二次曲面2讲义009
- 格式:ppt
- 大小:487.00 KB
- 文档页数:4
二次曲面形的性质及求法二次曲面是一个重要的数学概念,它在图像处理、物理学、工程学等领域中都有重要的应用。
本文将介绍二次曲面的性质及其求法。
一、二次曲面的定义二次曲面是指具有二次项(或更高次项)的二元多项式所构成的曲面。
一般二次曲面的方程可以写为以下形式:$$ax^2+by^2+cz^2+2fxy+2gxz+2hyz+d=0$$其中,$a,b,c,f,g,h$和$d$均为实数,并且至少其中一项系数不为零。
二、二次曲面的性质1.对称性对于任意一个二次曲面,它都具有以下三种对称性:(1)关于$x$轴的对称性当$a=b$且$f=g=h=0$时,二次曲面具有关于$x$轴的对称性。
(2)关于$y$轴的对称性当$a=c$且$f=h=g=0$时,二次曲面具有关于$y$轴的对称性。
(3)关于$z$轴的对称性当$c=b$且$h=g=f=0$时,二次曲面具有关于$z$轴的对称性。
2.焦点和直线二次曲面的焦点是指使二次曲面上的所有点到其确定的两个固定点的距离之比等于一个定值的点对。
二次曲面的焦线是指对于二次曲面上的任一点,都满足其到焦点的距离与到焦线的距离之比等于一个定值。
3.标准形式通过线性代数的方法,可以将任意一个二次曲面通过坐标变换,化为以下标准形式:$$\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$$其中,$a,b,c$为正实数,分别代表$x,y,z$轴上的半轴长。
三、二次曲面的求法1.第一种方法:配方法配方法是求解二次曲面的一种基本方法。
通过将二次曲面的方程变形为一个平方差式,来实现对二次曲面的求解。
例如,对于方程$4x^2+y^2+z^2+4xy+4xz+2yz=1$,可以通过配方法将其变为以下形式:$$\bigg(2x+\frac{y}{2}+\frac{z}{2}\bigg)^2+\frac{3}{4}y^2+\frac{3} {4}z^2=1$$我们最终得到的形式就是一个椭球面的标准形式。
7.9 二次曲面与平面解析几何中规定的二次曲线相类似,我们把三元二次方程所表示的曲面叫做二次曲面.关于一般的三元方程0),,(=z y x F 所表示的曲面的形状,已难以用描点法得到,本节采用称之为截痕法的方式来研究二次曲面,即用坐标面和平行于坐标面的平面与曲面相截,考察其交线(即截痕)的形状,然后加以综合从而了解曲面的全貌.作为例子研究椭球面的方程1222222=++cz b y a x并化出其图形.(1) 对称性: 方程的图形关于各个坐标面及原点对称(2) 在坐标轴上的截距: 方程的图形在x 轴、y 轴、z 轴上的截距分别是c b a ±±±,,(c b a ,,分别称为椭球面的半轴).并且由1,1,1222222≤≤≤cz b y a x 得方程的图形位于平面c z b y a x ±=±=±=.,为界的长方体内.(3) 在坐标面上的截痕: 方程的图形在xoy 面、yoz 面、xoz 面上的截痕分别为椭圆⎪⎩⎪⎨⎧==+012222z b y a x ⎪⎩⎪⎨⎧==+012222x c z b y ⎪⎩⎪⎨⎧==+012222y c z ax (4) 平行截痕,研究与xoy 面平行的平面h z =(c h <)与方程图形的截痕,截痕曲线为 ⎪⎩⎪⎨⎧==++h z cz b y a x 1222222 或 ⎪⎪⎩⎪⎪⎨⎧==-+-hz c h b y c h a x 1)1()1(22222222这是一个在平面h z =上以221c h a -和221ch b -为半轴的椭圆.当h 由0逐渐增大时,两个半轴逐渐减少,当c h =时,截痕缩为一点.同样,分别讨论与yoz 面及xoz 面平行的平面与方程图形的截痕,它们也是椭圆.综合以上讨论可知,方程的图形如图7.40示,今后称这个曲面为椭球面. 当c b a ==时,椭球面变为球面.当b a =时椭球方程为122222=++cz a y x 它是椭圆⎪⎩⎪⎨⎧==+012222x c z b y 或 ⎪⎩⎪⎨⎧==+012222y c z ax 绕z 轴旋转而成的旋转椭球面,它在平行于xoy 面的平面上的截痕都是圆(图7.40)除椭球面外,常见的二次曲面有以下几种.下面我们列出它们的标准方程与图. 1 椭圆抛物面(图7.41)pz by a x22222=+ )0,0,0(≠>>p b a2 单叶双曲面(图7.42)1222222=-+cz b y a x )0,0,0(>>>c b a3双叶双曲面(图7.43)1222222-=-+cz b y a x )0,0,0(>>>c b a4双曲抛物面(图7.44)pz by a x 22222=- )0,0,0(≠>>p b a5锥面(图7.45)0222222=-+cz b y a x )0,0,0(>>>c b a图7.40 图7.41图7。