集中供热系统的热力站及主要设备
- 格式:ppt
- 大小:1.27 MB
- 文档页数:10
1、集中供热系统由三大部分组成:热源、热力网(热网)、和热用户2、供暖系统热负荷:是指在某一室外温度下,为了达到要求的室内温度,供暖系统在单位时间内向建筑物供给的热量。
它随着建筑物得失热量的变化而变化。
3、供暖系统设计热负荷:是指在设计室外温度下,为了达到要求的室内温度t n,供暖系统在单位时间内向建筑物供给的热量。
4、热负荷计算包括的内容:(1)、供暖房间失热量:a、围护结构的耗热量b、加热经门、窗缝渗入室内的冷空气耗热量,称冷风渗透耗热量。
c、加热由门、孔洞及相邻房间侵入的冷空气额耗热量,称冷风侵入耗热量。
d、加热由外部运入的冷物料和运输工具等的耗热量。
e、通风系统将空气从室内排到室外所带走的热量,称通风耗热量。
f、水分蒸发耗热量。
(2)供暖房间得热量:a、最小负荷班的工艺设备散热量。
b、热管道及其他热表面的散热量。
c、热物料的散热量。
(3)通过其他途径散失或获得的热量。
5、散热器的计算:散热器散热面积按下式计算F-散热器的散热面积(m2)Q-散热器的散热量(W)K-散热器的传热系数【W/(m2℃)】Tpj- 散热器内热媒平均温度tn-供暖室内计算温度-散热器组装片数修正系数散热器连接方式修正系数散热器安装形式修正系数6、低温热水地板辐射供暖的特点:1、热舒适度高2、节约能源3、不占据室内地面有效空间4、房间热稳定性好5、便于实现分户热计量6、有利于隔声和降低楼板撞击声7、重力循环热水供暖系统的基本原理8、 重力循环系统作用压力的计算9、 单管系统各层水温计算10、 膨胀水箱的作用是用来贮存热水供暖系统加热后的膨胀水量。
水箱上连有膨胀管、溢流管、信号管、排水管及循环管路等管路。
膨胀管与供暖系统的连接点,在机械循环系统中,一般接至循环水泵吸入口处。
11、热负荷延续时间图、绘制方法1、确定热水网路水压图的基准面及坐标轴。
2、选定静水压曲线的位置3、选定回水管的动水压曲线的位置4、选定供水管动水压曲线的位置12、供暖热用户与热水外网的连接方式:直接连接和间接连接直接连接:无混合装置的直接连接、装水喷射器的直接连接:这种系统不需要其他能源,而是靠外网与用户系统连接处供、回水压差工作的。
集中供暖名词解释集中供暖,指的是在城市或小区范围内,通过中央热源将热能传输至各个建筑物或家庭,以提供供暖服务的一种方式。
相对于分散供暖,集中供暖具有能源利用效率高、室内温度稳定等优势,因此在很多城市和地区得到广泛应用。
在集中供暖系统中,主要涉及以下几个重要的概念和设备:1. 热源站(Heat Source Station)热源站是集中供暖系统的核心,通过燃煤、天然气、生物质等能源形式,产生热能供应给整个供热网络。
热源站一般包括锅炉、换热器、水泵等设备,将热水或蒸汽送入供热管网。
2. 供热管网(Heat Supply Network)供热管网是将热能从热源站传输到各个用户的管道系统,一般分为主干管道和支线管道。
主干管道负责将热能传输至不同的分区或楼栋,支线管道负责将热能传输至具体的用户。
3. 换热器(Heat Exchanger)换热器是热源站与用户之间的热能转换设备,用于将热源站产生的热水或蒸汽与用户需要的供热介质(如水)进行换热。
换热器通常由多个管子交叉排列而成,以实现热量的传递。
4. 热计量(Heat Metering)热计量是指通过对供暖系统供热水流量和温度的测量,来计算用户实际消费的热量和热费的系统。
热计量可以采用各种测量仪表,如热量表和热量变送器等,用于确保供热费用的公平合理。
5. 室内散热器(Indoor Radiator)室内散热器是将热能传递至室内空气的设备,通常放置在房间内的墙壁或地板上。
室内散热器的主要作用是散发热量,使室内温度达到用户的需求。
6. 阀门与控制系统(Valves and Control System)阀门与控制系统用于调节供热系统内的热负荷和水流量,以实现室内温度的控制。
