2b =,6c =.20.已知sin cos π30sin cos 2ααααα+⎛⎫=∈ ⎪-⎝⎭,,.(1)求tan α的值;(2)若()10sin 10αβ-=,且π02β⎛⎫∈ ⎪⎝⎭,,求角β.【答案】(1)tan 2α=(2)4πβ=【分析】(1)根据已知化弦为切即可得解;(2)分别求出sin ,cos αα,()cos αβ-,再根据()sin sin βααβ=--⎡⎤⎣⎦结合两角差的正弦公式即可得解.【详解】(1)解:因为sin cos 3sin cos αααα+=-,所以tan 13tan 1αα+=-,解得tan 2α=;(2)解:因为tan 2α=,π0,2α⎛⎫∈ ⎪⎝⎭,则22sin 2cos sin cos 1αααα=⎧⎨+=⎩,解得255sin ,cos 55αα==,又π02β⎛⎫∈ ⎪⎝⎭,,所以ππ,22αβ⎛⎫-∈- ⎪⎝⎭,又因()10sin 10αβ-=,所以()()2310cos 1sin 10αβαβ-=--=,则()253105102sin sin 5105102βααβ=--=⨯-⨯=⎡⎤⎣⎦,所以4πβ=.21.如图,一块铁皮的形状为半圆和长方形组成,长方形的边AD 为半圆的直径,O 为半圆的圆心,1AB =,2BC =,现要将此铁皮剪出一个等腰三角形PMN ,其底边MN BC ⊥.(1)设30MOD ∠=︒,求三角形铁皮PMN 的面积;(2)求剪下的铁皮三角形PMN 面积的最大值.【答案】(1)33348=+ PMN S (2)3224+【分析】(1)设MN 交AD 交于E 点由30MOD ∠=︒,利用锐角三角函数可求ME ,OE ,进而可求MN ,BN ,代入12PMN S MN BN =⋅ 可求(2)设MOQ θ∠=,由[0θ∈,]2π,结合锐角三角函数的定义可求sin MQ θ=,cos OQ θ=,代入三角形的面积公式1(1sin )(1cos )122PMN MN B S N θθ∆=++⋅=展开利用换元法,令sin cos 2sin 4x πθθθ⎛⎫+==+ ⎪⎝⎭,转化为二次函数的最值求解.【详解】(1)解:设MN AD E ⋂=,则3cos 2OE OM MOD =∠=,1sin 2ME OM MOD =∠=则312BN AE AO OE ==+=+,32MN ME AB =+=,故1333248PMN S MN BN =⋅=+ ;(2)设MOD θ∠=,[)0,θπ∈,MN AD E ⋂=,则sin 1MN θ=+,cos 1BN AE θ==+1sin cos sin cos 122PMN S MN BN θθθθ+++=⋅= ,令sin cos 2sin 4x πθθθ⎛⎫+==+ ⎪⎝⎭,则21sin cos 2x θθ-=,[)0,θπ∈,5,444πππθ⎡⎫+∈⎪⎢⎣⎭,则2sin ,142πθ⎛⎤⎛⎫+∈- ⎥ ⎪ ⎝⎭⎝⎦,所以(1,2x ⎤∈-⎦()221213220,444PMN x x x S ⎛⎤++++==∈ ⎥ ⎝⎦△,即三角形PMN 面积的最大值为3224+.22.如图,设ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,AD 为BC 边上的中线,已知c =1且2c sin A cos B =a sin A ﹣b sin B 14+b sin C ,cos ∠BAD 217=.(1)求b 边的长度;(2)设点E ,F 分别为边AB ,AC 上的动点,线段EF 交AD 于G ,且AEF △的面积为ABC 面积的一半,求AG EF ⋅ 的最小值.【答案】(1)4(2)2【分析】(1)根据2c sin A cos B =a sin A ﹣b sin B 14+b sin C ,利用正弦定理和余弦定理化简求解;(2)设,AE x AF y == 利用D 为中点,得到2AB AC AD += ,两边平方,设,AB AC θ=uuu r uuu r ,结合21cos 7AB AD BAD AB AD⋅=∠=⋅ ,求得θ,进而得到ABC S ,再根据AEF △的面积为ABC 面积的一半,得到2xy =,然后利用E ,G ,F 共线和基本定理,利用数量积运算求解.【详解】(1)解:因为2c sin A cos B =a sin A ﹣b sin B 14+b sin C ,所以,所以222221224a cb ac a b bc ac +-⨯=-+,化简得:4c =b ,又c =1,所以b =4.(2)设,AE x AF y == ,因为D 为中点,所以2AB AC AD += ,设,AB AC θ=uuu r uuu r ,则θθ++⋅⋅+== 2222cos 178cos 44AB AC AB AC AD ,所以θ+= 178cos 2AD ,而()114cos 22AB AD AB AB AC θ+⋅=⋅+= ,所以θθ⋅+=∠==+⋅ 2114cos cos 7178cos AB AD BAD AB AD ,即228cos 8cos 110θθ+-=,解得1cos 2θ=或11cos 14θ=-,因为14cos 0θ+>,所以1cos 2θ=,3sin 2θ=,所以1sin 32ABC S bc θ== ,因为AEF △的面积为ABC 面积的一半,所以13sin 22AEF S xy θ== ,即2xy =,设AG AD λ= ,则22AG AD AB AC λλλ==+ ,又E ,G ,F 共线,设()1AG AD AF μμ=+- ,则()()114y AG AE AF x AB AC μμμμ-=+-=+ ,所以:()2142x y λμμλ⎧=⎪⎪⎨-⎪=⎪⎩,解得:4y x y μ=+,所以:2244AG AB AC x y x y =+++ ,又4y EF AC xAB =- ,所以22444y AG EF AB AC AC xAB x y x y ⎛⎫⎛⎫⋅=+⋅- ⎪ ⎪++⎝⎭⎝⎭,222964444y y y x AC xAB x AC AB x y x y⎡⎤-⎛⎫=-+-⋅= ⎪⎢⎥++⎝⎭⎣⎦ ,又xy =2,化简得:22296186321442242y x x AG EF x y x x --⋅===-++++ ,又y ≤4,所以112x ≥≥,所以2AG EF ⋅≥ ,当x =1时等号成立.。
高一下学期期中考试语文试卷含答案(共3套)高一第二学期期中考试语文试题(满分:150分;考试时间:150分钟)(一)论述类文本阅读(本题共3小题,9分)文化软实力,是指一个国家或地区基于文化而具有的凝聚力、生命力、创新力、传播力和影响力。
“文化软实力”的说法源自XXX的软实力理论。
一般来说,软实力是一种隐形的力量,蕴含在文化、政治价值观、外交政策和国际形象四个载体中。
在这四个载体中,文化是核心,其他三个组成部分也都深深地烙上了文化的影子。
甚至有人直接把软实力解释成文化力。
基于此,文化软实力就有了广义和狭义之分,广义的文化软实力就是指“软实力”;狭义的文化软实力,则是构成软实力的文化要素。
文化软实力的形成必须依赖先进的文化,而这种文化只有与时俱进才能更好地服务于相应的时代和社会,才能更好地促进个人全面自由的发展,才能体现出强大的吸引力和感染力。
文化软实力的作用,主要体现在国内和国际两个方面。
在国内,它通过文化建设不断增强本国文化的认同感,抵御国外一些敌对文化理念的侵袭,增强国内民众的凝聚力。
通过吸收国外先进文化元素和不断改造本国文化中落后的成分,使本国文化更加适应当前形势,更好地指导经济建设,更好地彰显本国文化的强劲生命力。
在国际政治舞台上,兼容并蓄、富有活力的本国文化必将为国外受众所认可,使本国所奉行的理念得到传播,从而提升国家形象和影响力。
文化软气力产生于一定的文化资本。
这些资本包括国家价值寻求、社会理念、宗教崇奉、品德规范,还包括风俗惯、民族精神、国民素质、文学艺术等,还与教育、科技、文化财产的开展水平密切相干。
文化软气力产生的根本是人们对本国中心价值体系的认同和接受。
与传统手段相比,非强制手段是文化软气力完成的手段,而国家的综合国力是文化软气力的力量施展阐发形式。
在现实社会中,往往存在重器不重道的现象。
它表现在国家综合实力的建设上,就是重视提升硬实力而不重视提升文化软实力。
重视提升硬实力是对的,文化软实力也一定要以硬实力为基础。
高一期中考试试题及答案一、选择题(每题3分,共30分)1. 下列关于细胞结构的描述,正确的是:A. 细胞壁只存在于植物细胞B. 细胞膜是细胞的外层结构C. 细胞核是细胞的能量转换器D. 线粒体是细胞的遗传物质储存地答案:B2. 光合作用中,水分子分解发生在:A. 光反应阶段B. 暗反应阶段C. 光反应和暗反应阶段D. 细胞呼吸阶段答案:A3. 人体细胞中,负责合成蛋白质的结构是:A. 线粒体B. 核糖体C. 内质网D. 高尔基体答案:B4. 以下哪种元素不属于人体必需的微量元素?A. 铁B. 锌C. 钙D. 碘答案:C5. 细胞分裂过程中,染色体数目加倍发生在:A. 有丝分裂前期B. 有丝分裂中期C. 有丝分裂后期D. 减数分裂第一次分裂答案:C6. 下列关于酶的描述,错误的是:A. 酶是活细胞产生的B. 酶是蛋白质或RNAC. 酶可以提高化学反应速率D. 酶在反应后被消耗答案:D7. 人体中,血红蛋白的主要功能是:A. 运输氧气B. 运输二氧化碳C. 调节酸碱平衡D. 储存能量答案:A8. 以下哪种激素不属于内分泌腺分泌的激素?A. 胰岛素B. 甲状腺激素C. 肾上腺素D. 消化酶答案:D9. 人体免疫系统中,负责识别和攻击外来病原体的是:A. 红细胞B. 白细胞C. 血小板D. 血浆答案:B10. 人体细胞中,负责储存遗传信息的是:A. 线粒体B. 核糖体C. 内质网D. 细胞核答案:D二、填空题(每空2分,共20分)1. 细胞膜的主要功能是________和________。
答案:保护细胞内部结构;控制物质进出2. 人体中,负责合成和分泌胰岛素的腺体是________。
答案:胰腺3. 光合作用中,光能被转化为________和________。
答案:化学能;热能4. 人体中,负责运输氧气的蛋白质是________。
答案:血红蛋白5. 人体免疫系统中,负责识别和攻击外来病原体的细胞是________。
2023-2024学年第二学期漳州市乙类级联盟校高一年期中质量检测语文试题注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上。
用2B铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号。
将条形码粘贴在答题卡“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成下面小题。
材料一:《文心雕龙·隐秀》说:“夫隐之为体,义生文外,秘响傍通,伏采潜发,譬爻象之变互体,川渎之的启发性和暗示性,以唤起读者的联想,让他们自己去体会和发现作品中隽永深长的意趣。
这正是中国文学的艺术妙谛。
唐朝司空图在《与李生论诗书》中提出“味外之旨”“韵外之致”,在《与极浦书》中提出“象外之象”“景外之景”,在《二十四诗品》中又说“不着一字,尽得风流”。
这都是要求诗歌通过有限的字句启发读者无穷的想象。
注重言外之意,言有尽而意无穷。
中国古代的抒情诗由于篇幅短小,所以特别注重含蓄,要求短中见长,小中见大,言近意远,含蓄不尽。
如柳宗元的《江雪》:“千山鸟飞绝,万径人踪灭。
孤舟蓑笠翁,独钓寒江雪。
”前两句并没有明说下雪,只说山上的鸟都飞走了,路上人的足迹也不见了。
这样,读者便可以想象出一幅铺天盖地的雪景。
在这样的背景下,诗人安排了一只孤舟,一个披着蓑衣戴着斗笠的渔翁,垂钓江雪之中,不为外界变化所动。
那种我行我素、遗世独立的情趣,蕴涵在字里行间,很耐人寻味。
(摘编自袁行霈《中国文学概论》)材料二:含蓄作为一种美的形态,是诗人创作的共同追求,也是读者鉴赏再创造的需要。
上海中学2023学年第二学期期中考试英语试题高一______班学号______ 姓名______ 成绩______Ⅰ.Listening ComprehensionSection ADirections: In Section A, you will hear ten short conversations between two speakers. At the end of each conversation, a question will be asked about what was said. The conversations and the questions will be spoken only once. After you hear a conversation and a question about it, read the four possible answers on your paper, and decide which one is the best answer to the question you have heard.1.A.15 dollars. B.20 dollars. C.25 dollars. D.45 dollars.2.A.To the gallery. B.To the dentist’s.C.To her flat. D.To the garage.3.A.She was fired by the company. B.She broke the law.C.She is on leave right now. D.She is replacing the company’s website.4.A.Patient and doctor. B.Resident and government official.C.Customer and insurance agent. D.Boss and secretary.5.A.He was sitting opposite Mr. Johnson. B.He is planning a farewell party for Mr. Johnson.C.All the tasks that Mr. Johnson did failed. D.He is glad Mr. Johnson left the company.6.A.She prefers dogs to cats.B.She had a close relationship with the man’s daughter.C.She used to sorrow over her dog’s death.D.She is always in low spirits.7.A.The woman should get the chips herself. B.The woman shouldn’t eat chips.C.The woman used to have several heart attacks. D.The woman warned the man against heart attacks. 8.A.They plan to have the meeting in another place.B.The availability of the meeting room will be discussed.C.They have already had the meeting.D They will have the meeting sometime later.9.A.The car’s demand greatly exceeds supply.B.The woman has listed the car’s advantages.C.The woman received a car a month ago. D.The woman didn’t like the car.10.A.She won’t do the presentation.B.She needs to collect a lot of data for the presentation.C.She is still at an early stage of preparation for the presentation.D.The topic is most important for the presentation.Section BDirections: In Section B, you will hear two short passages and a longer conversation, and you will be asked some questions on the passages and the conversation. The passages and the conversation will be read twice, but thequestions will be spoken only once. When you hear a question, read the four possible answers on your paper and decide which one is the best answer to the question you’ve heard.Questions 11 through 13 are based on the following passage.11.A.The type of food you freeze. B.The way you warm up the frozen food.C.Whether the freezer bags are sealed. D.What temperature you set your freezer to. 12.A.Because they can be easily stocked.B.Because they fit well in the fridge.C.Because they come in different sizes and shapes. D.Because they help to keep the dry food dry 13.A.Prevent people from eating too much food.B.Stop people from removing food that hasn’t gone bad.C.Make people become cautious about eating unhealthy food.D.Make people become ambitious in making use of leftover food.Questions 14 through 17 are based on the following passage.14.A.Postpone retirement age. B.Involve more women in work.C.Hire more foreign workers. D.Attract workers with high salaries.15.A.Relieve pressure on human nursing care.B.Take care of children and the elderly.C.Finally replace humans in workforce. D.Give humans more time to r creative work. 16.A.Robots can’t do certain work. B.Some people don’t accept robots.C.The expenses for robots are still high. D.The functions of robots need improving.17.A.Japan struggles to fight workforce shortage.B.Japanese attitudes towards robots change a lot.C.Robots have played a major role in Japan’s industry.D.Robots can help in Japanese workforce shortage.Questions 18 through 20 are based on the following conversation.18.A.The cruise liner will provide all sorts of food and entertainment.B.Only half of the cabins will be filled up.C.The prices of unsold tickets will be reduced.D.Everyone will be able to afford the ticket.19.A.Book tickets as soon as they are available. B.Closely watch the changes of ticket prices C.Compare deals from different sources. D.Keep in contact with a travel age n you can trust. 