温州市苍南县2016届中考第一次模拟测试数学试题含答案
- 格式:doc
- 大小:308.52 KB
- 文档页数:8
一、(共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确的选项填在题后的括号内)1.计算(+5)+(﹣2)的结果是()A.7 B.﹣7 C.3 D.﹣3【答案】C【解析】试题分析:根据有理数的加法运算法则进行计算即可得解.(+5)+(﹣2)=+(5﹣2)=3.考点:有理数的加法2.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时 B.4~6小时 C.6~8小时 D.8~10小时【答案】B考点:频数(率)分布直方图3.三本相同的书本叠成如图所示的几何体,它的主视图是()A. B. C. D.【答案】B【解析】试题分析:主视图是分别从物体正面看,所得到的图形.观察图形可知,三本相同的书本叠成如图所示的几何体,它的主视图是考点:简单组合体的三视图4.已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x,乙数为y,根据题意,列方程组正确的是()A. B. C. D.【答案】A考点:由实际问题抽象出二元一次方程组5.若分式的值为0,则x的值是()A.﹣3 B.﹣2 C.0 D.2【答案】D【解析】试题分析:直接利用分式的值为0,则分子为0,进而求出答案.∵分式的值为0,∴x﹣2=0,∴x=2.考点:分式的值为零的条件6.一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A. B. C. D.【答案】A【解析】试题分析:由题意可得,共有10可能的结果,其中从口袋中任意摸出一个球是白球的有5情况,利用概率公式即可求得答案.∵从装有2个黄球、3个红球和5个白球的袋中任意摸出一个球有10种等可能结果,其中摸出的球是白球的结果有5种,∴从袋中任意摸出一个球,是白球的概率是=,考点:概率公式7.六边形的内角和是()A.540° B.720° C.900° D.1080°【答案】B【解析】试题分析:多边形内角和定理:n变形的内角和等于(n﹣2)×180°(n≥3,且n为整数),据此计算可得.由内角和公式可得:(6﹣2)×180°=720°,考点:多边形内角8.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A.y=x+5 B.y=x+10 C.y=﹣x+5 D.y=﹣x+10【答案】C考点:(1)、待定系数法求一次函数解析式;(2)、矩形的性质9.如图,一张三角形纸片ABC,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B落在C处;再将纸片展平做第三次折叠,使点A落在B处.这三次折叠的折痕长依次记为a,b,c,则a,b,c的大小关系是()A .c >a >bB .b >a >cC .c >b >aD .b >c >a 【答案】D 【解析】试题分析:(1)图1,根据折叠得:DE 是线段AC 的垂直平分线,由中位线定理的推论可知:DE 是△ABC 的∴b=MN=AC=×4=2第三次折叠如图3,折痕为GH ,由勾股定理得:AB==5由折叠得:AG=BG=AB=×5=,GH ⊥AB ∴∠AGH=90°∴△ACB ∽△AGH ∴= ∴= ∴GH=,即c= ∵2>> ∴b >c >a考点:翻折变换(折叠问题)10.如图,在△ABC 中,∠ACB=90°,AC=4,BC=2.P 是AB 边上一动点,PD ⊥AC 于点D ,点E 在P 的右侧,且PE=1,连结CE .P 从点A 出发,沿AB 方向运动,当E 到达点B 时,P 停止运动.在整个运动过程中,图中阴影部分面积S 1+S 2的大小变化情况是( )A.一直减小 B.一直不变 C.先减小后增大 D.先增大后减小【答案】C∴当0<x<1时,S1+S2的值随x的增大而减小,当1≤x≤2时,S1+S2的值随x的增大而增大.考点:动点问题的函数图象二、填空题(共6小题,每小题5分,满分30分)11.因式分解:a2﹣3a= .【答案】a(a﹣3)【解析】试题分析:直接把公因式a提出来即可考点:因式分解-提公因式法12.某小组6名同学的体育成绩(满分40分)分别为:36,40,38,38,32,35,这组数据的中位数是分.【答案】37 【解析】试题分析:数据按从小到大排列为:32,35,36,38,38,40,则这组数据的中位数是:(36+38)÷2=37. 考点:中位数13.方程组的解是 .【答案】⎩⎨⎧==13y x考点:二元一次方程组的解14.如图,将△ABC 绕点C 按顺时针方向旋转至△A ′B ′C ,使点A ′落在BC 的延长线上.已知∠A=27°,∠B=40°,则∠ACB ′= 度.【答案】46 【解析】考点:旋转的性质15.七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”,小明利用七巧板(如图1所示)中各板块的边长之间的关系拼成一个凸六边形(如图2所示),则该凸六边形的周长是 cm .【答案】322+16【解析】试题分析:如图所示:图形1:边长分别是:16,8,8;图形2:边长分别是:16,8,8;图形3:边长分别是:8,4,4;图形4:边长是:4;图形5:边长分别是:8,4,4;图形6:边长分别是:4,8;图形7:边长分别是:8,8,8;∴凸六边形的周长=8+2×8+8+4×4=32+16(cm);考点:七巧板16.如图,点A,B在反比例函数y=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D 分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE 的面积的2倍,则k的值是.3【答案】72【解析】考点:反比例函数系数k的几何意义三、解答题(共8小题,满分80分)17.