通过开启或关闭阀门,调节热水的流向和流量,进而控制室内温度的升降。
综上所述,集中供暖是通过中央热源、供热管网和相关设备,将热能传输至用户并实现室内温度控制的供暖方式。
它的应用不仅提高了能源利用效率,还改善了居民生活环境,是现代城市供暖的重要形式之一。
集中供热规范随着城市规模的扩大和人们对舒适生活需求的提高,集中供热作为一种高效、便捷的供暖方式,越来越受到人们的青睐。
然而,为了确保供热系统的正常运行和使用者的舒适度,制定一套科学、规范的集中供热规范显得非常重要。
本文将围绕集中供热规范展开讨论,以期给读者提供一份全面准确的参考。
1. 供热系统设计规范在设计集中供热系统时,必须充分考虑以下几个方面:1.1 热源配置和布局热源是集中供热系统的核心,合理配置和布局热源设备对整个系统的运行和热量传输效果具有重要影响。
在选择热源设备时,应当综合考虑设备的供热能力、能源消耗以及环境排放等方面的因素。
1.2 热力站设计热力站作为供热系统的中心节点,其设计需要满足以下要求:(1)合理布局,便于设备维护和管理;(2)运行安全可靠,需要配备完善的自动控制设备和安全防护装置;(3)节能环保,采用高效节能设备,减少能耗和排放。
1.3 管网设计供热管网是热量传输的关键环节,其设计应考虑以下几个方面:(1)管道材料的选择和布置,根据实际工况合理选用管材,合理布置管道路径,减少热量损失;(2)管道绝热材料的选用,采用高效的绝热材料,减少热量损失;(3)管道标志和防腐措施,设置标志标识,对管道进行防腐处理,延长使用寿命。
2. 运行与维护规范2.1 运行规范供热系统的运行规范是确保系统正常、稳定运行的关键,主要包括以下几个方面:(1)设备运行管理,定期检查设备运行状态,及时维修和更换老化设备;(2)管道压力管理,定期检测和调整管道压力,确保供热平稳;(3)水质管理,定期监测和调节系统水质,防止水垢和腐蚀;(4)供回水温差控制,合理调节供回水温差,提高供热效率。
2.2 维护规范供热系统的维护规范是保障系统正常运行和延长设备寿命的重要环节,具体要求如下:(1)定期检查热源设备和热力站的运行情况,及时发现和解决问题;(2)清洗供热管网,防止水垢和锈蚀对供热效果的影响;(3)定期更换阀门和附件,确保设备的正常运行;(4)清洗和更换过滤器,保证水质清洁。
供热站原理一、概述供热站是城市集中供热系统中的核心设施,负责将能源转化为热能并向用户提供供热服务。
其主要原理是通过热力设备将能源(如煤炭、天然气、生物质等)转化为热能,然后通过管网将热能送达用户所在的建筑物。
供热站的运行涉及热力设备、管网系统、控制系统等多个方面,下面将逐一介绍。
二、热力设备1. 锅炉供热站的核心热力设备是锅炉,其主要功能是将能源燃烧产生的热能转移到热介质中。
锅炉的工作原理是利用燃烧产生的高温烟气通过烟气换热器释放热量,将水加热至一定温度并产生蒸汽或热水。
常见的锅炉类型有燃煤锅炉、燃气锅炉、生物质锅炉等。
2. 热交换器热交换器是将锅炉产生的热能传递给供热系统的关键设备。
它通过与热介质直接接触,将热量传递给供热水或蒸汽。
热交换器的常见类型有板式热交换器、管壳式热交换器等,其设计和选用应根据供热站的具体需求。
三、管网系统1. 进水管道进水管道是供热站与外界连接的通道,负责将冷却水引入供热站。
进水管道通常设有过滤器,以防止杂质进入供热系统影响设备运行。
2. 回水管道回水管道将供热后的冷却水从建筑物传回供热站。
回水管道通常设有除气装置,以排除管道中的气体,保证供热系统的正常运行。
3. 输送管道输送管道是将热能从供热站输送至用户建筑的通道。
根据传热介质的不同,输送管道可分为蒸汽管道和热水管道。
输送管道的设计应考虑输送距离、输送能力、保温措施等因素。
四、控制系统1. 温度控制供热站的温度控制是保证供热系统正常运行的关键。