20.A.Because cruise tours are only suitable for people who have much free time.B.Because he can work part-time to earn money to pay for the tour.C.Because doing price research and comparing takes time.D.Because he can sail shortly after buying the cheap ticket.Ⅱ.Grammar and VocabularySection A Multiple Choice21.No man is useless in this world ______ lightens the burden of someone else.A.which B.that C.who D.as22.______ be considered for the role of team leader in our upcoming project?A.Who do you suggest that should B.Who do you suggestC.Whom do you suggest should D.Do you suggest who should23.I’m now applying to graduate school, ______ means someday I’ll return to a profession ______people need to be nice to me in order to get what they want.A.which, as B.which, which C.which, where D.as, in which24.The reason ______ she gave for her resignation was ______ she wanted to pursue her passion for travel and exploration.A.that, that B.why, that C.why, because D./, because25.It might be years ______ we ______ the creation of artificial intelligence systems capable of true human-like cognition.A.since, made possible B.before, make possibleC.since, made possible that D.before, make it possible26.The budget for the project ended up being twice ______, causing unexpected financial strain on the company. A.how it intended to B.that it had intended toC.as it intended to D.what it was intended to27.It was ______ she took her first step onto foreign soil ______ signaled the beginning of a journey filled with unknown adventures and unforgettable experiences.A.the moment, that B.the moment, whenC.the moment when, that D.the moment when, which28.The complexities of the English language are ______ even native speakers cannot always communicate effectively, ______ almost every American learns on his first day in Britain.A.so that, as B.such that, as C.so that, with D.such that, in that29.His confidence and strong will clearly show that he is no longer ______ he used to be the first time ______ he undertook such a demanding task.A.who, when B.who, / C.what, / D.what, that30.It was not so much her talent ______ her perseverance and determination ______ motivated her to the top of her field.A but. that B.as, that C.nor, which D.like, which31.______ the children tracked mud all over them again.A.No sooner did he sweep the floors clean than B.Hardly had he sweep the floors clean whenC.Barely he had swept the floors clean than D.Scarcely had he swept the floors clean when32.Although the suspect insisted ______ alone during the time of the crime, the court still demanded ______ evidence to support his alibi.A.being at home, he should provide B.he be at home, he providedC.he was at home, be provide D.he was at home, he providing33.Visitors are permitted to take photographs for personal use only, ______ stated otherwise by the museum staff. A.though B.if C.as D.unless34.The recipe book features helpful ______, making it easier for learners to visualize the cooking process.A.explanation B.demonstrations C.illustrations D.presentations35.The heroic idea that ______ qualities such as excellence, generosity courage, loyalty and dignity is highly valued and modeled.A.embraces B.identifies C.examines D.criticizes36.______ by the work pressure, he has been experiencing serious physical symptoms of stress and had to turn to a therapist for help.A.Overwhelmed B.Disappointed C.Frustrated D.Shocked37.After witnessing her tireless dedication to practice every day, the parents were ______ her enthusiasm for playing the piano.A.concerned with B.committed to C.informed of D convinced of38.When we ______ the data further, we can identify specific trends and patterns that may not be evident at first glance.A.break up B.break out C.break through D.break down39.The temptation for a declining church to ______ old privileges is strong.A.hang on to B.settle for C.pass up D.sign for40.After signing the contract, every employee is ______ fulfill their duties and conform to the rules made by the company.A.reluctant to B.obliged to C.motivated to D.honored to41.Due to the long-term environmental and financial benefits, renewable energy technologies are ______ A.worthwhile to develop B.worth being developedC.worthy to be developed D.worthy of developingSection B VocabularyDirections: Complete the following passage by using the words in the box. Each word can only be used once. Note that there is one word more than you need.Stressed out? Get chewing: can a wellness rebrand make Americans buy gum again?When was the last time you saw someone chewing gum? 1998, maybe? 2007? Chances are, it probably wasn’t recently. Like high heels and affordable housing, chewing gum appears to be going 42Gum’s popularity has been fading globally thanks to increased competition from products like breath mints and mobile phones distracting us from impulse purchases while shopping. The pandemic, moreover, 43 ·accelerated gum’s decline.Even after people 44 from lockdown, sales didn’t recover. Gum sales worldwide in 2023 were 10% below 2018 figures. In the US, the drop has been particularly pronounced: last year 1.2 billion units of gum were sold in the US, 32% fewer than in 2018.However, chewing gum, in various forms, is one of the oldest habits there is. Stone age teenagers were chewing birch bar k tar possibly for pleasure, medicinal purposes, or to use it as a glue. Gum has also been loaded with culturalmeaning and the subject of various 45 panics. Some people believe it is a marker of the bad kids or a habit of the lower class.Despite a certain amount of social stigma(污名)attached to gum, it has - until relatively recently -been a wildly successful product. That’s thanks to William Wrigley Jr, who was a marketing and advertising genius. Wrigley always 46 to find a way to make gum relevant and insert it into consumer culture. For example, Wrigley advertised the idea that chewing gum was a health aid that would help digestion and would relieve stress.This year the Wrigley brand’s owner —Mars—came out with an ad campaign it hopes will revive gum’s 47 by positioning it as an almost instant stress reliever. Linking gum with wellness worked in the 1910s, but is it going to work now? Alex Hayes at the food consultancy is 48 optimistic. “The global well ness market is estimated to be worth more than $1.5 trillion, so it’s no surprise that Mars wants a piece of the pie,” Hayes says. “We’ve seen the success of categories such as tea promoting their products via functional 49 and messaging-teas for good sleep, mental clarity, stress relief, etc. So it comes as no surprise that Mars is risking the same 50 .” But he also notes, customers are increasingly worried about processed foods and are eager to move away from artificial 51 . There’s still ongoing discussion on just how effective repositioning chewable plastic as a health supplement is going to be. Ⅲ.Reading ComprehensionSection A ClozeDirections: For each blank in the following passage there are four words or phrases marked A, B, C and D. Fill in each blank with the word or phrase that best fits the context.It’s safe to say Jeremy Scott is having a lucky year. In March while working as a chauffeur, he told his boss about his plans to set up a driving business. By the end of the journey, Scott’s boss had offered to 52 his idea-a starting capital along with the gift of a £110,000 limousine(豪车)to kick start the business.Of course, there’s an element of luck to everyone’s career. Whether you’re a chief executive or an artist — your 53 won’t be based on hard work alone. For example, the place you were born 54 your education. It determines whether you learn to read, write or complete qualifications, which 55 limits your career choices.Many people believe success is down to talent and hard work, but “this is because most people underestimate the role of 56 ”, says psychologist Dr Elizabeth Nutt Williams. “We do a lot of work to prepare for ourcareers-education, training, taking advantage of mentoring-all of which tend to be in our control.” People don’t like to acknowledge the role of luck in their work, as it 57 this feeling of being in control, adds Williams.Everyone remembers working hard, so people are more likely to overestimate how much of their success is down to diligence than something much more 58 like luck.The reality of success (at least in terms of 59 )is less clear cut. In the UK, studies show where you are born is likely to determine how much you earn.2017 research found that there is a “class pay gap’’, where professional employers from 60 backgrounds are paid almost £7,000 less a year — despite having the same role, education and experience as colleagues from more privileged families. 