(1)计算: +(﹣3)2﹣(2﹣1)0.(2)化简:(2+m)(2﹣m)+m(m﹣1).【答案】(1)、25+8;(2)、4-m【解析】试题分析:(1)、直接利用二次根式的性质结合零指数幂的性质分别分析得出答案;(2)、直接利用平方差公式计算,进而去括号得出答案.试题解析:(1)、原式=2+9﹣1=2+8;(2)、(2+m)(2﹣m)+m(m﹣1)=4﹣m2+m2﹣m=4﹣m.考点:(1)、实数的运算;(2)、单项式乘多项式;(3)、平方差公式;(4)、零指数幂18.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?【答案】(1)、20%;(2)、600考点:(1)、扇形统计图;(2)、用样本估计总体19.如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.【答案】 (1)、证明过程见解析;(2)、8.【解析】试题分析:(1)、由平行四边形的性质得出AD∥BC,AB∥CD,证出∠DAE=∠F,∠D=∠ECF,由AAS证明△ADE≌△FCE即可;(2)、由全等三角形的性质得出AE=EF=3,由平行线的性质证出∠AED=∠BAF=90°,由勾股定理求出DE,即可得出CD的长.试题解析:(1)、∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAE=∠F,∠D=∠ECF,∵E是▱ABCD的边CD的中点,∴DE=CE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS);(2)、∵ADE≌△FCE,∴AE=EF=3,∵AB∥CD,∴∠AED=∠BAF=90°,在▱ABCD中,AD=BC=5,∴DE===4,∴CD=2DE=8考点:(1)、平行四边形的性质;(2)、全等三角形的判定与性质20.如图,在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点四边形,使P在四边形内部(不包括边界上),且P到四边形的两个顶点的距离相等.(1)在图甲中画出一个▱ABCD .(2)在图乙中画出一个四边形ABCD ,使∠D=90°,且∠A ≠90°.(注:图甲、乙在答题纸上)【答案】(1)、答案见解析;(2)、答案见解析.(2)如图②,.考点:平行四边形的性质21.如图,在△ABC 中,∠C=90°,D 是BC 边上一点,以DB 为直径的⊙O 经过AB 的中点E ,交AD 的延长线于点F ,连结EF . (1)求证:∠1=∠F . (2)若sinB=55,EF=25,求CD 的长.【答案】(1)、证明过程见解析;(2)、3∴∠1=∠B,∵∠B=∠F,∴∠1=∠F;(2)、∵∠1=∠F,∴AE=EF=2,∴AB=2AE=4,在Rt△ABC中,AC=AB•sinB=4,∴BC==8,设CD=x,则AD=BD=8﹣x,∵AC2+CD2=AD2,即42+x2=(8﹣x)2,∴x=3,即CD=3.考点:(1)、圆周角定理;(2)、解直角三角形22.有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?【答案】(1)、22元;(2)、20千克答:加入丙种糖果20千克考点:(1)、一元一次不等式的应用;(2)、加权平均数23.如图,抛物线y=x 2﹣mx ﹣3(m >0)交y 轴于点C ,CA ⊥y 轴,交抛物线于点A ,点B 在抛物线上,且在第一象限内,BE ⊥y 轴,交y 轴于点E ,交AO 的延长线于点D ,BE=2AC . (1)用含m 的代数式表示BE 的长.(2)当m=3时,判断点D 是否落在抛物线上,并说明理由. (3)若AG ∥y 轴,交OB 于点F ,交BD 于点G . ①若△DOE 与△BGF 的面积相等,求m 的值.②连结AE ,交OB 于点M ,若△AMF 与△BGF 的面积相等,则m 的值是 .【答案】(1)、2m ;(2)、落在抛物线上;(3)、①、m=23;②、m=223 【解析】试题分析:(1)、根据A 、C 两点纵坐标相同,求出点A 横坐标即可解决问题;(2)、求出点D 坐标,然后判断即可;(3)、①首先根据EO=2FG ,证明BG=2DE ,列出方程即可解决问题;②求出直线AE 、BO 的解析式,∵点B坐标(2m,2m2﹣3),∴OC=2OE,∴3=2(2m2﹣3),∵m>0,∴m=.②∵A(m,﹣3),B(2m,2m2﹣3),E(0,2m2﹣3),∴直线AE解析式为y=﹣2mx+2m2﹣3,直线OB解析式为y=x,考点:二次函数综合题24.如图,在射线BA,BC,AD,CD围成的菱形ABCD中,∠ABC=60°,AB=6,O是射线BD上一点,⊙O与BA,BC都相切,与BO的延长线交于点M.过M作EF⊥BD交线段BA(或射线AD )于点E ,交线段BC (或射线CD )于点F .以EF 为边作矩形EFGH ,点G ,H 分别在围成菱形的另外两条射线上. (1)求证:BO=2OM .(2)设EF >HE ,当矩形EFGH 的面积为24时,求⊙O 的半径.(3)当HE 或HG 与⊙O 相切时,求出所有满足条件的BO 的长.【答案】(1)、答案见解析;(2)、2或4;(3)、18﹣63或9或18或18+63. 【解析】试题分析:(1)、设⊙O 切AB 于点P ,连接OP ,由切线的性质可知∠OPB=90°.先由菱形的性质求得∠OBP 的度数,然后依据含30°直角三角形的性质证明即可;(2)、设GH 交BD 于点N ,连接AC ,交BD 于点Q .先依据特殊锐角三角函数值求得BD 的长,设⊙O 的半径为r ,则OB=2r ,MB=3r .当点E 在AB 上时.