通过对锅炉、热交换器和管道的温度进行监测和调节,控制系统能够实现对供热系统的温度控制。
2. 压力控制供热站的压力控制是为了保证供热系统的安全运行。
控制系统能够监测和调节锅炉、热交换器和管道的压力,防止压力过高或过低对设备和管道造成损坏。
3. 水质控制供热站的水质控制是为了防止管道内部产生腐蚀、结垢等问题。
通过控制系统对水质进行监测和调节,可以保证供热系统的水质符合规定标准,延长设备的使用寿命。
集中供热系统集中供热系统是一种将热源和用户进行有机结合,通过热力输送来满足用户热水和采暖需求的供热方式。
它将热源与用户之间的热交换过程集中起来,提高了能源利用效率,减少了对环境的影响。
本文将就集中供热系统的基本原理、设备组成、运行优势以及存在的问题进行探讨。
一、基本原理集中供热系统的基本原理是将热源的热量通过输送介质(如蒸汽、热水)传递给用户的热水或采暖系统。
热源可以是锅炉、热电站、余热发电厂等,而用户则包括居民用水、采暖、工业用热等。
其主要流程包括热源供热、输热介质输送、换热器热量交换、用户回收与利用等环节,在系统内形成一个封闭的循环。
二、设备组成集中供热系统主要由以下设备组成:1. 热源:热源是集中供热系统的核心,常用的热源包括集中供热锅炉、热电站等。
热源通过燃烧或发电等方式产生热量,并将其传递给输送介质。
2. 输送介质:输送介质是将热量从热源传递给用户的介质,常用的有蒸汽和热水。
蒸汽是一种高温高压的气体,在输送过程中需要注意温度和压力控制;热水则是通过管道输送,相对于蒸汽更安全可靠。
3. 配送管道:配送管道是将输送介质从热源输送到用户的管道系统,包括供热主干管、支线管和室内终端管等。
这些管道需要经过绝热处理,以减少能量损耗。
4. 用户设备:用户设备是集中供热系统中的终端设备,包括暖气片、供热换热器和热水器等。
它们通过与输送介质的热交换,将供热或热水提供给用户使用。
三、运行优势集中供热系统相比于分散供热方式,具有以下几个明显的运行优势:1. 能源利用高效:集中供热系统能够根据用户需求进行热量调节,提高热能的利用效率。
而在分散供热方式中,每个用户单独设备运行,很难实现能源的高效利用。
2. 节约用地:集中供热系统可以将锅炉房等设备集中在一处,节约用地资源,减少了对环境的影响。
3. 环境友好:由于集中供热系统可以进行烟气净化处理,大大减少了烟尘、废气等对环境的污染。
4. 运行维护方便:集中供热系统的设备统一管理,维护方便,减少了维修成本和维修时间。
供热管道的水力计算及热力站主要设备选择本文从设计角度讲述了供热管网水力计算的方法及热力站内主要设备选型和注意事项。
标签:供热系统;水力计算;设备选型集中供热系统热水管道的水力计算是管道设计中及其重要的部分,通过水力计算结果不仅可以确定热水网路各管段的管径,还可以确定网路循环水泵的流量和扬程。
在保证系统管网水力平衡的基础上,再进行合理的选用热力站内的设备,是提高供热质量,降低供热成本的前提。
以下将介绍水力计算和设备选型的方法及注意事项。
一、管网水力计算方法在热水网路中经常采用当量长度法,亦即将管段的局部损失折合成相当的沿程损失计算管网总损失。
在水力计算前首先要确定热力网的设计流量,应按下式计算:G=3.6Q/c(t1-t2)G—供热管网设计流量,t/hQ—设计热负荷,kwc—水的比熱容,kJ/(kg.℃)t1—供热管网供水温度,℃t2—供热管网回水温度,℃采用当量长度法进行水力计算时,热水网路中管段的总压降等于ΔP=R(l+ld)=RlzhPaR—每米管长的沿程损失(比摩阻),Pa/ml—管道的实际长度,mld—局部阻力的当量长度,mlzh—管段的折算长度,m其中局部阻力的当量长度ld可按管道实际长度l的百分数来计算,即ld=αjlm αj—局部阻力当量百分数,%,对于小于450mm无方形补偿器的管道αj=0.3。