61 , black graduates earn up to 23% less per hour than white university leavers, whereas woman in the UK earn 14% less on average than men.Socio-economic status also plays a big role in the 62 you enter. A recent study by the Debrett’s Foundation found seven in every 10 young people aged 16-25 use 63 to get their first job. While research has shown that less able, richer children are 35% more likely to become high earners than their brighter. poorer peers.The truth is: chance and coincidences 64 our careers more than we like to think. Realizing that parts of your career are out of your control sounds 65 , but being grateful for the role of luck in your career can actually make you more fortunate.This is because when you acknowledge the role of luck in your work, you become prepared to take advantage of more fortunate moments. “Chance events occur·but it is all about the individual’s 66 to see those events as possibilities and their willingness to take a risk,” says Williams.52.A.challenge B.adopt C.finance D.reject53.A.performances B.accomplishments C.assessments D.outcomes54.A.accounts for B.applies to C.makes up for D.depends on55.A.in reward B.after all C.in turn D.by nature56.A.chance B.accident C.education D.diligence57.A.emphasizes B.overlooks C.maintains D.weakens58.A.manageable B.vital C.slippery D.minor59.A.reputation B.income C.education D.occupation60.A.wealthier B.poorer C.unique D.diverse61.A.Nevertheless B.Contrarily C.Consequently D.Similarly62.A.profession B.circle C.community D.university63.A.certificates B.online platforms C.career fairs D.family connections64.A.contribute to B.result from C.add to D.hold back65.A.inspiring B.encouraging C.appealing D.discouraging66.A.reluctance B.eagerness C.readiness D.resolutionSection B Passages(A)When you think about coffee alternatives, garlic is probably one of the last things that comes to mind, but that is exactly the ingredient that one Japanese inventor used to create a drink that looks and tastes like coffee.74-year-old Yokitomo Shimotai, a coffee shop owner in Aomori Prefecture, Japan, claims that his unique “garlic coffee” is the result of a cooking blunder he made over 30 years ago, when he burned a steak and garlic while waiting tables at the same time. Intrigued by the burnt garlic’s smell, he mashed it up with a spoon and mixed it with hot water. The resulting drink looked and tasted a lot like coffee. Making a mental note of his discovery, Yokimoto carried on with his job and only started researching garlic coffee again after he retired.Committed to turning his weird drink into a commercial product, Yokitomo Shimotai spent years optimizing the formula, and about five years ago, he finally achieved a result he was satisfied with. To make his dissolvable garlic grounds, he roasts the cloves(蒜瓣)in an electric oven, and after they’ve cooled off, smashes them into fine particles and pac ks them in dripbags.“My drink is probably the world’s first of its kind,” the garlic coffee inventor told Kyodo News. “It contains no caffeine so it’s good for those who would like to drink coffee at night or pregnant women.”“The bitterness of burned garl ic apparently helps create the coffee-like flavor,” Shimotai adds. He claims that, although his garlic coffee does give off an aroma of roasted garlic, it doesn’t cause bad breath, because the garlic isthoroughly cooked. And if you can get past the smell, the drink apparently does taste a lot like actual coffee. If decaf isn’t good enough for you, and you’re in the mood for something new, you can try Yokitomo Shimotai’s garlic coffee at his shop, in the city of Ninohc, lwate Prefecture, or buy your own dripbags for just 324 yen($2.8). 67.Which word is the closest in meaning to the underlined word “blunder” in the second paragraph?A mistake B.show C.mixture D.brand68.Who is NOT suitable to drink garlic coffee?A.A student having trouble with sleep B.A woman bearing a baby.C.A cleaner working on a day shift. D.A young lady sick of garlic.69.Which of the following is NOT characteristic of garlic coffee?A.It is caffeine-free. B.Garlic powder dissolves in waterC.The burnt garlic create s bitterness. D.It is an improvement on a garlic dish.70.Which of the following can be used to describe Yokitomo Shimotai?A.Venturous and greedy B.Innovative and perseverantC.Hardworking and cautious D.Observant and helpful(B)71.By “how they stacked up” in paragraph 1, the author probably means “how they ______.”A.make sense to manufacturers B.get stuck in storesC are compared with each other D.are piled up together72.Which of the following devices favourably reacts to users?A.Dreampad pillow B.Eight sleep trackerC.Smart Nora Wireless Snoring Solution D.Nightingale Smart Home Sleep System73.Which of the following statements is true according to the passage?A.The Eight keeps the entire bed at the same temperature.B.The Nightinga, is an economical but perfect device.C.Soft music is applied to all these four devices.D.One in three people suffer from sleep problem.(C)One way to divide up the world is between people who like to explore new possibilities and those who stick to the tried and true. In fact, the tension between betting on a sure thing and taking a chance that something unexpected and wonderful might happen troubles human and nonhuman animals alike.Take songbirds, for example. The half-dozen finches(雀)resting at my desk feeder all summer know exactly what they’ll find there: black sunflower seed, and lots of it. Meanwhile, the warblers(莺)exploring the woods nearby don’t depend on this predictable food source in fine weather. As food hunters, they enjoy less exposure to predators and, as a bonus, the chance to meet the perfect mate flying from tree to tree.This “explore-exploit” trade-off(权衡)has prompted scores of lab studies, computer simulations and algorithms (算法), trying to determine which strategy brings in the greatest reward. Now a new study of human behavior in the real world, published last month in the journal Nature Communications, shows that in good times, there isn’t much of a difference between pursuing novelty and sticking to the status quo(原状). When the going gets tough. however, explorers are the winners.The new study, led by Shay O’Farrell and James Sanchirico, both of the Univ ersity of California, Davis, along with Orr Spiegel of Tel Aviv University, examined the routes and results of nearly 2,500 commercial fishing trips in the Gulf of Mexico over a period of 2.5 years. The study focused on “bottom longline” fishing, a system where hundreds of lines are attached to a horizontal bar that is then lowered to reach the sea bed. Dr. O’Farrell explained the procedure this way: Go to a location and put the line down. Stay for a few hours. The lines are a mile long and have a buoy (浮标)at either end. When they pull that up, they assess the catch, and then decide if they will stay or move on to a different spot.Over two years of collecting data under various climate conditions, the researchers discovered that the fishermen were fairly c onsistent. “The exploiters would go to a smaller set of locations over and over, and go with what theyknow,” Dr. O’Farrell said. The explorers would constantly try a wider range; they’d sample new places.In the long run, there wasn’t a huge difference in payoffs between the two groups, perhaps due to the sharing information between fishing crews, said Dr. O’Farrell. But in challenging times, the study’s message was clear: “You can try new things in the face of uncertainty.”74.The author takes the songbird as an example to indicate that ______.A.like birds, humans tend to be satisfied with the predictableB.some birds are used to looking for food instead of being fedC.there exist the conservative and the adventurous like humansD.birds choose different ways to look for food in different weather75.According to the third paragraph, people who mastered “explore-exploit” trade-off ______.A.will choose either to pursue novelty or keep the status quoB.are ready to risk in time of difficultyC.will be tough in good times and bad timesD.will grow to be experts in lab studies76.Which can be inferred from the new study led by Shay O’Farrell and James Sanchirico?A.The two groups react to the unexpected differently.B.The “explore-exploit” trade-off helps scientific research a lot.C.The exploiters are used to fishing based solely on their experience.D.The explorers tend to achieve more than the exploiters in the long run.77.Which of the following can be the best title for passage?A.How the Exploiter differs from the Explorer B.How to Become a Productive FishermanC.What is “Explore-Exploit” Trade-off D.When to take risks mattersSection CDirections: Read the following passage. Fill in each blank with a proper sentence given in the Each sentence can be used only once. Note that there are two more sentences than you need.The Maya loved cacao so much that they used the beans as currency. They also believed it is good for you—which many people still say today about cacao’s most famous byproduct, chocolate. 78 . While some have suggested that less than an ounce of dark chocolate might improve heart health, much of the research doesn’t involve eating actual chocolate but rather its components — flavanol, especially.79 . In a clinical trial of 21,000 adults, they found that the half of the group that took500mg of. cocoaflavanol supplements daily had a significantly lower risk of death from cardiovascular disease than those who had taken a placebo(安慰剂).Flavanols may also boost insulin sensitivity, according to some studies, which might be helpful in reducing the risk of type 2 diabetes(糖尿病). 