在Rt △BEM 中,依据特殊锐角三角函数值可得到EM 的长(用含r 的式子表示),由图形的对称性可得到EF 、ND 、BM 的长(用含r 的式子表示,从而得到MN=18﹣6r ,接下来依据矩形的面积列方程求解即可;当点E 在AD 边上时.BM=3r ,则MD=18﹣3r ,最后由MB=3r=12列方程求解即可;(3)、先根据题意画出符合题意的图形,①如图4所示,点E 在AD 上时,可求得DM=r ,BM=3r ,然后依据BM+MD=18,列方程求解即可;②如图5①如图2所示,当点E 在AB 上时.在Rt △BEM 中,EM=BM •tan ∠EBM=r . 由对称性得:EF=2EM=2r ,ND=BM=3r .∴MN=18﹣6r . ∴S 矩形EFGH =EF •MN=2r (18﹣6r )=24. 解得:r 1=1,r 2=2.当r=1时,EF<HE,∴r=1时,不合题意舍当r=2时,EF>HE,∴⊙O的半径为2.∴BM=3r=6.如图3所示:当点E在AD边上时.BM=3r,则MD=18﹣3r.由对称性可知:NB=MD=6.∴MB=3r=18﹣6=12.解得:r=4.综上所述,⊙O的半径为2或4.(3)、解设GH交BD于点N,⊙O的半径为r,则BO=2r.当点E在边BA上时,显然不存在HE或HG与⊙O相切.①如图4所示,点E在AD上时.∵HE与⊙O相切,∴ME=r,DM=r.∴3r+r=18.解得:r=9﹣3.∴OB=18﹣6.②如图5所示;由图形的对称性得:ON=OM,BN=DM.∴OB=BD=9.③如图6所示.∵HG与⊙O相切时,MN=2r.∵BN+MN=BM=3r.∴BN=r.∴DM=FM=GN=BN=r.∴D与O重合.∴BO=BD=18.④如图7所示:∵HE与⊙O相切,∴EM=r,DM=r.∴3r﹣r=18.∴r=9+3.∴OB=2r=18+6.综上所述,当HE或GH与⊙O相切时,OB的长为18﹣6或9或18或18+6.考点:圆的综合题。
二〇一六年中考模拟数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,共6页.第Ⅰ卷2页为选择题,30分;第Ⅱ卷4页为非选择题,70分;共100分.考试时间为120分钟.2.答题前,考生务必先用0.5毫米黑色墨水签字笔将本人的姓名、准考证号和座号涂写在答题纸相应位置。
3.答第Ⅰ卷时,必须将正确选项的字母填在答题纸的相应选项框内。
4.答第Ⅱ卷时,必须使用0.5毫米黑色墨水签字笔在答题卡纸书写。
务必在题号所指示的答题区域内作答。
5.考试结束后,只交试题答题纸。
第I卷(选择题 共30分)一、选择题(下列各题的四个选项中,只有一顶符合题意) 1.2-的绝对值是( ) A .2 B .12 C .-2 D .12- 2.下列说法正确的是( )A .要了解人们对“低碳生活”的了解程度,宜采用普查方式B .一组数据5、6、3、4、5、7的众数和中位数都是5C .随机事件的概率为50%,必然事件的概率为100%D .若甲组数据的方差是0.168,乙组数据的方差是0.034,则甲组数据比乙组数据稳定3.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线的其中一条上,若∠1=34°,则∠2的度数为( )A .40°B .30°C .26°D .34°4. 如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为4,∠B=135°,则弧AC 的长( ) A. π2 B. π C.2πD.4π5.小红在观察由一些相同小立方块搭成的几何体时,发现它的主视图、左视图、俯视图依次为如图所示的图形,若每个小正方形的面积为1,则该几何体的表面积为( ) A .10 B . 5 C .18 D .226.若540-=m ,则估计m 的值所在的范围是( )A .21<<mB .32<<mC .43<<mD .54<<m7.先化简,再求值22424422x x xx x x x⎛⎫--+÷⎪-++-⎝⎭(其中x=3),其计算结果是()A.58-B.8 C.-8 D.588.按如图所示的第一、二两行图形的平移、轴对称及旋转等变换规律,填入第三行“?”处的图形应是()9.课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为150的微生物会出现在()A.第3天 B.第4天C.第5天D.第6天10. 如图所示,正方形ABCD的顶点2(0,)2A,2(,0)2B,顶点C D、位于第一象限,直线:(02)l x t t=≤≤将正方形ABCD分成两部分,记位于直线l左侧阴影部分的面积为S,则S关于t的函数图象大致是()112 11102120191817161514135 498762 3九年级数学共6页第2页第3题图第4题图第5题图第8题图第9题图第10题图第П卷(非选择题 共70分)二﹑填空题(将解答的结果尽可能全面、完整、简化地填在横线上)11.分解因式:x 3﹣4x 2+4x =______________________.12.如图,在△ABD 中,C 是BD 上一点,若E 、F 分别是AC 、AB 的中点,△DEF 的面积为4.5,则△ABC 的面积为 .13.新定义:[a ,b ]为一次函数y =ax +b (a ≠0,a ,b 为实数)的“关联数”.若“关联数”[1,m ﹣3]的一次函数是正比例函数,则关于x 的方程1112=+-mx 的解为 . 14.如图,已知一次函数2+=x y 的图象与反比例函数ky x=的图象在第一象限相交于点A ,与x 轴相交于点C AB x ,⊥轴于点B ,AOB △的面积为4,则AC 的长为 (保留根号).15.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形; ②四边形CDFE 的面积保持不变; ③△CDE 面积的最大值为8; ④四边形CDFE 不可能为正方形, ⑤DE 长度的最小值为4。
一、选择题1. 答案:D解析:由题意可知,AB=AC,且∠BAC=∠BAC,所以三角形ABC是等腰三角形,∠ABC=∠ACB,又∠BAC=60°,所以∠ABC=∠ACB=30°,故选D。