供热管道的平均比摩阻R值,对于确定整个管网的管径起着决定性作用,如选用比摩阻R值越大,需要的管径越小,因而降低了管网的基建投资和热损失,但网路循环水泵的基建投资和运行电耗随之增大,这就需要确定一个经济比摩阻,使系统在规定年限内总费用最小。
对于采用间接连接的热水网路系统,根据运行经验,主线的平均比摩阻尽量小于100Pa/m,而支线的平均比摩阻可以在小于300Pa/m的范围内选择。
根据区域大小不同有所区别,例如对于建筑群内的供热二次管网,整体外网损失控制在5m左右,这样热力站内循环水泵扬程不会过高,供热管道的管径也较为适中,整个系统容易水力平衡,投入运行后易于调节,基建投资也较为合理。
集中供热的安全隐患分析与防治措施随着城市化进程的加快,集中供热系统在我国的城市中得到了广泛的应用。
集中供热系统以其高效、节能的特点,为居民提供了便利的取暖服务。
随着供热系统的规模化和复杂化,其安全隐患也日益凸显。
为了确保居民的安全和供热系统的稳定运行,有必要对集中供热系统的安全隐患进行分析,并提出相应的防治措施。
一、安全隐患分析1. 热力管道泄漏热力管道泄漏是集中供热系统中较为常见的安全隐患之一。
一旦热力管道泄漏,不仅会导致能源浪费,还可能引发火灾或爆炸等严重事故。
2. 热力站安全隐患热力站是集中供热系统的重要组成部分,其中包括锅炉、换热器、泵等设备。
这些设备存在着由于疏忽大意或设备老化等原因引发的安全隐患,如锅炉爆炸、泵损坏等问题。
3. 热力管道维护不到位由于热力管道通常埋设在地下或建筑物内部,因此维护和检修工作较为困难。
长期未进行维护和检修,会使管道发生腐蚀、疏松、泄漏等问题,导致安全隐患。
4. 安全管理不到位在一些地区,由于管理不到位,集中供热系统的维护保养、安全管理等工作存在疏漏和不足的情况,增加了系统的安全隐患。
二、防治措施1. 完善监测系统,及时发现问题对于热力管道和热力站等重要设备,应建立完善的监测系统,实行定期巡检和在线监控,及时发现设备运行异常和安全隐患,做到事前预防,以防患于未然。
2. 提高设备管理水平,加强设备维护对集中供热系统中的锅炉、换热器、泵等设备,应加强日常维护和定期检修,确保设备在正常运行状态下工作,减少因设备问题引发的安全隐患。
3. 采取防腐措施,延长管道使用寿命对于热力管道,应采取防腐措施,延长管道的使用寿命,减少因管道老化和腐蚀引发的安全隐患。
4. 加强安全管理,提升应急处置能力对于集中供热系统的安全管理工作,应加强对人员的培训和管理,建立健全的安全管理制度,提高事故应急处理的能力,确保在发生安全事故时能够及时有效地进行处置。
5. 加强宣传教育,提升居民安全意识通过开展安全知识的宣传教育活动,提高居民对集中供热系统安全问题的认识和应对能力,增强自我保护意识,减少发生安全事故的可能性。
热力站主要设备安装标准简介热力站,也叫做换热站、热交换站,在集中供热系统中起中间换热及热量再分配的中介作用,也便于进行集中热计量和参数调节。
主要设备有:板式换热器,循环泵,补水泵,水箱,计量表,压力表,温度表,传感器等。
一、一般规定1.站内采暖、给水、排水、卫生设备的施工及验收,应按现行国家标准《建筑给水排水及采暧工程施工质量验收规范》GB50242的相关规定执行。
2.动力配电、等电位联结及照明等电气设备的施工及验收,应按现行国家标准《电气装置安装工程低压电器施工及验收规范》GB50254和《建筑电气工程施工质量验收规范》GB50303的相关规定执行。
3.自动化仪表的施工及验收应按现行国家标准《自动化仪表工程施工及验收规范》GB50093的相关规定执行。
4.站内制冷管道和风道的施工及验收应按现行国家标准《通风与空调工程施工质量及验收规范》GB50243的相关规定执行。
5.热力站施工完成后,与外部管线连接前,管沟或套管应采取临时封闭措施。
6.站内设备基础施工前应根据设备图纸进行核实。
7.站内管道、设备及管路附件安装前应对规格、型号和质量等进行检验和记录,并应符合设计要求。