80 . Those at risk of diabetes might be wise to choose a cacao-inspired supplement instead of eating chocolate—and the sugar it contains. Other research suggests that the flavanols found in cacao (also present in fruits, vegetables, and tea)could slow cognitive decline during aging, or even boost brain performance by improving blood flow to the cerebral cortex.What these findings mean for chocolate is limited, however. Participants would have had to eat multiple fat and sugar filled chocolate bars a day to source 500mg of flavanols. 81 . So understanding why certain types of chocolate are healthier than the rest is the focus of further research.Ⅳ.Fill in the BlanksHow sneaker culture took over the worldSneakers have come a long way from when they were first invented in 1860s England for the upper-class playing croquet(槌球)and tennis.Long worn for function 82 82 fashion, today sneakers have become an entire culture—both a form of self-expression and a high art found in museum exhibits and designer auction houses.83 transformed sneaker culture into a true phenomenon was the 1985 release of Nike’s Air Jordan 1s. In 1984, Michael Jordan was a talented rookie who had yet to play in a professional game. 84 that, Nike saw Jordan as the future of their brand, signing him to a five-year, $2.5 million endorsement(代言)deal. 85 Jordan matured into one of the greatest basketball players of all time, the sneaker’s popularity skyrocketed.Meanwhile, another cultural shift 86 (take)place with casual Fridays introduced in white-collar businesses. It was when men were allowed to put aside their suits and wear something one day a week that showed people who they really were.As sneakers became increasingly desired, footwear companies turned to 87 (generate)even more publicity by collaborating with celebrities and luxury brands, as well as releasing small batches of limited-edition shoes with eye-pop ping designs.Celebrities also started their collaborations with sneaker brands, which helped target a whole new demographic of people to experience sneaker culture. It was a blending of high and low fashion, 88 the shoe industry has never really seen before. A pair that Jordan wore in his legendary final NBA season 89 (sell )even for $2.2 mllion, making them the most expensive sneakers ever to appear at auction.By the mid-2010s, speakers 90 (become)solid gold status symbols. Wearing rare and cool sneakers became an expression of one’s social status. But not until recently, sneakers are finally getting their due as part of our cultural heritage—and particularly how Black culture has shaped that heritage. It took decades for the sneaker industry to recognize that 91 these Black athletes or artists that championed their products there would be no sneaker culture.Ⅴ.Translations92.结果看来这项传统的确值得传承给我们的后代。
湖南省部分学校2022-2023学年高一(下)期中考试语文第Ⅰ卷(阅读题)一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1-5题。
材料一:我国传统史学有许多优长之处,史论结合便是其中之一。
《左传》的“君子曰”,《史记》的“太史公曰”,《资治通鉴》的“臣光曰”等,都是史论结合的代表。
同时,在史书注释、书目提要中也都包含丰富的评论。
这些史论结合的精彩之论代表了我国传统史学的理论积累,需要下功夫深入发掘和总结。
关于《史记》中的史论,我们比较熟知的是“太史公曰”。
凡是研究过司马迁史学思想的人都知道,其史论涉及的内容十分广泛。
比如,他对当时国家经济发展状况就非常关切。
在《货殖列传》中,他在分析人类社会物质生产情况时说:“故待农而食之,虞而出之,工而成之,商而通之。
此宁有政教发征期会哉?人各任其能,竭其力,以得所欲。
故物贱之征贵,贵之征贱,各劝其业,乐其事,若水之趋下,日夜无休时,不召而自来,不求而民出之。
岂非道之所符,而自然之验邪?”这段论述一方面说明物质生产的历史有其自身规律,是不以人的意志为转移的;另一方面说明社会分工是由生产和交换的需要决定的,而社会生产的发展又是由于人们为满足物质需要而从事工作的结果。
这些论点表明司马迁已经认识到物质生产对社会发展的重要作用,并且力图以此为切入点探索社会发展的原因。
这可以说是一种朴素的唯物史观。
再看司马光的《资治通鉴》。
司马光在《资治通鉴》里所发表的史论,一般都认为有两种形式:一是“臣光曰”,二是引前人的史论。
其实除了这两种形式,司马光在书中还常常借历史人物之口来发表议论、表达自己的观点,其史论内容十分丰富而且十分深刻。
以“臣光曰”中关于治国用人方面的一些史论为例。
司马光提出“为治之要,莫先于用人”,认为一个国家能否治理得好,关键在于能否选拔一批得力的人才,所以他在《资治通鉴》中非常注意并突出叙述了举贤用能的史实。
《资治通鉴》关于用人方面的精彩之论有很多,其他方面的史论更是不胜枚举。
2022-2023学年安徽省合肥市高一下学期期中考试数学试题一、单选题1.若复数为纯虚数,则实数的值为( )()242iz a a =-+-a A .2B .2或C .D .2-2-4-【答案】C【分析】根据给定条件,利用纯虚数的定义列式计算作答.【详解】因为复数为纯虚数,则有,解得,()242i z a a =-+-24020a a ⎧-=⎨-≠⎩2a =-所以实数的值为.a 2-故选:C2.在中,内角A ,B ,C 所对的边分别是a ,b ,c ,且,则的形状为ABC 2cos c a B =ABC ( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形【答案】A【分析】已知条件用正弦定理边化角,由展开后化简得,可得出等()sin sin C A B =+tan tan A B =腰三角形的结论.【详解】,由正弦定理,得,2cos c a B =()sin sin 2sin cos C A B A B=+=即sin cos cos sin 2sin cos ,A B A B A B +=∴,可得,sin cos cos sin A B A B =tan tan A B =又,∴,0π,0πA B <<<<A B =则的形状为等腰三角形.ABC 故选:A.3.某圆锥的侧面展开图是半径为3,圆心角为的扇形,则该圆锥的体积为( )120︒A .BC .D 【答案】D【分析】求出扇形的弧长,进而求出圆锥的底面半径,由勾股定理得到圆锥的高,利用圆锥体积公式求解即可.【详解】因为圆锥的侧面展开图是半径为3,圆心角为的扇形,120︒所以该扇形的弧长为,120π32π180⨯=设圆锥的底面半径为,则,解得:,r 2π2πr =1r =因为圆锥的母线长为3,所以圆锥的高为h =该圆锥的体积为.2211ππ133r h =⨯⨯=故选:D4.中,三个内角A ,B ,C 的对边分别为a ,b ,c .已知,B 的大ABC π4A =a =b =小为( )A .B .C .或D .或π6π3π65π6π32π3【答案】D【分析】根据正弦定理即可求解.【详解】由正弦定理可得sin sin sin a B b A B B =⇒==由于,,所以或,()0,πB ∈b a>B =π32π3故选:D5.设点P 为内一点,且,则( )ABC ∆220PA PB PC ++=:ABP ABC S S ∆∆=A .B .C .D .15251413【答案】A【分析】设AB 的中点是点D ,由题得,所以点P 是CD 上靠近点D 的五等分点,即14PD PC=- 得解.【详解】设AB 的中点是点D ,∵,122PA PB PD PC+==- ∴,14PD PC=- ∴点P 是CD 上靠近点D 的五等分点,∴的面积为的面积的.ABP ∆ABC ∆15故选:A【点睛】本题主要考查向量的运算,意在考查学生对这些知识的理解掌握水平.6.如图,在长方体中,已知,,E 为的中点,则异面直1111ABCD A B C D -2AB BC ==15AA =11B C 线BD 与CE 所成角的余弦值为()ABCD【答案】C【分析】根据异面直线所成角的定义,利用几何法找到所成角,结合余弦定理即可求解.【详解】取的中点F ,连接EF ,CF ,,易知,所以为异面直线BD11C D 11B D 11EF B D BD∥∥CEF ∠与CE所成的角或其补角.因为1112EF B D ==CE CF ====余弦定理得.222cos 2EF EC CF CEF EF EC +-∠====⋅故选:C7.在《九章算术》中,底面为矩形的棱台被称为“刍童”.已知棱台是一个侧棱相ABCD A B C D -''''等、高为1的“刍童”,其中,“刍童”外接球的表面积为22AB A B ''==2BC B C ''==( )A .B .CD .20π20π3【答案】A【分析】根据刍童的几何性可知外接球的球心在四棱台上下底面中心连线上,设球心为O ,根据几何关系求出外接球半径即可求其表面积.【详解】如图,连接AC 、BD 、、,设AC ∩BD =M ,∩=N ,连接MN .A C ''B D ''AC ''BD ''∵棱台侧棱相等,∴易知其外接球球心在线段MN 所在直线上,设外接球球心为ABCD A B C D -''''O ,如图当球心在线段MN 延长线上时,易得,MC =2,,,4AC ===2A C ''===1NC '=MN =1,由得,,即OC OC '=2222NC ON OM MC '+=+,()()2222141141OM MN OM OM OM OM ++=+⇒++=+⇒=故OC =OC ==∴外接球表面积为.24π20π⋅=如图当球心在线段MN 上时,由得,,即OC OC '=2222NC ON OM MC '+=+舍去,()()2222141141MN OM OM OM OM OM +-=+⇒+-=+⇒=-故选:A【点睛】关键点睛:利用刍童的几何性确定外接球的球心是解题的关键.8.如图,直角的斜边长为2,,且点分别在轴,轴正半轴上滑动,点ABC ∆BC 30C ∠=︒,B C x y 在线段的右上方.设,(),记,,分别考查A BC OA xOB yOC =+ ,x y ∈R M OA OC =⋅N x y =+的所有运算结果,则,MN A .有最小值,有最大值B .有最大值,有最小值M N M N C .有最大值,有最大值D .有最小值,有最小值M N M N 【答案】B【分析】设,用表示出,根据的取值范围,利用三角函数恒等变换化简,OCB α∠=α,M N α,M N 进而求得最值的情况.,M N 【详解】依题意,所以.设,则30,2,90BCA BC A ∠==∠=1AC AB ==OCB α∠=,所以,,所30,090ABx αα∠=+<<()())30,sin 30Aαα++()()2sin ,0,0,2cos B C αα以,当时,取得最大值()()12cos sin 30sin 2302M OA OC ααα==+=++⋅ 23090,30αα+==M 为.13122+=,所以,所以OA xOB yOC =+ ()sin 302cos x y αα+==时,有最小值为()sin 302cos N x y αα+=+=+ 1=290,45αα==N 故选B.1+【点睛】本小题主要考查平面向量数量积的坐标运算,考查三角函数化简求值,考查化归与转化的数学思想方法,属于难题.二、多选题9.下列关于复数的四个命题,其中为真命题的是( )21i z =-A .z 的虚部为1B .22iz =C .z 的共轭复数为D .1i -+2z =【答案】AB【分析】根据复数的除法运算化简复数,即可结合选项逐一求解.【详解】,故虚部为1,共轭复数为,()()()21i 21i 1i 1i 1i z +===+--+1i-=,故AB 正确,CD 错误,()221i 2i z =+=故选:AB10.蜜蜂的巢房是令人惊叹的神奇天然建筑物.巢房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱形的底,由三个相同的菱形组成.巢中被封盖的是自然成熟的蜂蜜.如图是一个蜂巢的正六边形开口,下列说法正确的是( )ABCDEF A .B .AC AE BF -= 32AE AC AD+= C .D .在上的投影向量为AF AB CB CD ⋅=⋅ AD AB AB 【答案】BCD【分析】对A ,利用向量的减法和相反向量即可判断;对B ,根据向量的加法平行四边形法则即可判断;对C ,利用平面向量的数量积运算即可判断;对D ,利用向量的几何意义的知识即可判断.【详解】连接,与交于点,如图所示,,,,,,AE AC AD BF BD CE CE AD H 对于A :,显然由图可得与为相反向量,故A 错误;AC AE AC EA EC -=+= EC BF对于B :由图易得,直线平分角,且为正三角形,根据平行四边形法AE AC=AD EAC ∠ACE △则有,与共线且同方向,2AC AE AH += AH AD易知,均为含角的直角三角形,EDH AEH △π6,即,3AH DH = 所以,34AD AH DH DH DH DH =+=+=又因为,故,26AH DH= 232AH AD=故,故B 正确;32AE AC AD+= 对于C :设正六边形的边长为,ABCDEF a 则,,22π1cos 32AF AB AF AB a⋅=⋅=- 22π1cos 32CB CD CB CD a ⋅=⋅=-所以,故C 正确;AF AB CB CD ⋅=⋅ 对于D :易知,则在上的投影向量为,故D 正确,π2ABD ∠=AD AB AB故选:BCD .11.有一个三棱锥,其中一个面为边长为2的正三角形,有两个面为等腰直角三角形,则该几何体的体积可能是( )AB CD【答案】BCD【分析】分三种情况讨论,作出图形,确定三棱锥中每条棱的长度,即可求出其体积.【详解】如图所示:①若平面,为边长为2的正三角形,,,都是等腰直角三AB ⊥BCD BCD △2AB =ABD △ABC 角形,满足题目条件,故其体积;11222sin 6032V =⨯⨯⨯⨯⨯︒=②若平面,为边长为2的正三角形,,,都是等腰直角三AB ⊥BCD ACD AB =ABD △ABC角形,满足题目条件,故其体积1132V ==③若为边长为2的正三角形,,都是等腰直角三角形,BCD △ABD △ABC,中点,因为,而2AB BC CD AD ====AC =AC E BE AC ⊥,所以,即有平面,故其体积为222DE B D E B +=BE DE ⊥BE ⊥ACD 112232V =⨯⨯=故选:BCD12.如图,已知的内接四边形中,,,,下列说法正确的O ABCD 2AB =6BC =4AD CD ==是( )A .四边形的面积为B ABCDC .D .过作交于点,则4BO CD ⋅=- D DF BC ⊥BC F 10DO DF ⋅=【答案】BCD【分析】A 选项,利用圆内接四边形对角互补及余弦定理求出,,进而求出1cos 7D =-1cos 7B =,利用面积公式进行求解;B 选项,在A 选项基础上,由正弦定理求出外接圆直径;Csin ,sin B D 选项,作出辅助线,利用数量积的几何意义进行求解;D 选项,结合A 选项和C 选项中的结论,先求出∠DOF 的正弦与余弦值,再利用向量数量积公式进行计算.【详解】对于A ,连接,在中,,,AC ACD 21616cos 32AC D +-=2436cos 24AC B +-=由于,所以,故,πB D +=cos cos 0B D +=22324003224AC AC--+=解得,22567AC =所以,,所以1cos 7D =-1cos 7B =sin sin B D ===故11sin 2622ABC S AB BC B =⋅=⨯⨯=11sin 4422ADC S AD DC D =⋅=⨯⨯= 故四边形,故A 错误;ABCD =对于B ,设外接圆半径为,则,R 2sin AC R B ===B 正确;对于C ,连接,过点O 作OG ⊥CD 于点F ,过点B 作BE ⊥CD 于点E ,则由垂径定理得:BD ,122CG CD ==由于,所以,即,πA C +=cos cos 0A C +=22416163601648BD BD +-+-+=解得,所以,所以,且,BD =1cos 2C =π3C =1cos 632CE BC C =⋅=⨯=所以,即在向量上的投影长为1,且与反向,321EF =-= BO CD EG CD 故,故C 正确;4BO CD EG CD ⋅=-⋅=-对于D,由C 选项可知:,故,π3C =sin 604DF CD =⋅︒== 30CDF ∠=︒因为,由对称性可知:DO 为∠ADC 的平分线,故,AD CD =1302ODF ADC ∠=∠-︒由A 选项可知:,显然为锐角,1cos 7ADC ∠=-12ADC ∠故1cos 2ADC ∠==1sin 2ADC ∠==所以1cos cos 302ODF ADC ⎛⎫∠=∠-︒ ⎪⎝⎭11cos cos30sin sin3022ADCADC =∠⋅︒+∠⋅︒=所以,故D 正确.cos 10DO DF DO ODF DF ∠==⋅=⋅ 故选:BCD三、填空题13.已知向量,,若,则________.