2. 答案:A解析:由题意可知,a=3,b=5,c=4,代入勾股定理a²+b²=c²,得到9+25=16,即3²+5²=4²,所以三角形ABC是直角三角形,故选A。
3. 答案:B解析:由题意可知,x=2,y=3,代入方程2x+3y=12,得到2×2+3×3=12,即4+9=12,所以x=2,y=3是方程的解,故选B。
4. 答案:C解析:由题意可知,a+b=10,ab=15,根据求和公式(a+b)²=a²+2ab+b²,代入a+b=10和ab=15,得到100=100+2×15+b²,解得b²=85,所以b=±√85,故选C。
5. 答案:A解析:由题意可知,函数y=2x-1在定义域内单调递增,且当x=0时,y=-1,所以函数的图像如下:(插入函数图像)由图像可知,当x=3时,y=5,故选A。
二、填空题6. 答案:-1解析:由题意可知,x²-2x-3=0,分解因式得(x-3)(x+1)=0,解得x=3或x=-1,所以方程的解为-1。
7. 答案:4解析:由题意可知,x²+2x+1=0,分解因式得(x+1)²=0,解得x=-1,所以方程的解为-1。
8. 答案:y=2x+1解析:由题意可知,一次函数的斜率为2,截距为1,所以函数表达式为y=2x+1。
9. 答案:3解析:由题意可知,a²+2a+1=0,分解因式得(a+1)²=0,解得a=-1,所以a²=1,即a=±1,所以a的值为±1,即3。
2016年初中毕业升学考试数学模拟测试卷(一)参考答案及评分标准二、填空题(本题有6小题,每小题4分,共24分)11.(1)(1)a b b -+; 12. 66.710⨯; 13.90°; 14 15. 3; 16. 480 或768. 三、解答题(本题有8小题,共66分) 17. 18. 2 19. 解:每个图3分,共6分.图1图2或图1图220.(本题8分)解: (1)120;36 (2分) (2)图略;(3分) (3)450(3分)21.(本题8分)(1)证明:连接AD ,OD ;∵AB 为⊙O 的直径,∴∠ADB =90°,即AD ⊥BC ;∵AB =AC ,∴BD =D C .∵OA =OB ,∴OD ∥A C .∵DF ⊥AC ,∴DF ⊥O D . ∴∠ODF =∠DFA =90°,∴DF 为⊙O 的切线. (4分)(2)解:连接BE 交OD 于G ,∵AC =AB ,AD ⊥BC ,ED =BD ,∴∠EAD =∠BA D .∴弧DE =弧B D . ∴ED =BD ,OE =O B .∴OD 垂直平分E B .∴EG =BG .又AO =BO ,∴OG =21AE .在Rt △DGB 和Rt △OGB 中, BD 2﹣DG 2=BO 2﹣OG 2∴2222)45()25(OG OB OG -=-- 解得:OG =43.∴AE =2OG =23. (4分)22. (本题10分)解:(1)乙出发后5分钟与甲第一次相遇;乙出发后30分钟与甲第二次相遇.(各3分,共6分)(2)68米/分钟. (4分)23.(本题10分)解:(1)①∵∠BAC =90°,θ=45°,∴AP ⊥BC ,BP =CP (等腰三角形三线合一),∴AP =BP (直角三角形斜边上的中线等于斜边的一半), 又∵∠MBN =90°,BM =BN ,∴AP =PN (等腰三角形三线合一), ∴AP =PN =BP =PC ,且AN ⊥BC ,∴四边形ABNC 是正方形, ∴∠ANC =45°; (4分)②当θ≠45°时,①中的结论不发生变化.理由如下:∵∠BAC =∠MBN =90°,AB =AC ,BM =BN ,∴∠ABC =∠ACB =∠BNP =45°,又∵∠BPN=∠APC,∴△BNP∽△ACP,∴=,又∵∠APB=∠CPN,∴△ABP∽△CNP,∴∠ANC=∠ABC=45°;(4分)(2)∠ANC=90°﹣∠BAC.理由如下:∵∠BAC=∠MBN≠90°,AB=AC,BM=BN,∴∠ABC=∠ACB=∠BNP=(180°﹣∠BAC),又∵∠BPN=∠APC,∴△BNP∽△ACP,∴=,又∵∠APB=∠CPN,∴△ABP∽△CNP,∴∠ANC=∠ABC,在△ABC中,∠ABC=(180°﹣∠BAC)=90°﹣∠BAC.(2分)24.(本题12分)解:(1)A(-2,0),B(4,0),D(1,27 -8)(2)(3)(0,7-3),(0,-53)(0,53),(0,193)。
2016年浙江省温州市中考数学模拟试卷一、选择题((本题有10个小题,每小题4分,共40分)每小题给出的四个选项中,有且只有一个是正确的.请把正确的答案填在答题卡相应的位置.1.给出四个数0,,,﹣4,其中是无理数的是()A.0 B.C.D.﹣42.为了了解家里的用水情况,以便能更好的节约用水,小方把自己家1至6月份的用水量绘制成如图的折线图,那么小方家这6个月的月用水量最大是()A.1月B.4月C.5月D.6月3.如图是由五个相同的小立方块搭成的几何体,则它的主视图是()A.B.C.D.4.要使分式有意义,则m的取值应满足()A.m≠1 B.m≠﹣1 C.m=1 D.m=﹣15.下列各式计算正确的有()A.p2•2p3=2p6B.(a+5)2=a2+25 C.D.6.如图,在平面直角坐标系xOy中,已知点A(4,3)和点B(4,0),则sin∠AOB的值等于()A.B.C.D.7.若是关于x、y的二元一次方程ax﹣3y=1的解,则a的值为()A.﹣5 B.﹣1 C.2 D.78.不等式组的解集在数轴上表示正确的是()A.B.C.D.9.如图,矩形OABC的顶点B(7,6),顶点A、C在坐标轴上,矩形内部一点D在双曲线y=上,DE⊥AB于点E,DF⊥BC于点F,若四边形DEBF为正方形,则点D的坐标是()A.(2,6)B.(3,4)C.(4,3)D.(6,2)10.如图,点C是AB为直径的半圆上一点(O为圆心),以AC、BC为边向上作正方形ACDE和正方形BCFG,点P是DF的中点.