检验应包括下列项目:1说明书和产品合格证;2箱号和箱数以及包装情况;3名称、型号和规格;4装箱清单、测试单、材质单、出厂检验报告、技术文件、资料及专用工具;5有无缺损件,表面有无损坏和锈蚀等;6其他需要记录的情况。
二、热计量设备1.安装前应校验和检定,安装应符合现行国家标准《建筑节能工程施工质量验收规范》GB50411的相关规定。
2.热计量设备应在管道安装完成,且清洗完成后进行安装。
说明:在严密性试验及其冲洗过程中,可采取先安装一段与热量表长度相同的短管代替热量表等措施保护热量表。
3.热计量设备在现场和安装过程中不得提拽,不得挤压表头和传感器线,不得靠近高温热源。
说明:如果搬运过程中对热量表造成损坏,会造成计量的不准确。
4.热计量设备应按产品说明书和设计要求进行安装,热计量设备标注的水流方向应与管道内热媒流动的方向一致。
集中供热的原理
集中供热原理是指利用集中供热系统将集中供热站发出的热能通过管网输送到用户处,为用户提供供暖和生活热水。
它主要由热源系统、热力站及供热管网组成。
首先,热源系统是集中供热的核心部分,一般采用锅炉或换热站等设备将燃烧或其他形式的能源转化为热能。
然后,热能被输送到热力站。
热力站是集中供热系统中的重要节点,起到调节、分配和控制热能的作用。
它通过换热器将热源系统发出的高温热水或蒸汽与用户系统需要的热水进行换热,从而将热能传递给用户。
同时,热力站还通过管道系统向用户提供循环、维护和热能计量等服务。
供热管网是连接热源系统和用户系统的重要媒介,一般由管道网络、阀门、泵等组成。
它通过管道将热力站发出的热水输送到用户的居住区、工业区或商业区等位置,从而实现热能的分配。
集中供热系统的原理是通过热源系统、热力站和供热管网的协同作用,将热能从热源输送到用户,为用户提供热水和供暖的服务。
同时,通过统一调度和控制能源的利用,实现能源资源的高效利用和环境保护。
这种集中供热的方式具有节约能源、提高供热效率和减轻用户投资负担等优点,因此得到了广泛的应用。
热力站的工作原理热力站是城市供热系统中的重要组成部分,它通过集中供热的方式为大量用户提供热能。
那么,热力站是如何工作的呢?一、供热系统的基本组成热力站是供热系统的核心设施,它通常由锅炉房、热力泵房、换热器、水泵、控制系统等部分组成。
1. 锅炉房:锅炉房是热力站的核心部分,主要用于燃烧燃料,产生热能。
常见的锅炉包括燃煤锅炉、燃气锅炉和生物质锅炉等。
2. 热力泵房:热力泵房通过热力泵将低温热能提升至高温,以增加供热效果。
热力泵利用制冷剂的物理性质,在循环工作过程中完成热能的转移。
3. 换热器:换热器是热力站的重要组成部分,它通过传导、对流和辐射等方式,将锅炉房或热力泵房产生的热能传递给供热介质(常见为水)。
4. 水泵:水泵用于将供热介质(常见为水)从热力站送至用户终端,保证供热系统的正常运行。
5. 控制系统:控制系统是热力站的大脑,通过传感器和执行器等设备,监测和控制热力站的运行状态,确保系统的安全稳定运行。
二、供热系统的工作原理热力站的工作原理可以概括为以下几个步骤:1. 热能产生:锅炉房中的锅炉或热力泵房中的热力泵通过燃烧燃料或运行工作循环,产生高温热能。
2. 热能传递:产生的高温热能通过换热器传递给供热介质(常见为水),将水加热至一定温度。
3. 水泵输送:水泵将加热后的供热介质从热力站送至用户终端,通过管网输送。
4. 用户供热:供热介质到达用户终端后,将热能传递给用户的暖气片或热水器等设备,实现供热。
5. 用户回水:用户使用后的冷却水经过管网回流至热力站,准备再次循环供热。
三、热力站的优势和应用热力站作为集中供热系统的核心设施,具有以下优势:1. 高效节能:热力站通过集中供热,可以充分利用燃烧热能,提高能源利用效率,实现节能减排。
2. 环境友好:热力站采用清洁能源、低排放设备等技术手段,减少了燃烧过程中的污染物排放,对环境友好。
3. 维护方便:热力站集中管理、集中维护,减少了用户个体设备的维护成本和工作量。