()2,4a =(),3b m =a b ⊥ m =【答案】6-【分析】依题意可得,根据数量积的坐标表示得到方程,解得即可;0a b ⋅=【详解】因为,且,()2,4a =(),3b m =a b ⊥ 所以,解得.2430a b m ⋅=⨯+⨯=6m =-故答案为:6-14.若复数所对应复平面内的点在第二象限,则实数的取值范围为________;()16z m i i=++m 【答案】60m -<<【分析】先化成复数代数形式得点坐标,再根据条件列不等式解得实数的取值范围.m 【详解】因为对应复平面内的点为,又复数所对应复平面()6z m m i=++6m m +,()16z m i i=++内的点在第二象限,所以06060m m m <⎧∴-<<⎨+>⎩【点睛】本题重点考查复数的概念,属于基本题.复数的实部为、虚部为、模为(,)a bi a b R +∈a b 、对应点为、共轭为(,)a b .-a bi15.已知,是边AB 上一定点,满足,且对于AB 上任一点P ,恒有ABC 0P 014P B AB= .若,,则的面积为________.00PB PC P B P C ⋅≥⋅ π3A =4AC = ABC【答案】【分析】建立直角坐标系,利用平面向量数量积的坐标运算公式,结合二次函数的性质、三角形面积公式进行求解即可.【详解】以所在的直线为横轴,以线段的中垂线为纵轴建立如图所示的直角坐标系,AB AB设,,,因为,所以,()40AB t t =>()2,0A t -()2,0B t 014P B AB =()0,0P t 设,,(),C a b ()(),022P x t x t -≤≤,()()()()002,0,,,,0,,PB t x PC a x b P B t P C a t b =-=-==-由,()()()()2200220PB PC P B P C t x a x t a t x x a t at t ⋅≥⋅⇒--≥-⇒-+++≥设,该二次函数的对称轴为:,()()222f x x x a t at =-++22a tx +=当时,即,222a t x t+=<-6a t <-则有,所以无实数解,()()222042203f t t t a t at t a t-≥⇒++++≥⇒≥-当时,即,222a tx t +=>2a t >则有,所以无实数解,()()22204220f t t t a t at t a t≥⇒-+++≥⇒≤当时,即,2222a tt t +-≤≤62t a t -≤≤则有,而,所以,()()2222400a t at t a ∆=-+-+≤⇒≤⎡⎤⎣⎦20a ≥0a =显然此时在纵轴,而,所以该三角形为等边三角形,()0,C b π3A =故的面积为ABC 1442⨯⨯=故答案为:【点睛】关键点睛:建立合适的直角坐标系,利用二次函数对称轴与区间的位置关系关系分类讨论是解题的关键.16.我国古代数学家祖暅求几何体的体积时,提出一个原理:幂势即同,则积不容异.意思是:夹在两个平行平面之间的两个等高的几何体被平行于这两个面的平面去截,若截面积相等,则两个几何体的体积相等,这个定理的推广是:夹在两个平行平面间的几何体,被平行于这两个平面的平面所截,若截得两个截面面积比为k ,则两个几何体的体积比也为k .已知线段AB 长为4,直线l 过点A 且与AB 垂直,以B 为圆心,以1为半径的圆绕l 旋转一周,得到环体;以A ,B 分别为上M 下底面的圆心,以1为上下底面半径的圆柱体N ;过AB 且与l 垂直的平面为,平面,且距β//αβ离为h ,若平面截圆柱体N 所得截面面积为,平面截环体所得截面面积为,我们可以α1S αM 2S 求出的比值,进而求出环体体积为________.12S S M 【答案】28π【分析】画出示意图的截面,结合图形可得和的值,进而求出圆柱的体积,乘以,可得环1S 2S 2π体的体积,得到答案.M 【详解】画出示意图,可得,14S ==222ππS r r =-外内其中,,(224r =外(224r =内故,即,21π2πS S ==1212πS S =环体体积为.M 22π2π4π8πV =⨯=柱故答案为:28π四、解答题17.如图所示,在中D 、F 分别是BC 、AC 的中点,,,.ABC 23AE AD =AB a =AC b = (1)用,表示向量,;a bAD BF (2)求证:B ,E ,F 三点共线.【答案】(1),()12AD a b =+ 12BF b a=-(2)证明见解析【分析】(1)由向量的线性运算法则求解;(2)用,表示向量、,证明它们共线即可得证.a bBF BE 【详解】(1)∵,,D ,F 分别是BC ,AC 的中点,AB a =AC b = ∴,()()111222AD AB BD AB BC AB AC AB a b=+=+=+-=+ ,12BF AF AB b a=-=- (2)由(1),,∴1233BE b a =- 12BF b a=-1312322332BF b a b a BE ⎛⎫=-=-= ⎪⎝⎭∴与共线,又∵与有公共点B ,BF BE BF BE故B ,E ,F 三点共线.18.在中,a ,b ,c 分别是角A 、B 、C 的对边,且.ABC222a b c +=+(1)求C ;(2)若,求A .tan 2tan B a cC c -=【答案】(1)45C =︒(2)75A =︒【分析】(1)由余弦定理即可求解,(2)利用正弦定理边角互化,结合两角和的正弦公式即可得,进而可求解.60B =︒【详解】(1)∵,∴,∴,222a b c +=+2222a b c ab +-=cos C =由于C 是三角形内角,∴.45C =︒(2)由正弦定理可得,tan 22sin sin tan sin B a c A CC c C --==∴sin cos 2sin sin cos sin sin B C A CB C C -=∴,∴,sin cos 2sin cos sin cos B C A B C B =-sin cos sin cos 2sin cos B C C B A B +=∴,∴.()sin 2sin cos B C A B+=sin(π)sin 2sin cos A A A B ==-∵,∴,sin 0A ≠1cos 2B =由于B 是三角形内角 ,∴,则.60B =︒180456075A ︒-︒-︒==︒19.如图,数轴的交点为,夹角为,与轴、轴正向同向的单位向量分别是.由平面,x y O θx y 21,e e 向量基本定理,对于平面内的任一向量,存在唯一的有序实数对,使得,OP(),x y 12OP xe ye =+ 我们把叫做点在斜坐标系中的坐标(以下各点的坐标都指在斜坐标系中的坐标).(),x y P xOy xOy(1)若为单位向量,且与的夹角为,求点的坐标;90,OP θ=OP 1e 120 P(2)若,点的坐标为,求向量与的夹角的余弦值.45θ=P (OP 1e【答案】(1)1,2⎛- ⎝【分析】(1)时,坐标系为平面直角坐标系,设点利用求出,再90θ= xOy (),P x y 112⋅=- OP e x 利用模长公式计算可得答案;(2)根据向量的模长公式计算可得答案.,12==OP e e 1⋅OP e【详解】(1)当时,坐标系为平面直角坐标系,90θ=xOy 设点,则有,而,(),P x y (),OP x y =()111,0,e OP e x=⋅=又,所以,又因,111cos1202OP e OP e ⋅=⋅⋅=- 12x =-1OP ==解得的坐标是;y =P 1,2⎛- ⎝(2)依题意夹角为,21,e e 12121245,cos45⋅=⋅==e e e e OP e e12OP e e ∴====,()2111121121cos ,2OP e OP e OP e e e e e e e αα⋅=⋅⋅=⋅=+⋅=+⋅=2,cos αα==20.如图所示,在四棱锥中,平面,,E 是的中点.P ABCD -//BC PAD 12BC AD =PD(1)求证:;//BC AD (2)若M 是线段上一动点,则线段上是否存在点N ,使平面?说明理由.CE AD //MN PAB 【答案】(1)证明见解析;(2)存在,理由见解析.【分析】(1)根据线面平行的性质定理即可证明;(2)取中点N ,连接,,根据线面平行的性质定理和判断定理即可证明.AD CN EN 【详解】证明:(1)在四棱锥中,平面,平面,P ABCD -//BC PAD BC ⊂ABCD 平面平面,ABCD ⋂PAD AD =∴,//BC AD (2)线段存在点N ,使得平面,理由如下:AD //MN PAB取中点N ,连接,,AD CN EN ∵E ,N 分别为,的中点,PD AD ∴,//EN PA ∵平面,平面,EN ⊄PAB PA ⊂PAB ∴平面,//EN PAB 取AP 中点F,连结EF,BF ,,且,//EF AN =EF AN 因为,,//BC AD 12BC AD =所以,且,//BC EF =BC EF 所以四边形BCEF 为平行四边形,所以.//CE BF 又面PAB ,面PAB ,所以平面;CE ⊄BF ⊂//CE PAB 又,CE EN E = ∴平面平面,//CEN PAB ∵M 是上的动点,平面,CE MN ⊂CEN ∴平面PAB ,//MN ∴线段存在点N ,使得MN ∥平面.AD PAB 21.合肥一中云上农舍有三处苗圃,分别位于图中的三个顶点,已知,ABCAB AC ==.为了解决三个苗圃的灌溉问题,现要在区域内(不包括边界)且与B ,C 等距的40m BC =ABC 一点O 处建立一个蓄水池,并铺设管道OA 、OB 、OC.(1)设,记铺设的管道总长度为,请将y 表示为的函数;OBC θ∠=m y θ(2)当管道总长取最小值时,求的值.θ【答案】(1)()202sin π200cos 4y θθθ-⎛⎫=+<< ⎪⎝⎭(2)π6θ=【分析】(1)根据锐角三角函数即可表示,,进而可求解,20cos BO θ=20sin cos OD θθ=(2)利用,结合三角函数的最值可得.2sin cos k θθ-=k 【详解】(1)由于,在的垂直平分线 上,AB AC ==,OB OC O =∴BC AD 若设,则, ∴OBC θ∠=20cos BO θ=20sin cos OD θθ=20sin 20cos OA θθ=-则;()202sin 202020tan 2200cos cos 4y θπθθθθ-⎛⎫=-+⨯=+<< ⎪⎝⎭(2)令得2sin cos k θθ-=2cos sin k θθ=+≤故,又,故23k≥0k >k ≥min2020y =+此时:得2sin cos θθ-=πsin 2sin 23θθθ⎛⎫+=+= ⎪⎝⎭πsin 13θ⎛⎫+= ⎪⎝⎭又,故,故π0,4θ⎛⎫∈ ⎪⎝⎭ππ32θ+=π6θ=22.数学史上著名的波尔约-格维也纳定理:任意两个面积相等的多边形,它们可以通过相互拼接得到.它由法卡斯·波尔约(FarksBolyai )和保罗·格维也纳(PaulGerwien )两位数学家分别在1833年和1835年给出证明.现在我们来尝试用平面图形拼接空间图形,使它们的全面积都与原平面图形的面积相等:(1)给出两块相同的正三角形纸片(如图1、图2),其中图1,沿正三角形三边中点连线折起,可拼得一个正三棱锥;图2,正三角形三个角上剪出三个相同的四边形(阴影部分),其较长的一组邻边边长为三角形边长的,有一组对角为直角,余下部分按虚线折起,可成一个14缺上底的正三棱柱,而剪出的三个相同的四边形恰好拼成这个正三棱锥的上底.(1)试比较图1与图2剪拼的正三棱锥与正三棱柱的体积的大小;(2)如果给出的是一块任意三角形的纸片(如图3),要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形的面积相等.请仿照图2设计剪拼方案,用虚线标示在图3中,并作简要说明.【答案】(1)柱锥V V>(2)答案见解析【分析】(1)根据题中的操作过程,结合棱锥、棱锥的体积进行求解比较即可;(2)根据题中操作过程,结合三角形内心的性质、直三棱柱的定义进行操作即可.【详解】(1)依上面剪拼方法,有.柱锥V V >推理如下:设给出正三角形纸片的边长为2,那么,正三棱锥与正三棱柱的底面都是边长为1的正如图所示:在正四面体中,高,DO ===在图2一顶处的四边形中,如图所示:直三棱柱高,()π11tan tan 21622PN PMN MN =∠⋅=⨯⨯-==,13V V h h ⎛⎫-=-= ⎪⎝⎭柱锥柱锥0=>∴.柱锥V V >(2)如图,分别连接三角形的内心与各顶点,得三条线段,再以这三条线段的中点为顶点作三角形.以新作的三角形为直棱柱的底面,过新三角形的三个顶点向原三角形三边作垂线,沿六条垂线剪下三个四边形,可以拼成直三棱柱的上底,余下部分按虚线折起,成为一个缺上底的直三棱柱,再将三个四边形拼成上底即可得到直三棱柱.。
郑州外国语学校2023-2024学年高一下期期中试卷数 学(120分钟 150分)一、单选题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知复数(为虚数单位),则在复平面内对应的点位于( )A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】B 【解析】【分析】根据给定条件,利用复数乘法运算求出即可得解.【详解】复数,在复平面内对应的点位于第二象限.故选:B2. 下列说法正确的是( )A. 底面是正多边形的棱锥是正棱锥B. 长方体是平行六面体C. 用一个平面去截圆柱,所得截面一定是圆形或矩形D. 用一个平面去截圆锥,截面与底面之间的部分是圆台【答案】B 【解析】【分析】根据棱柱、棱锥、圆柱和圆锥的定义对选项一一判断即可得出答案.【详解】对于A , 底面是正多边形,侧棱均相等的棱锥是正棱锥,故A 错误;对于B ,平行六面体是各个面都为平行四边形的棱柱,而长方体是各面为矩形的棱柱,所以长方体是平行六面体,故B 正确;对于C ,用一个平面去截圆柱,所得截面可能为椭圆,故C 错误;对于D ,用一个平行于底面的平面截圆锥,底面与截面之间的部分叫做圆台,故D 错误.故选:B .3. 在中,角所对边分别为,若,则( )A.B. 2C. 1或2D. 2的()i 1i z =+i z z 1i z =-+z (1,1)-ABC ,,A B C ,,a b c π1,6a b B ===c =【解析】【分析】由余弦定理即可求.【详解】由余弦定理得,化简得,解出或2.故选:C.4. 已知直线、,平面、,满足且,则“”是“”的( )条件A. 充分非必要 B. 必要非充分条C. 充要D. 既非充分又非必要【答案】A 【解析】【分析】利用空间中的垂直关系和充分条件、必要条件的定义进行判定.【详解】因为,所以,又因为,所以,即“”是“”的充分条件;如图,在长方体中,设面为面、面为面,则,且与面不垂直,即“”不是“”的必要条件;所以“”是“”的充分不必要条件.故选:A.5. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为222cos 2a c b B ac +-==2320c c -+=1c =m n αβn αβ= αβ⊥m β⊥m n ⊥n αβ= n β⊂m β⊥m n ⊥m β⊥m n ⊥ABCD αBCEF βm n ⊥m βm β⊥m n ⊥m β⊥m n ⊥A.B.C.D.【答案】C 【解析】【分析】设,利用得到关于的方程,解方程即可得到答案.【详解】如图,设,则,由题意,即,化简得,解得.故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.6. 已知直角三角形ABC 中,,AB =2,AC =4,点P 在以A 为圆心且与边BC 相切的圆上,则的最大值为( ),CD a PE b ==212PO CD PE =⋅,a b ,CD a PE b ==PO ==212PO ab =22142a b ab -=24()210b b a a -⋅-=b a =90A ∠=︒PB PC ⋅A.B.C.D.【答案】D 【解析】【分析】建立如图所示的坐标系,根据可求其最大值.【详解】以为原点建系,,,即,故圆的半径为,∴圆,设中点为,,,∴,故选:D.16556525PB PC PD =- A ()()0,2,4,0BC :142x yBC +=240x y +-=r 2216:5A x y +=BC ()2,1D 22221120544PB PC PD BC PD PD =-=-⨯=- max PD AD r =+==()max8156555PB PC =-=7. 在中,内角A ,B ,C 所对的边分别为,,,将该三角形绕AC 边旋转得一个旋转体,则该旋转体体积为()A. B. C. D.【答案】B 【解析】【分析】根据题意利用余弦定理可得,进而可得该旋转体为大圆锥去掉小圆锥,结合圆锥的体积公式运算求解.【详解】因为,即,由余弦定理可得,且,可得,又因为,,即,解得或(舍去),如图,将该三角形绕AC 边旋转得一个旋转体,则该旋转体为大圆锥去掉小圆锥,可得,则,大圆锥的底面半径为3,高为,小圆锥的底面半径为3,所以该旋转体体积为.故选:B.8. 如图,透明塑料制成的长方体容器内灌进一些水,固定容器底面一边于地面上,再将容器倾斜.随着倾斜度的不同,有下面五个命题:①有水的部分始终呈棱柱形;ABC ,,a b c 222bc a b c =--a=b =360︒2π,3A c ==CO AO 222bc a b c =--222b c a bc +-=-2221cos 222b c a bc A bc bc +--===-()0,πA ∈2π3A =a =b =2213c =--2180c -=c =c =-360︒CO AO cos 60sin 603AO AB BO AB =︒==︒=CO CA AO =+=CO 119π3V =⨯⨯=AO 219π3V =⨯=12V V V =-=-=1111ABCD A B C D -BC②没有水的部分始终呈棱柱形;③水面所在四边形的面积为定值;④棱始终与水面所平面平行;⑤当容器倾斜如图3所示时,是定值.其中正确命题的个数为( )A. 2B. 3C. 4D. 5【答案】C 【解析】【分析】根据棱柱的定义判定①②,利用线面垂直的性质定理可得水面是矩形判定③,利用线面平行的判定定理判断④,利用等体积法判断⑤即可.【详解】根据棱柱的定义:有两个面是相互平行且是全等的多边形,其余没相邻两个面的交线也相互平行,而这些面都是平行四边形可知,由于边固定,所以在倾斜的过程中,始终有,且平面平面,所以在倾斜的过程中有水的部分始终呈棱柱形,同理没有水的部分始终呈棱柱形,①②正确;在倾斜的过程中,,长度不变,不断变化,又因为,所以始终垂直于平面,又平面,所以水面是矩形,所以水面所在四边形的面积不是定值,③说法错误;因为在倾斜的过程中,始终与平行,且水面,水面,所以棱始终与水面所在平面平行,④说法正确;因为水的体积是不变的,正三棱柱的高始终是也不变,所以底面面积也不会变,即是定值,⑤说法正确;综上正确的是:①②④⑤,在EFGH 11A D ·BE BF EFGH BC AD EH FG BC ∥∥∥AEFB DHGC ,EH FG ,EF HG FG BC ∥FG 11ABB A EF ⊆11ABB A EFGH EFGH 11A D FG 11A D ⊄FG ⊆11A D BEF CHG -BC ·BE BF故选:C二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知,,则下列结论正确的是( )A B. C. 与的夹角为D. 在【答案】AC 【解析】【分析】已知向量的坐标,证明向量垂直,求向量的模长、夹角、投影等都比较简单,根据公式求解即可.【详解】因为,,所以,则,所以,故A 正确;因为,所以,故B 错误;,所以,故C 正确;在方向上的投影向量是,故D 错误.故选:AC.10. 下列说法正确的是( )A. 若、互为共轭复数,则为实数B. 若为虚数单位,为正整数,则C. 已知是关于的方程的一个根,则D. 复数满足,则的最大值为【答案】ACD 【解析】【分析】利用复数乘法可判断A 选项;利用复数的乘方可判断B 选项;分析可知为方程.的(3,1)a =- (2,1)b =()a b b-⊥ 2a b +=a b4πa b()3,1a =- ()2,1b = ()1,2a b -=-()12(2)10a b b -⋅=⨯+-⨯= ()a b b -⊥2(71)a b +=,|2|a b +==cos ,||||a b a b a b ⋅==⋅<>,[π]a b ∈ <>0,π,4a b = <>a b cos ,a a b = 1z 2z 12z z i n 43i in +=1i +x ()220,ax bx a b ++=∈R 1a b +=-z 1z =1i z --11i ±的两根,利用韦达定理可求出、的值,可判断C 选项的正误;利用复数模的三角不等式可判断D 选项.【详解】对于A 选项,设,则,所以,为实数,A 对;对于B 选项,,B 错;对于C 选项,实系数的一元二次方程虚根成对(互为共轭复数),所以为方程的两根,则,所以,,解得,所以,,C 对;对于D 选项,利用复数模的三角不等式可得,当且仅当时,等号成立,D 对.故选:ACD.11.在三棱锥中,已知,点M ,N 分别是AD ,BC 的中点,则( )A.B. 异面直线AN ,CM所成的角的余弦值是C. 