若OP=6,AB=10,则△ABC的面积=()A.10 B.11 C.12 D.13二、填空题:(共6小题,每小题5分,满分30分.)11.分解因式:a2﹣9= .12.一组数据a,4,3,6,8的平均数为5,则这组数据的中位数是.13.如图,AB∥CD,BD⊥CD,CE平分∠ACD,若∠CAB=100°,则∠CED的度数为度.14.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠D=45°,则劣弧AC的长为.15.如图,点E是菱形ABCD的边AB上一点,AB=4,∠DAB=60°,过E的直线EF∥AD交 AC、CD于点P、F,过P的直线GH∥AB交AD、BC于点G、H,设AE的长度为x,鱼形(阴影部分)的面积为y,则y关于x的函数解析式是.16.如图,矩形ABCD中,AB=8,BC=6,E为BC边上一点,且BE=2,F为AB上一点,FG⊥AE分别交AE、CD于点P、G,以PC为直径的圆交线段FG于点Q,若PF=QG,则BF= .三、解答题(共8小题,满分80分.)解答应写出文字说明,证明过程或推演步骤.17.(1)计算:sin45°+﹣(﹣1)0(2)化简: +.18.请在图甲、图乙所示的方格纸上各画一个面积为6的格点四边形,顶点在格点上.(1)图甲是轴对称但不是中心对称图形(2)图乙是中心对称但不是轴对称图形19.如图,▱ABCD中,点E、F分别是AD、BC的中点,(1)求证:四边形AFCE是平行四边形;(2)若∠BAC=90°,求证:▱AFCE是菱形.20.某调查机构将今年温州市民最关注的热点话题分为消费、教育、环保、反腐及其它共五类.根据最近一次随机调查的相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)本次共调查人,请在答题卡上补全条形统计图并标出相应数据;(2)若温州市约有900万人口,请你估计最关注教育问题的人数约为多少万人?(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,求抽取的两人恰好是甲和乙的概率(列数状图或列表说明).21.如图,点C在以AB为直径的⊙O上,过C作⊙O的切线交AB的延长线于E,AD⊥CE于D,连结AC.(1)求证:AC平分∠BAD.(2)若tan∠CAD=,AD=8,求⊙O直径AB的长.22.今年3月12日植树节,某校组织七、八、九三个年级的部分学生参加植树活动,活动结束后,领队的老师统计各年级学生及植树情况得到如下3条信息:根据信息,解答下列问题:设七年级有x名学生人参加植树活动,三个年级学生共植树y颗.(1)求y关于x的函数解析式;(2)若各年级学生共植树256棵,七年级有多少名学生人参加植树活动;(3)若九年级学生植树数量占总数的百分比不超过50%,求所有学生植树数量的最大值.23.如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(8,6)交x负半轴于点B(﹣4,0),直线AB交y轴于C,点P是直线AB下方的抛物线上一动点(不与A、B点重合),过点P作x轴的垂线交直线AB于点Q.(1)求抛物线和直线AB的解析式;(2)设点P的横坐标为m;①用含有m的代数式表示线段PQ的长.②当四边形CDPQ为平行四边形时,求m的值.(3)过点P作PE⊥AB于点E.若PE恰好被x轴平分,则AQ:QE:EB= .24.如图,A(0,6),B(﹣6,0),点C、D同时从点O、A出发以每秒1个单位的速度分别沿着x轴正半轴和射线AO方向运动,同时点E从点B出发,以每秒2个单位沿着射线BO 运动,过点C的直线l⊥x轴,点F是直线l在x轴上方的一点,且EF=ED,以DE和EF为邻边作菱形DEFG;当点C和点E重合时各点同时停止运动;直线m:y=2x+2交x轴于点M,交y轴于点N;设运动时间为t.(1)如图1直接写出点M和点N的坐标并用t的代数式表示CE和OD的长度.M ,N ,CE= ,OD= .(2)如图2,当点E在线段OC之间时,证明:菱形DEFG为正方形.(3)在整个运动过程中,①当t的值为多少时,四边形DEFG有一个顶点落在直线m上;②记点D关于直线m的对称点为点D′,当点D′恰好落在直线l上时,直接写出t的值是.2016年浙江省温州市中考数学模拟试卷参考答案与试题解析一、选择题((本题有10个小题,每小题4分,共40分)每小题给出的四个选项中,有且只有一个是正确的.请把正确的答案填在答题卡相应的位置.1.给出四个数0,,,﹣4,其中是无理数的是()A.0 B.C.D.﹣4【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:0,,﹣4是有理数,是无理数,故选:B.2.为了了解家里的用水情况,以便能更好的节约用水,小方把自己家1至6月份的用水量绘制成如图的折线图,那么小方家这6个月的月用水量最大是()A.1月B.4月C.5月D.6月【考点】折线统计图.【分析】根据折线统计图的特点结合图形即可求解.【解答】解:由统计图可知,小方家这6个月的月用水量最大是15吨,对应月份是4月.故选B.3.如图是由五个相同的小立方块搭成的几何体,则它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】主视图有3列,每列小正方形数目从左到右分别为1,2,1.【解答】解:主视图是:故选C.4.要使分式有意义,则m的取值应满足()A.m≠1 B.m≠﹣1 C.m=1 D.m=﹣1【考点】分式有意义的条件.【分析】先根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:由题意,得1﹣m≠0,解得m≠1,故选:A.5.下列各式计算正确的有()A.p2•2p3=2p6B.(a+5)2=a2+25 C.D.【考点】分式的加减法;算术平方根;单项式乘单项式;完全平方公式.【分析】根据分式的性质,二次根式的性质,整式的乘法,完全平方公式即可判断.