三棱锥D. 三棱锥的外接球的表面积为【答案】ABD 【解析】【分析】将三棱锥补形为长方体,向量法求直线的夹角判断A ,B ;利用体积公式求三棱锥的体积判断C ;确定三棱锥的外接球的半径,求表面积判断D.【详解】三棱锥中,已知,三棱锥补形为长方体,如图所示,()220,ax bx a b ++=∈R a b ()1i ,z a b a b =+∈R 2i z a b =-()()2212i i z z a b a b a b =+-=+433i i i n +==-1i ±()220,ax bx a b ++=∈R 0a ≠()()()()21i 1i 1i 1i ab a ⎧+-=⎪⎪⎨⎪++-=-⎪⎩12a b =⎧⎨=-⎩1a b +=-1i 1i 1z z --≤++=+z =A BCD -3,2AB AC BD CD AD BC ======MNAD ⊥78A BCD -A BCD -11πA BCD -3,2AB AC BD CD AD BC ======AHDG FCEB -则有,解得,以为原点,的方向为轴,轴,轴正方向,建立如图所示的空间直角坐标系,点M ,N 分别是AD ,BC 的中点,则有,,,,,,所以,A 选项正确;,,,所以异面直线AN ,CM 所成的角的余弦值是,B 选项正确; 三棱锥,三棱锥,三棱锥,三棱锥,体积都为三棱锥,C 选项错误;222222222949BF BG AB BFBE BC BG BE BD ⎧+==⎪+==⎨⎪+==⎩BF BE BG ===B ,,BF BE BGx y z ())(0,0,0,,,B CAD M N ⎫⎪⎪⎭(0,0,MN = ()AD = 0MN AD ⋅=MN AD ⊥AN ⎛= ⎝ CM ⎛= ⎝ 7cos ,8AN CM AN CM AN CM ⎛⎛++ ⋅-===⋅ 78E BCD -G ABD -F ABC -H ACD -1132⨯=A BCD -4-=的外接球,其表面积为,D 选项正确.故选:ABD.12. 在锐角中,角的对边分别为,且满足,,则下列说法正确的有( )A. 外接圆面积是 B. 面积最大值是C. 周长的取值可以是 D. 内切圆半径的取值范围是【答案】ABD 【解析】【分析】根据,结合正弦定理,可求,结合,可求角.根据三角形外接圆半径满足,可判断A 的真假;结合余弦定理和基本(均值)不等式,可判断B 的真假;利用为锐角三角形,求出角的取值范围,利用正弦定理表示出,可求周长的取值范围,判断C 的真假;根据BC 的结论,结合三角形的面积、三角形周长、三角形内切圆半径之间的关系,判断D 的真假.【详解】由,结合正弦定理,可得:.因为在锐角三角形中,,所以.由,又为锐角,所以.对A :设的外接圆半径为,由,所以,所以外接圆的=A BCD -24π11π⨯=ABC 、、A B C a b c 、、2cos cos )a b C c B =+cos 2)1A B C ++=ABC 4πABC ABC 9ABC 1,1]-2cos cos )a b C c B =+a cos 2)1A B C ++=A 2sin aR A=ABC B b c +)2cos cos a b C c B =+)sin sin cos cos sin a A B C B C =+()B C =+A =sin 0A ≠a =()cos 21A B C ++=⇒()1cos 2B C A +=-⇒22sin A A =⇒sin A =A π3A =ABC R 2sin a R A=⇒24R ==2R =ABC面积为:.故A 正确.对B :由余弦定理(当且仅当时取“”).所以.故B 正确;对C :因为为锐角三角形,所以,,,所以.由正弦定理:,所以,,所以,因为,所以,所以,所以周长的取值范围为.因为,故C 错误;对D :设内切圆半径为,则.又, ,,所以,由.故D 正确.故选:ABD 【点睛】思路点睛:(1)涉及三角形周长或面积的取值范围,可将问题转化为利用基本(均值)不等式求最值或转化为三角函数求值域的问题解决.(2)本题的关键是三角形式锐角三角形,由此确定三角形角的取值范围,是该题的一个关键点.2π4πR =2222cos a b c bc A =+-⇒2212b c bc bc +-=≥b c ==11sin 1222ABC S bc A =£´´=ABC π02B <<π02C <<2π3B C +>ππ62B <<4sin sin sin b c aB C A===4sin b B =4sin c C =()4sin sin b c B C +=+2π4sin sin 3B B ⎡⎤⎛⎫=+-⎪⎢⎥⎝⎭⎣⎦2π4sin sin 3B B ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦π6B ⎛⎫=+ ⎪⎝⎭ππ2π,633B ⎛⎫+∈ ⎪⎝⎭πsin 6B ⎤⎛⎫+∈⎥ ⎪⎝⎭⎦(6,b c +∈ABC (6+(96∉+ABC r ()12ABC S a b c r =++△⇒2ABC S r a b c =++△a =()2312b c bc +-=1sin 2ABC S bc A =r ===6b c <+≤11r -<≤三、填空题:本题共4小题,每小题5分,共20分.13. 圆锥的底面半径为1,其侧面展开图是一个圆心角为的扇形,则此圆锥的母线长为______.【答案】3【解析】【分析】根据圆锥底面圆的半径为1得到侧面展开图扇形的弧长为,然后根据侧面展开图扇形的圆心角为列方程,解方程即可得到圆锥的母线长.【详解】因为圆锥底面圆的半径为1,所以侧面展开图扇形的弧长为,设圆锥的母线长为,因为侧面展开图扇形的圆心角为,所以,解得,所以此圆锥的母线长为3.故答案为:3.14. 已知向量和满足:,,与向量的夹角为______.【答案】【解析】【分析】设向量与向量的夹角为,根据得到,再利用向量的夹角公式计算得到答案.【详解】设向量与向量的夹角为,,故,故,,故.故答案为:15. 四棱锥的底面是边长为1的正方形,如图所示,点是棱上一点,,若且满足平面,则_________23π2π23π2πl 23π23222l ππππ=⨯3l =a b 1a = 2b = 2a b -= ab 2π3abθ()2212a b -=1a b ⋅=-abθ2a b -= ()22224444412a b a a b b a b -=-⋅+=-⋅+= 1a b ⋅=- 11cos 212a b a b θ⋅-===-⨯⋅ []0,πθ∈2π3θ=2π3P ABCD -E PD 35PE PD =PF PC λ=//BF ACE λ=【答案】【解析】【分析】连接BD ,交AC 于点O ,连接OE ,利用中位线性质和线面平行的判定证明平面ACE ,结合平面ACE ,则证明平面平面ACE ,再利用利用面面平行的性质则有,即可得到答案.【详解】如图,连接BD ,交AC 于点O ,连接OE ,由是正方形,得,在线段PE 取点G ,使得,由,得,连接BG ,FG ,则,由平面,平面,得平面,而平面,,平面,因此平面平面,又平面平面,平面平面,则,所以.故答案为:16. 在锐角中,角A ,B ,C 的对边分别为a ,b ,c ,S 为的面积,且,则的取值范围为______.13//BG //BF //BGF //GF EC ABCD BO OD =GE ED =35PE PD =13PG PE =//BG OE OE ⊂ACE BG ⊄ACE //BG ACE //BF ACE BG BF B ⋂=,BG BF ⊂BGF //BGF ACE PCD ACE EC =PCD BGF GF =//GF EC 13PF PG PC PE λ===13ABC ABC ()222S a b c =--22b c bc+【答案】【解析】【分析】利用三角形面积公式与余弦定理,可得,再根据同角关系式可得,然后利用正弦定理与三角恒等变换公式化简可得,结合条件可得取值范围,进而求得的取值范围,令,则,然后由对勾函数的单调性即可求出.【详解】在中,由余弦定理得,且的面积,由,得,化简得,又,,联立得,解得或(舍去),所以,因为为锐角三角形,所以,,所以,所以,所以,所以,设,其中,所以,由对勾函数单调性知在上单调递减,在上单调递增,当时,;当时,;当时,,所以,即的取值范围是.故答案为:.342,15⎡⎫⎪⎢⎣⎭sin 2cos 2A A +=sin A 435tan 5b c C =+tan C b cb tc =221b c t bc t+=+ABC 2222cos a b c bc A =+-ABC 1sin 2S bc A =()222S a b c =--sin 22cos bc A bc bc A =-sin 2cos 2A A +=0,2A π⎛⎫∈ ⎪⎝⎭22sin cos 1A A +=25sin 4sin 0A A -=4sin 5A =sin 0A =()sin sin sin cos cos sin 43sin sin sin 5tan 5A C bB AC A C c C C C C ++====+ABC 02C π<<2B AC ππ=--<22A C ππ-<<13tan tan 2tan 4C A A π⎛⎫>-== ⎪⎝⎭140,tan 3C ⎛⎫∈ ⎪⎝⎭35,53b c ⎛⎫∈ ⎪⎝⎭b t c=35,53t ⎛⎫∈ ⎪⎝⎭221b c b c t bc c b t +=+=+1y t t =+3,15⎛⎫ ⎪⎝⎭51,3⎛⎫ ⎪⎝⎭1t =2y =35t =3415y =53t =3415y =342,15y ∈⎡⎫⎪⎢⎣⎭22b c bc+342,15⎡⎫⎪⎢⎣⎭342,15⎡⎫⎪⎢⎣⎭【点睛】关键点点睛:本题关键在于利用正弦定理与三角恒等变换公式化简可得,进而可以求解.四、解答题:本题共5小题,共70分.其中第17题12分,第18, 19题每题13分,第20题15分,第21题17分,解答应写出文字说明、证明过程或演算步骤.17. 已知复数,,其中.(1)若,求的值;(2)若是纯虚数,求的值.【答案】(1)2 (2)或.【解析】【分析】(1)利用复数相等几何复数运算即可求出结果;(2)利用纯虚数定义即可求出结果.【小问1详解】∵,,,∴,从而,解得,所以的值为2.【小问2详解】依题意得:,因为是纯虚数,所以,解得或.435tan 5b c C =+()21i z a =+243i z =-R a ∈12i z z =a 12z z a 2a =12a =-()21i z a =+243i z =-12i z z =()22i 12i 34i a a a +=-+=+21324a a ⎧-=⎨=⎩2a =a ()()()()()2222122i 143i 464383i i 43i 2525a a a a a a a z z +-+--++-+===-12z z 2246403830a a a a ⎧--=⎨+-≠⎩2a =12a =-18. (1)已知向量,点,若向量,且的坐标;(2)已知向量,若与夹角为钝角,求的取值范围.【答案】(1)或;(2)且.【解析】【分析】(1)设,根据向量垂直和向量的模得到方程组,解出即可;(2)计算出与坐标形式,根据向量点乘小于0,并结合向量反向共线即可得到答案.【详解】(1)设,则因为向量,所以又,所以解得或,所以的坐标为或(2)因为,所以,因为与夹角为钝角,所以,即,解得又不反向共线,所以,解得综上,且.19. 如图,在三棱柱中,侧棱底面,,为的中点,,.(1)求三棱柱的表面积;()2,1a =()2,1A -AB a ⊥ AB = B ()()2,1,4,3a b ==- 2a b - a b λ+ λ()3,3-()1,19λ>-12λ≠-(),B m n 2a b -a b λ+(),B m n ()2,1AB m n =-+AB a ⊥()()2210m n -++=AB =22(2)(1)5m n -++=33m n =⎧⎨=-⎩11m n =⎧⎨=⎩B ()3,3-()1,1()()2,1,4,3a b ==-()()26,7,24,3a b a b λλλ-=-+=+-2a b -a b λ+()()20a b a b λ-⋅+<()()624730λλ-++-<9λ>-,a b()()63724,0λλλ--≠+<12λ≠-9λ>-12λ≠-111ABC A B C -1AA ⊥ABC AB BC ⊥D AC 12AA AB ==3BC =111ABC A B C -(2)求证:平面.【答案】(1) (2)证明见解析【解析】【分析】(1)分别求三棱柱每个面的面积相加即可;(2)利用线面平行的判定定理证明即可.【小问1详解】因为侧棱底面,所以三棱柱为直三棱柱,所以侧面,,均为矩形.因为,所以底面,均为直角三角形.因为,,所以.所以三棱柱的表面积为.【小问2详解】连接交于点,连接,因为四边形为矩形,所以为的中点.因为为的中点,所以.因为平面,平面,所以平面.20. 已知的内角的对边分别为,且,______(1)求的面积;(2)求角的平分线的长.1AB ∥1BCD 16+1AA ⊥ABC 111ABC A B C -11BCC B 11BAA B 11CAA C AB BC ⊥ABC 111A B C 12AA AB ==3BC=AC ===111ABC A B C -()(11122322231622AB BC AC AA AB BC ++⋅+⨯⋅=++⨯+⨯⨯⨯=+1B C 1BC O OD 11BCC B O 1B C D AC 1OD AB ∥1AB ⊄1BC D OD ⊂1BC D 1AB ∥1BC D ABC ,,A B C ,,a b c 7,3a b ==ABC S A AD在①;②;③.这三个条件中任选一个,补充在上面问题的横线中,并作答.【答案】(1(2)【解析】【分析】(1)选①:根据,求得角C ,再利用三角形面积公式求解;选②:利用正弦定理得到,化简求得边c ,再利用余弦定理求得角A ,再利用三角形面积公式求解;选③:根据,根据二倍角公式求得角A ,再利用余弦定理求得边c ,再利用三角形面积公式求解;(2)选①:先利用余弦定理求得边c 和角A ,再由解;选②:由(1)得到结论利用1)得到结论利用【小问1详解】解:选①:因为,所以,又,所以,所以,所以选②:因为,所以由正弦定理可得,所以,即,由正弦定理可得,所以,332AC CB ⋅=- 12cos 72cos 13A B -=-2sin 2A A =158332AC CB ⋅=- 12cos 7sin 2cos 13sin A a AB b B-===-2sin 2A A =11sin sin 2222ABC A A S b AD c AD =⋅⋅+⋅⋅=11sin sin 2222ABC A A S b AD c AD =⋅⋅+⋅⋅=11sin sin 2222ABC A A S b AD c AD =⋅⋅+⋅⋅=332AC CB ⋅=- ()33cos 2ab C π-=-7,3a b ==11cos 14C =sin C =1sin 2ABC S ab C ==7,3a b ==12cos 7sin 2cos 13sin A a AB b B-===-sin 2sin cos 2sin cos sin -=-B B A A B A sin sin 2sin cos 2sin cos 2sin +=+=A B B A A B C 2a b c +=5c =由余弦定理可得,,由,所以,所以选③:因为,所以,由,所以,由余弦定理可得,,所以,所以【小问2详解】选①:由余弦定理可得,,所以.所以,由,所以,因为所以.选②:由(1)知:,,所以解得.选③:由(1)知:,,2221cos 22b c a A bc +-==-()0,A π∈23A π=1sin 2ABC S bc A ==2sin 2AA =22sin cos 222A A A =()0,,cos 02A A π∈>2tan 23A A π==2221cos 22b c a A bc +-==-5c =1sin 2ABC S bc A ==2222cos 25c b a ab C =+-=5c =2221cos 22b c a A bc +-==-()0,A π∈23A π=11sin sin 2222ABC A A S b AD c AD =⋅⋅+⋅⋅=158AD =3,5b c ==23A π=11sin sin 2222ABC A A S b AD c AD =⋅⋅+⋅⋅=158AD =3,5b c ==23A π=所以解得.21. 如图,在三棱柱中,已知侧面,,(1)求证:平面;(2)是线段上的动点,当平面 平面时,求线段的长;(3)若为的中点,求二面角平面角的余弦值.【答案】(1)证明见解析; (2); (3.【解析】【分析】(1)由,,根据线面垂直的判定定理即可证结论;(2)先证面面,因此过作交线的垂线,可得到平面,即可求得=;(3)由上一问面,故过作交所在直线为点,则为所求平面的二面角,利用三角函数即可求值.【小问1详解】证明:侧面,侧面,得,由,知,即,11sin sin 2222ABC A A S b AD c AD =⋅⋅+⋅⋅=158AD =111ABC A B C -AB ⊥11BB C C 11π1,2,3BC AB BB BCC ===∠=1C B ⊥ABC P 1BB 1C AP ⊥11AA B B 1B P E 1BB 11C AE A --12AB ⊥1C B 1C B CB ⊥11ABB A ⊥11BB C C 1C 1C P 1C AP ⊥11AA B B 1B P 121C P ⊥11AA B B P PH AE ⊥AE H 1C HP ∠AB ⊥11BB C C 1C B ⊂11BB C C AB ⊥1C B 111π1,2,3BC CC BB BCC ===∠=190C CB ∠=︒1C B CB ⊥又交于点A ,且都在面内,故平面.【小问2详解】由已知侧面,面,知面面,过作于,面,面面,则面,因面,故平面平面,此时.【小问3详解】由(2):面,面,则过P 作交于,且都在面内,所以面,则二面角平面角为或其补角,由,则,且,所以, ,故.,CB BAABC 1C B ⊥ABC AB ⊥11BB C C AB ⊂11ABB A 11ABB A ⊥11BB C C 1C 11C P BB ⊥P 1C P ⊂11BB C C 11ABB A 111BB C C BB =1C P ⊥11AA B B 1C P ⊂1C AP 1C AP ⊥11AA B B 111ππcoscos 33B P B C BC ===121C P ⊥11AA B B AE ⊂11AA B B 1C P AE ⊥PH AE ⊥AE H 1C P PH P = 1C PH ⊥AE 1C PH 11C AE A --1C HP ∠PHE ABE PH PE AB AE =12,,2AB PE AE ===PH =1C P =11tan C P C HP PH ∠===1cos C HP ∠=。
高一下学期期中数学试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列判断正确的是( ) A. 圆锥的侧面展开图可以是一个圆面B. 底面是等边三角形,三个侧面都是等腰三角形的三棱锥是正三棱锥C. 一个西瓜切3刀最多可切成8块D. 过球面上任意两不同点的大圆有且只有一个 【答案】C 【解析】【分析】由圆锥的母线一定比底面半径大可判断A ;由正三棱锥的侧棱长相等可判断B ;类比一个正方体被三个平面切割可判断C ;取两个点为极点可判断D【详解】选项A ,由圆锥的母线一定比底面半径大,可得圆锥的侧面展开图是一个圆心角不超过的扇2π形,A 错误;选项B ,底面是等边三角形,三个侧面都是等腰三角形的三棱锥的侧棱长不一定相等,故不一定是正三棱锥,B 错误;一个西瓜切3刀等价于一个正方体被三个平面切割,按照如图的方法切割可得最多块数,故C 正确;当两个点为球的两个极点,则过两点的大圆有无数个,故D 错误. 故选:C 2. 已知复数,则复数的共轭复数( )()2121iz i --=+z z =A. B. C. D. 3144i -+1344i -+112i --112i -+【答案】C 【解析】【分析】根据复数的除法运算化简复数,再根据共轭复数的概念可求得结果. z 【详解】因为, ()2121iz i --=+122i i --=211111222i i i i --=-=-=-+所以. 112z i =--故选:C.【点睛】本题考查了复数的除法运算,考查了共轭复数的概念,属于基础题.3. 已知等边三角形的边长为1,设,,,那么( ) ABC BC a = CA b = AB c = a b b c c a ⋅+⋅+⋅=A. 3B.C.D. 3-3232-【答案】D 【解析】【分析】结合等边三角形的特点和向量的夹角公式计算即可. 【详解】在等边三角形中,ABC 有.311cos12011cos12011cos1202a b b c c a ⋅+⋅+⋅=⨯⨯︒+⨯⨯︒+⨯⨯︒=-故选:D .4. 在中,,,,那么等于 ABC 3a =b =2c =B ()A. B.C.D.30︒45︒60︒120︒【答案】C 【解析】【分析】直接利用余弦定理以及特殊角的三角函数值就可得出答案. 【详解】解:根据余弦定理得 222223271cos 22322a cb B ac +-+-===⨯⨯(0,)B π∈60B ∴=︒故选:C .5. 已知的外接圆圆心为,且,则向量在向量上的投影向ABC O 2,||||AO AB AC AO AB =+= BA BC量为( )A.B.14BCBCC.D.14BC -BC 【答案】A 【解析】【分析】根据题意,由向量加法的性质可得为的中点,又由,分析可得为正三O BC ||||AO AB =ABO 角形,则有,结合投影向量的计算公式计算可得答案.1||||2BA BC =【详解】根据题意,若,则为的中点,故边为圆的直径,2AO AB AC =+O BC BC O 又由,则为正三角形,则有,||||AO AB =ABO 1||||2BA BC = 则向量在向量上的投影向量, BA BC ||cos 60||BC BA BC ⨯14BC = 故选:A .6. 在中,若,( )ABC 60A ∠=︒1b =sin sin sin a bcA B C++=++A. B.C.D.【答案】B 【解析】【分析】先由面积公式求出,再由余弦定理求出,最后利用正弦定理可得出答案. c a 【详解】由面积公式, 1sin 442==⇒=⇒= ABC S bc A bc c 由余弦定理有,222222cos 4=+-=+-⇒=ab c bc A b ca 由正弦定理有. sin sin sin sin a abc A A B C ++===++故选:B.7. 已知四面体的外接球的球心O 在AB 上,且平面ABC ,,若四面体P ABC -PO ⊥2AC =的体积为,求球的表面积 P ABC-32()A.B.C.D.8π12π【答案】B 【解析】【分析】依据题意作出图形,设四面体的外接球的半径为,由题可得:为球的直径,即-P ABC R AB 可求得:,, ,利用四面体的体积为列方程即可求得2AB R=AC =BC R =-P ABC 32R =,再利用球的面积公式计算得解. 【详解】依据题意作出图形如下:设四面体的外接球的半径为, -P ABC R 因为球心O 在上,所以为球的直径, AB AB 所以,且2AB R =ACBC ⊥由可得:,2AC=AC =BC R =所以四面体的体积为 -PABC 11133322ABC V S PO R R ∆=⋅=⨯⨯⨯=解得:R =所以球的表面积 2412S R ππ==故选B【点睛】本题主要考查了锥体体积公式及方程思想,还考查了球的表面积公式及计算能力,考查了空间思维能力,属于中档题. 8. 在ABC 中,,P 为段AB 上的动点,且cos sin ABCS AB AC B A C =⋅==V u u u r u u u r ,则的最小值为( )||||CA CB CP x y CA CB =+1x +A. B. C.D.2+12+1+【答案】A 【解析】【分析】根据,利用两角和的正弦公式得到,进而得到,然sin cos sin B A C =sin cos 0A C =2C π=后由,解得,进而求得,再根1sin 2ABC S AB AC A AB AC =⋅⋅=⋅ 6A π=2,1AC AB BC ===据,得到,然后利用基本不等式求解. ||||CA CBCP x y CA CB =+,PA PB 11y +=【详解】,即, sin cos sin sin cos sin cos cos sin B A C A C C A A C =⇒+=sin cos 0A C =∵, sin 0A >∴,∴,cos 0C =2C π=又∵1sin cos ,2ABC S AB AC A AB AC AB AC A =⋅⋅=⋅=⋅⋅ ∴tan A =∴,6A π=又∵1sin 2ABCS AB AC A AB AC =⋅⋅⋅= 所以,,AC AB ⋅=tan tan 3AC B AB π∠===所以,2,1AC AB BC ===又∵,即, ||||CA CBCP x y CA CB =+CP yCB =+ 所以P 为段AB 上的动点,即共线,,PA PB又因为,()1,1PA CA CP CA yCB PB CB CP y CB ⎛=-=-=-=+- ⎝所以, ()11y⎛-=⎝11y =∴. 11()21y x y x x y x =+=+≥+当且仅当等号成立.x y =故选:A二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 已知平面向量,则正确的有( )(3,4),(,3)a b x =-=A. 若,则//a b 94x =-B. 与共线的单位向量是 a34(,55-C. 若,则在方向上的投影向量是 ab⊥a 34ab + (3,0)D. 若与的夹角为钝角,则的取值范围为 a2a b +x 1(,)6-∞-【答案】AC 【解析】【分析】对于A 选项,利用平面向量平行的坐标表示计算即可;对于B 选项,利用公式即可求出;||aa ± 对于C 选项,根据公式计算即可; ()34|34|a a b a b ⋅+⋅+34|34|a ba b ++对于D 选项,由且与不平行求解即可.()20a a b ⋅+< a 2a b +【详解】对于A 选项,若,则解得,故A 正确;//a b 33(4)0,x ⨯--⨯=94x =-对于B 选项,与共线的单位向量是,故B 不正确;a()1343,4(,)||555a a ±=±-=±- 对于C 选项,因为,所以,得,,a b ⊥ 3120a b x ⋅=-= 4x =34(9,12)(16,12)(25,0)a b +=-+= 则在方向上的投影向量是,故C 正确; a 34a b + ()34|34|a a b a b ⋅+⋅+ 34|34|a b a b ++75(25,0)2525=⨯(3,0)=对于D 选项,因为与的夹角为钝角,所以且与不平行,a 2ab + ()20a a b ⋅+< a 2a b +,所以,()()2(3,4)32,2968610a a b x x x ⋅+=-⋅+=+-=+< 16x <-若与平行,则,,所以,故D 错a 2ab +32(4)(32)0x ⨯--⋅+=94x =-991(,(,446x ∈-∞--- 误; 故选:AC .10. 已知,,则下列说法正确的有( ) 123z i =+()2z m i m R =-∈A. 若为实数,则; 12z z 23m =-B. 的共轭复数是; 12z z ⋅()()2332m m i ++-C. 的最小值是4;12z z -D. 满足的复数在复平面上的对应点的集合是以为圆心,以1为半径的圆. 11z z -=z Z ()2,3--【答案】AC 【解析】【分析】由复数的运算判断A ;根据复数的运算结合共轭复数的定义判断B ;由复数模长公式结合二次函数的性质判断C ;设结合模长公式进而判断D. ,,z x yi x y R =+∈【详解】 1222223(23)()2(23)3(23)(23)=()()1z i i m i m m i m m i z m i m i m i m i m +++++--++===--+-+为实数,,,故A 正确; 12z z230m ∴+=23m =-,其共轭复数为,故B 错误;12(23)()(23)(32)z z i m i m m i ⋅=+-=++-()()2332m m i +--表示点到原点的距离,,当12(2)4z z m i -=-+(2,4)m-12min minz z ∴-=2m =时,取最小值为,故C 正确;4设,由得,即,对应点的,,z x yi x y R =+∈11z z -=(2)(3)1x y i -+-=222(2)(3)1x y -+-=∴Z集合是以为圆心,以1为半径的圆,故D 错误; ()2,3故选:AC11. 如图所示,圆锥的底面半径,高,是底面圆周的一条直径,M 为底面圆周上SO r =1SO=AB 与B 不重合的一点,则下列命题正确的是( )A. 圆锥的体积为SO πB. 圆锥的表面积为 SO 3)π+C. SBM D. 有一只蚂蚁沿圆锥的侧面从点A 爬行到点B 【答案】AB 【解析】【分析】由圆锥的底面半径和高,求出母线长,对于AB ,代圆锥的体积公式和表面积公式计算可得;对于C ,先求出轴截面的顶角,再代三角形面积公式计算;对于D ,根据侧面展开图计算可得. 【详解】圆锥的底面半径,高,所以母线长为2;SO r =1SO =对于A.圆锥的体积为,所以A 正确;SO 113V ππ=⨯⨯=对于B.圆锥的表面积为,所以B 正确;SO ()23S πππ=+=+对于C. 由轴截面为等腰三角形,且顶角为,SAB 2260120ASB BSO ∠=∠=⨯︒=︒当等腰的顶角为时,的面积取得最大值为:,所以C 错SBM 90︒SBM 122sin 9022MSB S =⨯⨯⨯︒= 误;对于D. 圆锥的底面圆周长为,所以侧面展开图的圆心角为,所以圆锥侧面展开图中lrα==圆弧,蚂蚁沿圆锥的侧面从点A 爬行到点B ,则蚂蚁爬行的最短距离为线段,2AB ==AB且,所以D 错误;AB AB l <=故选:AB.12. 在锐角中,角所对的边分别为,且,则下列结论正确的有ABC ,,A B C ,,a b c 2cos c b b A -=( ) A.B. 的取值范围为 2A B =B 0,4π⎛⎫⎪⎝⎭C. 的取值范围为D. 的取值范围为 ab)2112sin tan tan A B A -+⎫⎪⎪⎭【答案】AD 【解析】【分析】先利用正弦定理从条件中求出,得到选项A 正确.选项B 利用为2cos c b b A -=2A B =ABC 锐角三角形求解;选项C 先用二倍角公式化简,再结合角的范围求解;选项D 先对式子化简,再换元B 利用对勾函数的性质求范围.【详解】在中,由正弦定理可将式子化为ABC 2cos c b b A -=,sin sin 2sin cos C B B A -=把代入整理得,()sin sin sin cos cos sin C A B A B A B =+=+,()sin sin A B B -=解得或,即或(舍去). A B B -=A B B π-+=2A B =A π=所以.2A B =选项A 正确.选项B :因为为锐角三角形,,所以.ABC 2A B =3C B π=-由解得,故选项B 错误.0,202,2032B B B ππππ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩,64B ππ⎛⎫∈ ⎪⎝⎭选项C :, sin sin 22cos sin sin a A BB b B B===因为,所以,,,64B ππ⎛⎫∈ ⎪⎝⎭cos B ∈2cos B ∈即的取值范围.故选项C 错误.ab选项D :. 112sin tan tan A B A -+()sin 2sin sin sin A B A A B -=+12sin sin A A =+因为,所以, . ,64B ππ⎛⎫∈⎪⎝⎭2,32A B ππ⎛⎫=∈⎪⎝⎭sin A ⎫∈⎪⎪⎭令,,则. sint A =t ⎫∈⎪⎪⎭()12f t t t =+由对勾函数的性质知,函数在上单调递增. ()12f t t t=+⎫⎪⎪⎭又,所以. f =()13f =()f t ⎫∈⎪⎪⎭即的取值范围为.故选项D 正确. 112sin tan tan A B A -+⎫⎪⎪⎭故选:AD.三、填空题:本题共4小题,每小题5分,共20分.13. 定义一种运算如下:,则复数的共轭复数是__________. a b ad bc c d ⎡⎤=-⎢⎥⎣⎦1123i i +-⎡⎤⎢⎥⎣⎦【答案】 13i --【解析】【分析】直接利用定义的运算求复数,再求其共轭复数.【详解】由题得复数z=(1+i )3i+2=3i-3+2=-1+3i,所以它的共轭复数为-1- 3i.故答案为-1-3i.【点睛】(1)本题主要考查复数的运算和共轭复数,考查新定义,意在考查学生对这些知识的掌握水平和运用新定义解答问题的能力.(2) 复数的共轭复数(,)z a bi a b R =+∈.z a bi =-14. 如图,矩形是水平放置的一个平面图形由斜二测画法得到的直观图,其中,O A B C ''''4O A ''=,则原图形周长是__________.1O C ''=【答案】14 【解析】【分析】根据直观图还原该平面图形,然后可得答案.【详解】在直观图中,设与交于点,则,,O y ''B C ''P'1C P ''=3P B ''=O P ''=在原图形中,,,, 4OA =1CP =23OP O P OC ''====所以原图形周长是 ()24314⨯+=故答案为:1415. 今年年初新冠肺炎肆虐全球,抗击新冠肺炎的有效措施之一是早发现、早隔离.现某地发现疫情,卫生部门欲将一块如图所示的圆的内接四边形区域,沿着四边形边界用固定高度的板材围成一个O ABCD 封闭的隔离区.其中,,,(单位:米),则__;四边形100AB =300BC =200CD DA ==A ∠=的面积为 __(平方米). ABCD【答案】 ①.## ②.2π3120 【解析】【分析】空1:连接,由题意可得,利用诱导公式,余弦定理可得BD πA C +=,解得的值,进而可求和;空2:再根据三角形的22222222AB DA BD BC CD BD AB DA BC CD+-+-=-⋅⋅2BD A ∠C ∠面积公式即可求解四边形的面积.ABCD 【详解】空1:如图,连接,由题意可得,可得,BD πA C +=cos cos A C =-由余弦定理可得,即,解22222222AB DA BD BC CD BD AB DA BC CD +-+-=-⋅⋅22222210020030020021002002300200BD BD +-+-=-⨯⨯⨯⨯得:,270000BD =所以,且,所以. 22222100200700001cos 221002002AB DA BD A AB DA +-+-===-⋅⨯⨯(0,π)A ∈2π3A ∠=所以, π3C ∠=空2:所以四边形的面积ABCD 12π1πsinsin 2323ABD BCD S S S AB DA BC CD =+=⋅⋅+⋅⋅!!1110020030020022=⨯⨯⨯⨯(平方米). =故答案为:; 2π316. 对任意两个非零的平面向量和,定义和之间的新运算:.若非零的平面向α β α β ⊗αβαβββ⋅⊗=⋅量,满足:和都在集合中,且.设与的夹角a b a b ⊗ b a ⊗ |x x n Z ⎧⎫⎪⎪=∈⎨⎬⎪⎪⎩⎭a b ≥ a b ,64ππθ⎛⎫∈ ⎪⎝⎭,则______.()sin a b θ⊗=【答案】23【解析】【分析】化简,,则,1cos a a b b θ⋅⊗==2cos b b a aθ⋅⊗==2121()()cos 3a b b a k k θ⊗⋅⊗== 因此依据的范围即可求出的范围,进而确定其值,求出.θ12k k ()sin a b θ⊗【详解】, 11cos cos ()a b a a b a b k Z b b b b b θθ⋅⋅⋅⋅⊗====∈⋅⋅, 22cos cos ()b a b b a b a k k Z a a a a aθθ⋅⋅⋅⋅⊗====∈⋅⋅,2121()()cos 3a b b a k k θ∴⊗⋅⊗== ,,,,64ππθ⎛⎫∈ ⎪⎝⎭213cos (,24θ∴∈1239(,)24k k ∴∈,,,, 12,k k Z ∈ 122k k ∴=22cos 3θ=sin θ=,,即,a b ≥12k k ∴>122,1k k ==,()2sin 3a b θ∴⊗= 故答案为:. 23【点睛】本题以新定义为背景考查向量数量积的应用,结合了三角函数的相关知识,需要学生有一定的分析计算能力.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知平面向量,.()1,3a =()()21,b x x x =--∈Z r (1)若与垂直.求;2a b +r r 2a b -r r x (2)若向量,若与共线,求.()7,1c =-r a b +r r b c -rr a b -r r 【答案】(1);(2. 1-【解析】 【分析】(1)由题意求出与的坐标,由垂直得数量积为0可得结果;2a b +r r 2a b -r r(2)由题意求出与,由共线求出的值,代入模长公式求得结果.a b +r r b c -r r x 【详解】(1)因为,.()1,3a =()21,b x x =--r 所以,.()221,6a b x x +=+-r r ()234,32a b x x -=-+rr 因为与垂直, 2a b +r r 2a b -r r 所以,()()()()()()2221346320a b a b x x x x +⋅-=+-+-+=r rr r 整理得,21011210x x --=解得或(舍去).=1x -2110x =(2)因为,,,()1,3a =()21,b x x =--r ()7,1c =-r 所以,.()2,3a b x x +=-r r()28,1b c x x -=--r r 因为与共线,a b +r r b c -r r 故,()()a b b c λλ+=-∈R r r r r所以解得 ()()228,31,x x x x λλ⎧=-⎪⎨-=-⎪⎩2,1.x λ=⎧⎨=-⎩所以,,()3,2b =- ()()()1,33,22,5a b -=--=-r r所以.a b -==r r 【点睛】方法点睛:两向量,的位置关系求参数的常见方法:()11,a x y =r ()22,b x y =r(1)由,得;a b ⊥12120x x y y +=(2)由,得.//a b12210x y x y -=18. 在①;②复平面上表示的点在直线上;③这三个条件2210(0)z z a =>12z z 20x y +=1(i)0z a ->中任选一个,补充在下面问题中的横线上,并解答:已知复数;(为虚数单位),满足 .121i 3i z z a =+=+,i (1)若,求复数以及; 1211z z z =+z ||z (2)若是实系数一元二次方程的根,求实数的值 2z 2430x mx m ++-=m 【答案】(1); 34i 155z z =-=,(2)m=-2 【解析】【分析】选条件①,根据求出a 的值;222910z z a =+=选条件②,求出在复平面上表示点的坐标,代入直线方程求出a 的值;12z z 选条件③,计算,根据求出a 的值; 1(i)z a -1(i)0z a ->(1)计算和的值;z z (2)根据是实系数一元二次方程的根,也是方程的根,利用根与系数的关系求出m 的值. 2z 2z 【详解】选条件①:.2210(0)z z a =>因为,所以,121i 3i z z a =+=+,222910z z a =+=解得,又,所以; 21a =0a >1a =选条件②:复平面上表示的点在直线上. 12z z 20x y +=因为,121i 3i z z a =+=+,所以,其表示的点为, 12221i 33=i 3i 99z a a z a a a ++-=++++2233()99a a a a +-++,有,解得; 22332099a a a a +-+⨯=++1a =选条件③:.1(i)0z a ->因为,所以,11i z =+1(i)(1i)(i)(+1)+(1)i 0z a a a a -=+-=->所以,解得.1010a a +>⎧⎨-=⎩1a =(1),;12111134i 1i 13i 55z z z =+=+=-++1z ==(2)是实系数一元二次方程的根, 2z 2430x mx m ++-=则也是该方程的根,所以m =-(+)=.2z 2z 2z (13i+1-3i)=-2-+19. 如图,在四棱锥中,,,,,分P ABCD -PA ABCD ⊥平面//AB CD 2CD AB =AB AD ⊥,E F 别是和的中点,CD PC(1)证明:;AB PD ⊥(2)证明:平面. //BEF PAD 平面【答案】(1)见证明;(2)见证明 【解析】【分析】(1)由于,,又可得,进而命题得PA ABCD ⊥平面AB PA ⊥,AB AD ⊥AB PAD ⊥平面证;(2)由已知得是平行四边形,从而,由三角形中位线定理得,由此能证明ABCD //AD BE //EF PD 平面平面.//EF PAD 【详解】(1)证明:平面,平面PA ⊥ABCD AB ⊆ABCDAB PA ∴⊥又,AB AD PA AD A ∴⊥⋂=平面AB ∴⊥PAD 平面PD ⊆PADAB PD ∴⊥(2),为的中点 2CD AB = E CD AB DE ∴=又//AB BE ∴四边形为平行四边形ABCD//AD BE ∴分别是和的中点 ,E F CD PC //EF PD ∴,EF BE E PD AD D ⋂=⋂= 平面平面∴//BEF PAD 【点睛】本题考查线面垂直、线线垂直,以及面面平行的判断的证明,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.20. 某农场有一块底角为的等腰三角形的空地,其中边的长度为400米,为迎接“五一“观30 ABC BC 光游,欲在边界上选择一点,修建观赏小径,,其中,分别在边界,上,BC P PM PN M N AB AC 小径,与边界的夹角都是,区域和区域内种植郁金香,区域内种PM PN BC 60 PMB PNC AMPN 植月季花.(1)探究“观赏小径,的长度之和是否为定值?