【解答】解:(A)原式=2p5,故A错误;(B)原式=a2+10a+25,故B错误;(D)原式=3﹣2=1,故D错误;故选(C)6.如图,在平面直角坐标系xOy中,已知点A(4,3)和点B(4,0),则sin∠AOB的值等于()A.B.C.D.【考点】解直角三角形;坐标与图形性质.【分析】根据题意可知:AB⊥x轴,垂足为B,利用勾股定理求出AO的长度后,利用锐角三角函数即可求出答案.【解答】解:∵A(4,3),B(4,0),∴AB⊥x轴,AB=3,由勾股定理可知:AO=5,∴sin∠AOB==,故选(B)7.若是关于x、y的二元一次方程ax﹣3y=1的解,则a的值为()A.﹣5 B.﹣1 C.2 D.7【考点】二元一次方程的解.【分析】根据题意得,只要把代入ax﹣3y=1中,即可求出a的值.【解答】解:把代入ax﹣3y=1中,∴a﹣3×2=1,a=1+6=7,故选:D,8.不等式组的解集在数轴上表示正确的是( )A .B .C .D .【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出每个不等式的解集再求出其公共解集.【解答】解:该不等式组的解集为1<x ≤2,故选C .9.如图,矩形OABC 的顶点B (7,6),顶点A 、C 在坐标轴上,矩形内部一点D 在双曲线y=上,DE ⊥AB 于点E ,DF ⊥BC 于点F ,若四边形DEBF 为正方形,则点D 的坐标是( )A .(2,6)B .(3,4)C .(4,3)D .(6,2)【考点】反比例函数图象上点的坐标特征;矩形的性质;正方形的性质.【分析】由点D 在双曲线上可设点D 的坐标为(m ,)(m >0),根据点B 的坐标即可得出DE 、DF 的长度,根据正方形的性质即可得出关于m 的分式方程,解之经检验后即可得出结论.【解答】解:∵点D 在双曲线y=上,∴设点D 的坐标为(m ,)(m >0),∵B (7,6),∴DE=7﹣m ,DF=6﹣, ∵四边形DEBF 为正方形,∴7﹣m=6﹣,解得:m=4或m=﹣3(舍去),经检验x=4是方程7﹣m=6﹣的解,∴点D的坐标为(4,3).故选C.10.如图,点C是AB为直径的半圆上一点(O为圆心),以AC、BC为边向上作正方形ACDE和正方形BCFG,点P是DF的中点.若OP=6,AB=10,则△ABC的面积=()A.10 B.11 C.12 D.13【考点】正方形的性质;勾股定理;圆周角定理.【分析】连接AD、BF,设AC=a,BC=b,首先证明AD+BF=2OP,得a+b=12,再根据a2+b2=100求出ab即可解决问题.【解答】解:如图,连接AD、BF.设AC=a,BC=b,∵AB是直径,∴∠ACB=90°∵四边形ACDE、四边形BCFG都是正方形,∴∠ACD=∠BCF=∠ACB=90°,∴A、C、F共线,B、C、D共线,∴∠DAC=∠BFC=45°,∴AD∥BF,∵DP=PF,AO=OB,∴AD+BF=2PO,∴a+b=12,∴a+b=12,又∵a2+b2=100,∴a2+2ab+b2=144,∴2ab=44,∴S△ABC=ab=11,故选B.二、填空题:(共6小题,每小题5分,满分30分.)11.分解因式:a2﹣9= (a+3)(a﹣3).【考点】因式分解﹣运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).12.一组数据a,4,3,6,8的平均数为5,则这组数据的中位数是 4 .【考点】中位数;算术平均数.【分析】先根据平均数为5求出a的值,然后根据中位数的概念求解.【解答】解:∵数据6、4、a、3、8的平均数是4,∴=5,解得:a=4,这组数据按照从小到大的顺序排列为:3,4,4,6,8,则中位数为4.故答案为:4.13.如图,AB∥CD,BD⊥CD,CE平分∠ACD,若∠CAB=100°,则∠CED的度数为50 度.【考点】平行线的性质;垂线.【分析】根据两直线平行,同旁内角互补求出∠ACD,再根据角平分线的定义求出∠DCE,然后根据直角三角形两锐角互余列式计算即可得解.【解答】解:∵AB∥CD,∴∠ACD=180°﹣∠CAB=180°﹣100°=80°,∵CE平分∠FCD,∴∠DCE=∠ACD=×80°=40°,∵BD⊥CD,∴∠D=90°,∴∠CED=90°﹣∠DCE=90°﹣40°=50°.故答案为:50.14.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠D=45°,则劣弧AC的长为π.【考点】圆内接四边形的性质;弧长的计算.【分析】连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.【解答】解:连接OA、OC,∵∠D=45°,∴∠AOC=2∠D=90°,则劣弧AC的长为: =π.故答案为π.15.如图,点E是菱形ABCD的边AB上一点,AB=4,∠DAB=60°,过E的直线EF∥AD交 AC、CD于点P、F,过P的直线GH∥AB交AD、BC于点G、H,设AE的长度为x,鱼形(阴影部分)的面积为y,则y关于x的函数解析式是y=x2﹣4x+8.【考点】菱形的性质.【分析】由菱形ABCD中,直线EF∥AD,直线GH∥AB,易得四边形AEPG是菱形,四边形CHPF 是菱形,然后过点G作GM⊥AE于点M,过点F作FN⊥BC于点N,利用三角形函数求得其高,继而求得答案.【解答】解:∵四边形ABCD是菱形,∴AB∥CD,AD∥BC,∠DAB=∠BAC,∵EF∥AD,GH∥AB,∴AD∥EF∥BC,AB∥GH∥CD,∴四边形AEPG与四边形BCFE是平行四边形,∴∠BAC=∠APG,∴∠DAC=∠APG,∴AG=PG,∴四边形AEPG是菱形,同理:四边形CHPF是菱形,过点G作GM⊥AE于点M,过点F作FN⊥BC于点N,则AG=AE=x,CH=FC=BE=AB﹣AE=4﹣x,∵∠BCD=∠DAB=60°,∴GM=AG•sin60°=x,FN=FC•sin60°=(4﹣x),∴S△PGE=S△AGE=AE•GM=x2,S菱形CHPF=CH•FN=(4﹣x)2,∴y=S阴影=S△PGE+S菱形CHPF=x2﹣4x+8.