请说明理由PM PN (2)为深度体验观赏,准备在月季花区域内修建小径,当点在何处时,三条小径MN P 的长度之和最小?并求出最小值.(),,PM PN MN 【答案】(1)是定值,理由见解析(2)当点是的中点时,三条小径的长度之和最小为300米. P BC (),,PM PN MN 【解析】【分析】(1)根据条件可知,和为直角三角形,由此得到, BPM △CPN △12PM PB =12PN PC =,根据即可求解;400BC =(2)根据已知条件,结合余弦定理,以及基本不等式,即可求解. 【小问1详解】在中,, BPM △180306090BMP =--= Ð因为,所以,同理可得, 30B = 12PM PB =12PN PC =故(米),为定值. 111200222PM PN PB PC BC +=+==【小问2详解】在中,,PMN 18026060MPN =-⨯= Ð由余弦定理可得2222cos 60MN PM PN PM PN =+-⋅⋅ , 222()32003(100002PM PN PM PN PM PN +=+-⋅≥-⨯=当且仅当(米)时,等号成立, 100PM PN ==则,即的最小值为(米), 100MN ≥MN 100此时(米),200PB PC ==所以当点是的中点时,三条小径的长度之和最小为300米.P BC (),,PM PN MN 21. 重庆、武汉、南京并称为三大“火炉”城市,而重庆比武汉、南京更厉害,堪称三大“火炉”之首.某人在歌乐山修建了一座避暑山庄(如图).为吸引游客,准备在门前两条夹角为(即)的小O 6πAOB ∠路之间修建一处弓形花园,使之有着类似“冰淇淋”般的凉爽感,已知弓形花园的弦长AB =,落在小路上,记弓形花园的顶点为,且,设.A B M 6MAB MBA π∠=∠=OBA θ∠=(1)将,用含有的关系式表示出来;OA OB θ(2)该山庄准备在点处修建喷泉,为获取更好的观景视野,如何规划花园(即,长度),才M OA OB 使得喷泉与山庄距离即值最大? M O OM 【答案】(1);;(2)当时,取最OA θ=6OB πθ⎛⎫=+ ⎪⎝⎭OB OA ==OM 大值. 【解析】 【分析】(1)在中,利用正弦定理即可将,用含有的关系式表示出来;OAB OA OB θ(2)在中,由余弦定理得出,结合三角函数的性质,即可OMB △2OM 22283πθ⎛⎫=-++⎪⎝⎭得出的最大值,再求出的长度即可.OM ,OA OB 【详解】(1)在中,由正弦定理可知, ABCsin sin 6OA ABπθ=则;OA θ=同理由正弦定理可得, sin sin 6OB ABOABπ=∠则, 6OB OAB πθ⎛⎫=∠=+⎪⎝⎭(2)∵,,AB =6MAB MBA π∠=∠=∴,2AM BM ==在中,由余弦定理可知OMB △2222cos 6OM OB BM OB BM πθ⎛⎫=+-⋅+ ⎪⎝⎭248sin 4cos 666πππθθθ⎛⎫⎛⎫⎛⎫=++-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭241cos 24233ππθθ⎛⎫⎛⎫⎛⎫=-++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 2823cos 228228333πππθθθ⎤⎛⎫⎛⎫⎛⎫=-++++=-++ ⎪ ⎪ ⎪⎥⎝⎭⎝⎭⎝⎭⎦∵, 50,6πθ⎛⎫∈ ⎪⎝⎭∴, 2272,333πππθ⎛⎫+∈ ⎪⎝⎭∴, 2sin 23πθ⎡⎛⎫+=-⎢ ⎪⎝⎭⎣当时,即时, 2sin 213πθ⎛⎫+=- ⎪⎝⎭512πθ=取最大值,OM 4=+此时 5sin cos cos sin 124646OA πππππ⎫==+=+⎪⎭5551261212OB πππππ⎛⎫⎛⎫=+=-==+ ⎪ ⎪⎝⎭⎝⎭即当时,取最大值.OB OA ==OM 【点睛】本题主要考查了正弦定理和余弦定理的实际应用,涉及了三角函数求值域,属于中档题. 22. 类比于二维平面中的余弦定理,有三维空间中的三面角余弦定理;如图1,由射线,,构PA PB PC 成的三面角,,,,二面角的大小为,则-P ABC APC α∠=BPC β∠=APB γ∠=A PC B --θ.cos cos cos sin sin cos γαβαβθ=+(1)当、时,证明以上三面角余弦定理; απ0,2β⎛⎫∈ ⎪⎝⎭(2)如图2,四棱柱中,平面平面,,1111ABCD A B C D -11AA C C ⊥ABCD 160A AC ∠=︒,45BAC ∠=︒①求的余弦值;1A AB ∠②在直线上是否存在点,使平面?若存在,求出点的位置;若不存在,说明理由. 1CC P //BP 11DA C P【答案】(1)证明见解析;(2;②当点在的延长线上,且使时,平面P 1C C 1CP C C =//BP. 11DA C 【解析】【分析】(1)过射线上一点作交于点,作交于点,连接,PC H HM PC ⊥PA M HN PC ⊥PB N ,可得是二面角的平面角.在中和中分别用余弦定理,两式MN MHN ∠A PC B --MNP △MNH △相减变形可证结论;(2)①直接利用三面角定理((1)的结论)计算;②连结,延长至,使,连结1B C 1C C P 1CP C C =,由线面平行的判定定理证明平面.BP //BP 11DA C 【详解】(1)证明:如图,过射线上一点作交于点, PC H HM PC ⊥PA M 作交于点,连接,HN PC ⊥PB N MN则是二面角的平面角. MHN ∠A PC B --在中和中分别用余弦定理,得MNP △MNH △, 2222cos MN MP NP MP NP γ=+-⋅⋅,2222cos MN MH NH MH NH θ=+-⋅⋅两式相减得, 22222cos 2cos 0MP MH NP NH MP NP MH NH γθ-+--⋅⋅+⋅⋅=∴,22cos 22cos MP NP PH MH NH γθ⋅⋅=+⋅⋅两边同除以,得. 2MP NP ⋅cos cos cos sin sin cos γαβαβθ=+(2)①由平面平面,知, 11AA C C ⊥ABCD 90θ=︒∴由(1)得, 11cos cos cos A AB A AC CAB ∠=∠⋅∠∵,, 1cos 60A AC ∠=︒cos 45BAC ∠=︒∴ 11cos 2A AB ∠=⨯=②在直线上存在点,使平面. 1CC P //BP 11DA C 连结,延长至,使,连结, 1B C 1C C P 1CP C C =BP 在棱柱中,,, 1111ABCD A B C D -11//A B AB //AB CD ∴,∴四边形为平行四边形, 11//A B DC 11A B CD ∴.11//A D B C 在四边形中,,1B BPC 1//B B CP∴四边形为平行四边形, 1B BPC ∴, 1//B C BP ∴,1//A D BP 又平面,平面, 1A D ⊂11DA C BP ⊄11DA C ∴平面.//BP 11DA C ∴当点在的延长线上,且使时,平面.P 1C C 1CP C C =//BP 11DA C。
依兰县高级中学2011——2012学年度下学期第二次月考考试高一英语试题时间:90分钟满分:100分第一部分听力(共两节,满分20分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A,B,C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.What are the two speakers talking about ?A. WeatherB. RainC. Summer.2. How will the man travel to New York ?A. By plane .B. By trainC. By car3. What do we learn from the conversation ?A. The woman emptied the waste paper basket.B. The woman saved the man some trouble.C. The man placed the reading list on a desk.4. What does the man want to eat ?A. milk and bread.B. Bread and eggs.C. Eggs and ham.5. How many hours does the woman work on Wednesday ?A. 10.B. 9C. 7第二节(共15小题,每小题1分,满分15分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A,B,C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6、7题。
6. What is the man doing ?A. He is phoning the woman.B.He is getting up.C.He is watching TV.7. Which of the following are the man’s two calls ?A. One at 7a.m and the other at 7:15 a.m.B. One at 7:15 a.m and the other at 7:30 a.m.C. One at 7 a.m and the other at 7:30 a.m.听第7段材料,回答第8至9题。
8. When did the man have the little party?A. Last night.B. Last FridayC. Last Sunday.9. What is the relationship of the two speakers ?A. NeighborsB. ClassmatesC. Friends..听第8段材料,回答第10至12题10. Why does the woman want to buy a dress ?A. Because she wants to give it to her daughter as a present.B. Because her friend wants her to buy it for her daughter.C. Because she wants to attend a friend’s party.11. What kind of dress the woman get ?A.A size 9 cotton dress.B. A size 8 special dress.C. A size 7 silk dress.12. How much is the change ?A. $10B. $16C. $20 .听第9段材料,回答第13至16题13.Who do you think the man in the dialogue is ?A.A taxi driver.B.A policemanC. A driving instructor.14. What is the first thing the woman should do ?A. Fasten the seat-belt.B. Remember three things.C. Start the car .15. How soon will the woman meet the man ?A.In two days.B. In three days.C. In five days.16. How is the man ?A. CarelessB. CrazyC. Patient.听第10段材料,回答第17至20题。
17. Where are the artists in the programmes mainly from ?A. British .B. CanadaC. All over the world.18. What kind of music will not be heard on one of the programmes ?A. Pop .B. JazzC. Classical music.19. At what time will this programe be broadcast on Sunday evening ?A. At 8:25.B. At 8:15.C. At 8:05. 20. What do we learn about the concerts?A. They are produced in different countries.B. They are produced in different placesC. They are produced in the same music hall.第二部分英语知识运用(共两节,满分30 分)第一节单项填空(共10题;每小题1分满分10分)从A、B、C、D四个选项中选出可以填入空白处的最佳选项,并在答题卡上将该项涂黑。
21.Although their new factory building is still under ________ construction, we have already placed ____ order for 200 pairs of shoes.A. the ; anB. a; anC. /; /D. / ; an22. Receiving a report that the plane crashed,____ the government tookmeasures.A. at no timeB. in no timeC. at a timeD. of all time23.The high-tech helmet(头盔), _____ to the player’s head , makes thecomputer game more fun.A. to attachB. attachedC. attachD. attaching24. Jimmy, get dressed .______ you’ll have to go to school without breakfast.A. butB. soC. andD. or25. While money ______ , he was determined not to beg for his parents’ helpany more.A. was run outB. has run outC. ran out ofD. ran out26. —Look! He seems _______ of something else.—Yes, he is absent-mind.A. to be thoughtB. to thinkC. to have thoughtD. to be thinking27. I wish that my teacher could be stricter in our study,_____ , I’m sure ,will be of great help to our further development..A. whatB. thatC. thenD. which28. I found _____ impossible to keep silent about what had happened to me.A. thatB. itC. meD. there29. —How about getting a part-time job during the summer holiday? ________ . but I have promised to visit my cousin in Japan.A. No wayB. Well doneC. That sounds fineD. No, I’m terrible sorry30.Nowadays the number of people who have personal computers ______year by year.A. have increased .B. is increasing.C. are increasing.D. has been increased.第二节完形填空,阅读下面短文,掌握其大意,然后从各题所给的四个选项(A、B、C、D)中,选出最佳选项,并在答题卡上将该项涂黑。
(共20小题;每小题1分,满分20)When I was a boy, every holiday that I had seemed wonderful. My 31 took me by train or by car to a hotel by the 32 . All day, I 33 on the sands with strange 34 children. We made houses and gardens, and 35 the tide (潮水) destroy them. When the tide went out, we 36 over the rocks and looked down at the fish in the rock-pools.In those days the 37 seemed to shine always brightly 38 the water was always warm. Sometimes our family 39 the beach and walked in the country, exploring (探索) ruined houses and dark woods and climbing trees. There were 40 in one's pockets or good places where one could 41 ice creams. Each day seemed a lifetime.Although I am now thirty-five years old, my idea of a good 42 is much the same as it was. I 43 like the sun and warm sand and the sound of 44 beating the rocks. I no longer wish to 45 any sand house or sand garden, and I dislike sweets, either. 46 , I love the sea and often feel sandrunning through my fingers.Sometimes I 47 what my ideal(理想的) holiday will be like when I am 48 . All I want to do t hen, perhaps, will be to lie in bed, reading books about 49 who make houses and gardens with sands, who watch the incoming tide, who make themselves 50 on too many ices.31 . A.teacher B.parents C.nurse D.classmates32 . A.sea B.lake C.mountain D.river33 . A.played B.thought C.sat D.stood34 . A.moved B.excited C.anxious D.nervous35 A. felt B.brought C.watched D.heard36 . A.rolled B.jumped C.turned D.climbed37 A. light B.sun C.moon D.lamp38 A. and B.yet C.but D.or39 . A.stayed B.arrived C.left D.came40 . A.sweets B.sands C.ice-creams D.stones41 . A.make B.sell C.buy D.offer42 . A.house B.holiday C.garden D.tide43 . A.hardly B.almost C.still D.perhaps44 . A.waves B.sands C.hands D.feet45 . A.take B.fix C.use D.build46.A.Therefore B.However C.Otherwise D.Besides47.A.wonder B.feel C.understand D.believe48.A.strong B.weak C.young D.old49 A.children B.boys C.girls D.grown-ups50 A.worried B.tired C.sad D.sick第三部分阅读理解(共10题,满分20分)第一节(共5小题,每小题2分,满分10分)阅读下列短文,从每题所给的四个选项(A、B、C和D)中选出最佳选项,并在答题卡上将该项涂黑。