故答案为:y=x2﹣4x+8.16.如图,矩形ABCD中,AB=8,BC=6,E为BC边上一点,且BE=2,F为AB上一点,FG⊥AE分别交AE、CD于点P、G,以PC为直径的圆交线段FG于点Q,若PF=QG,则BF= .【考点】相似三角形的判定与性质;矩形的性质;圆周角定理.【分析】连接AC交FG于O,连接PC、CQ,延长AE交PC为直径的圆于H,连接CH.首先证明OA=OC,由△AEB∽△CEH,可得==,推出CH=,EH=,AH=,由OA=OC,OP∥CH,推出AP=PH=,由△APF∽△ABE,可得=,推出AF=,延长即可解决问题.【解答】解:连接AC交FG于O,连接PC、CQ,延长AE交PC为直径的圆于H,连接CH.∵四边形ABCD是矩形,∴AB∥CD,∴∠AFP=∠CGQ,∵PC是直径,∴∠CQP=∠H=90°,∴CQ⊥FG,∵AE⊥FG,∴∠APF=∠CQG=90°,在△APF和△CQG中,,∴△AOF≌△CQG,∴AP=CQ,在△AOP和△COQ中,,∴△AOP≌△COQ,∴OA=OC,在Rt△ABE中,∵AB=8,BE=2,∴AE==2,∵△AEB∽△CEH,∴==,∴CH=,EH=,∴AH=,∵OA=OC,OP∥CH,∴AP=PH=,∵△APF∽△ABE,∴=,∴AF=,∴BF=AB﹣AF=8﹣=,故答案为三、解答题(共8小题,满分80分.)解答应写出文字说明,证明过程或推演步骤.17.(1)计算:sin45°+﹣(﹣1)0(2)化简: +.【考点】分式的加减法;实数的运算;零指数幂;特殊角的三角函数值.【分析】(1)原式利用特殊角的三角函数值,二次根式性质,以及零指数幂法则计算即可得到结果;(2)原式通分并利用同分母分式的加法法则计算即可得到结果.【解答】解:(1)原式=+2﹣1=﹣1;(2)原式=+==.18.请在图甲、图乙所示的方格纸上各画一个面积为6的格点四边形,顶点在格点上.(1)图甲是轴对称但不是中心对称图形(2)图乙是中心对称但不是轴对称图形【考点】作图﹣旋转变换;作图﹣轴对称变换.【分析】(1)根据轴对称的性质画出图形即可;(2)根据中心对称的性质画出图形即可.【解答】解:(1)如图甲所示;(2)如图乙所示.19.如图,▱ABCD中,点E、F分别是AD、BC的中点,(1)求证:四边形AFCE是平行四边形;(2)若∠BAC=90°,求证:▱AFCE是菱形.【考点】菱形的判定;平行四边形的判定与性质.【分析】(1)根据平行四边形的性质可得AD=BC,AD∥BC,再由点E、F分别是AD、BC的中点可得AE=CF且AE∥CF,从而可根据一组对边平行且相等的四边形是平行四边形可得结论;(2)根据直角三角形的性质可得AF=CF,再根据一组邻边相等的平行四边形是菱形可得结论.【解答】证明:(1)在▱ABCD中,∴AD=BC,AD∥BC,∵点E、F分别是AD、BC的中点,∴AE=CF且AE∥CF,∴四边形AFCE是平行四边形;(2)∵∠BAC=90°,点F分别是BC的中点,∴AF=CF,∴▱AFCE是菱形.20.某调查机构将今年温州市民最关注的热点话题分为消费、教育、环保、反腐及其它共五类.根据最近一次随机调查的相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)本次共调查1400 人,请在答题卡上补全条形统计图并标出相应数据;(2)若温州市约有900万人口,请你估计最关注教育问题的人数约为多少万人?(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,求抽取的两人恰好是甲和乙的概率(列数状图或列表说明).【考点】列表法与树状图法;用样本估计总体;统计表;条形统计图.【分析】(1)根据关注消费的人数是420人,所占的比例式是30%,即可求得总人数,然后利用总人数乘以关注教育的比例求得关注教育的人数,进而可补全条形统计图并标出相应数据;(2)利用总人数乘以对应的百分比即可;(3)利用列举法即可求解即可.【解答】解:(1)调查的总人数是:420÷30%=1400(人),关注教育的人数是:1400×25%=350(人).;(2)900×(1﹣0.3﹣0.1﹣0.15﹣0.2)=225(万)答:估计最关注教育问题的人数约为225万人.(3)画树形图得:则P(抽取的两人恰好是甲和乙)=P=.21.如图,点C在以AB为直径的⊙O上,过C作⊙O的切线交AB的延长线于E,AD⊥CE于D,连结AC.(1)求证:AC平分∠BAD.(2)若tan∠CAD=,AD=8,求⊙O直径AB的长.【考点】切线的性质;解直角三角形.【分析】(1)连接OC,由DE为圆O的切线,得到OC垂直于CD,再由AD垂直于DE,得到AD与OC平行,得到一对内错角相等,根据OA=OC,利用等边对等角得到一对角相等,等量代换即可得证;(2)在直角三角形ADC中,利用锐角三角函数定义求出CD的长,根据勾股定理求出AD的长,由三角形ACD与三角形ABC相似,得到对应边成比例,即可求出AB的长.【解答】证明:(1)连结OC,∵DE是⊙O的切线,∴OC⊥DE,∵AD⊥CE,∴AD∥OC,∵OA=OC,∴∠DAC=∠ACO=∠CAO,∴AC平分∠BAD;(2)解:∵AD⊥CE,tan∠CAD=,AD=8,∴CD=6,∴AC=10,∵AB是⊙O的直径,∴∠ACB=90°=∠D,∵∠DAC=∠CAO,∴△ACD∽△ABC,∴AB:AC=AC:AD,∴AB=.22.今年3月12日植树节,某校组织七、八、九三个年级的部分学生参加植树活动,活动结束后,领队的老师统计各年级学生及植树情况得到如下3条信息:根据信息,解答下列问题:设七年级有x名学生人参加植树活动,三个年级学生共植树y颗.(1)求y关于x的函数解析式;(2)若各年级学生共植树256棵,七年级有多少名学生人参加植树活动;(3)若九年级学生植树数量占总数的百分比不超过50%,求所有学生植树数量的最大值.【考点】一次函数的应用.【分析】(1)根据题意可以写出y关于x的函数解析式;(2)将y=256代入(1)中的函数解析式即可解答本题;(3)根据题意可以列出相应的不等式,从而可以解答本题.【解答】解:(1)由题意可得,y=4x+5×2x+6(50﹣x﹣2x)=300﹣4x,即y关于x的函数解析式是y=300﹣4x;(2)当y=256时,256=300﹣4x,解得,x=11若各年级学生共植树256棵,七年级有11名学生人参加植树活动;(3)由题意可得,6(50﹣x﹣2x)≤×0.5解得,x≥,∵x是正整数,∴x最小=10,∴300﹣4x的最大值是300﹣4×10=260,即学生植树数量的最大值260棵.23.如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(8,6)交x负半轴于点B (﹣4,0),直线AB交y轴于C,点P是直线AB下方的抛物线上一动点(不与A、B点重合),过点P作x轴的垂线交直线AB于点Q.(1)求抛物线和直线AB的解析式;(2)设点P的横坐标为m;①用含有m的代数式表示线段PQ的长.②当四边形CDPQ为平行四边形时,求m的值.(3)过点P作PE⊥AB于点E.若PE恰好被x轴平分,则AQ:QE:EB= 15:7:14..【考点】二次函数综合题;平行四边形的性质.【分析】(1)根据抛物线y=x2+bx+c经过点A(8,6)交x负半轴于点B(﹣4,0),运用待定系数法求得抛物线的解析式,和直线的解析式即可;(2)根据四边形CDPQ为平行四边形,利用PQ=CD,列出方程=,解得:m1=4,m2=0(舍去),即可得到m的值为4;(3)根据抛物线的解析式:,设P(a,b)(﹣4<a<8),得到b=①,再根据直线AB的解析式:,得到Q(a, a+2),根据PE⊥AB,得到直线PE的解析式为y=﹣2x+2a+b,再解方程组,可得E的坐标,最后根据PE恰好被x轴平分,得出+b=0②,最后联立①②解方程组可得,求得Q(3,),E(,),进而得到AQ:QE:EB的比值.【解答】解:(1)∵抛物线y=x2+bx+c经过点A(8,6)交x负半轴于点B(﹣4,0),∴,解得,∴抛物线的解析式:,设直线AB的解析式为y=kx+n,则,解得,∴直线AB的解析式:;(2)①∵PQ⊥x轴,点P的横坐标为m,∴P(m, m2﹣m﹣),Q(m,),∴PQ=﹣()=;②在抛物线中,当x=0时,y=﹣,即D(0,﹣),在直线AB的解析式中,当x=0时,y=2,即C(0,2),∴CD=2﹣()=∵四边形CDPQ为平行四边形,∴PQ=CD,∴=,解得:m1=4,m2=0(舍去),∴m的值为4;(3)∵抛物线的解析式:,∴设P(a,b)(﹣4<a<8),则b=,①∵直线AB的解析式:,∴Q(a, a+2),∵PE⊥AB,∴直线PE的解析式为y=﹣2x+2a+b,解方程组,可得E(,),∵PE恰好被x轴平分,∴+b=0,②联立①②解方程组可得,(舍去),∴Q(3,),E(,),∴AQ:QE:EB=(8﹣3):(3﹣):(+4)=15:7:14.故答案为:15:7:14.24.如图,A(0,6),B(﹣6,0),点C、D同时从点O、A出发以每秒1个单位的速度分别沿着x轴正半轴和射线AO方向运动,同时点E从点B出发,以每秒2个单位沿着射线BO 运动,过点C的直线l⊥x轴,点F是直线l在x轴上方的一点,且EF=ED,以DE和EF为邻边作菱形DEFG;当点C和点E重合时各点同时停止运动;直线m:y=2x+2交x轴于点M,交y轴于点N;设运动时间为t.(1)如图1直接写出点M和点N的坐标并用t的代数式表示CE和OD的长度.M (﹣1,0),N (0,2),CE= 6﹣t ,OD= 6﹣t..(2)如图2,当点E在线段OC之间时,证明:菱形DEFG为正方形.(3)在整个运动过程中,①当t的值为多少时,四边形DEFG有一个顶点落在直线m上;②记点D关于直线m的对称点为点D′,当点D′恰好落在直线l上时,直接写出t的值是.【考点】一次函数综合题.【分析】(1)求出直线y=2x+2与坐标轴的交点,可得M、N点坐标,由题意OE=t,AD=t,BE=2t,可以推出CE、OD的长.(2)根据一个角是90°的菱形是正方形,只要证明∠DEF=90°即可.(3)①分四种情形分别讨论即可.②如图5中,设DD′交直线m于F,作FG⊥OA于G.由△DFG∽△FNG∽△MNO,得===,推出DG=t,GN=t,根据GN=AN﹣AD﹣DG,列出方程即可解决问题.【解答】解:(1)∵y=2x+2交x轴于点M,交y轴于点N,∴M(﹣1,0),N(0,2),由题意,OE=t,AD=t,BE=2t,∴EC=OB+OC﹣BE=6+t﹣2t=6﹣t,OD=OA﹣AD=6﹣t,故答案为(﹣1,0),(0,2),6﹣t,6﹣t,(2)证明:点E在线段OC之间∵CE=6﹣t=OD,EF=ED,∠DOE=∠ECF=90°.∴△DOE≌△ECF∴∠DEO=∠EFC∴∠DEO+∠CEF=∠EFC+∠CEF=90°,∴∠DEF=90°∴菱形DEFG是正方形.(3)①当点D落在直线m上;即点D与点N重合,可得6﹣t=2∴t=4.当点E落在直线m上;即点E与点M重合,可得2t=5∴t=2.5.当点F落在直线m上;如图3,由△DOE≌△FCE可得CF=OE=6﹣2t把F ( t,6﹣2t )代入y=2x+26﹣2t=2t+2∴t=1.当点G落在直线m上;如图4,过G作GH⊥x轴于点H容易证明△DOE≌△GHD;∴GH=OD=6﹣t,HD=OE=2t﹣6∴OH=HD+OD=t把G (6﹣t,t )代入y=2x+2t=2(6﹣t)+2∴t=.∴当t取4,2.5,1,时,四边形DEFG有一个顶点落在直线m上②如图5中,设DD′交直线m于F,作FG⊥OA于G.由题意,D关于直线m的对称点为点D′,当点D′恰好落在直线l上,∴FG=,AD=t,由△DFG∽△FNG∽△MNO,∴===,∴DG=t,GN=t,∵GN=AN﹣AD﹣DG,∴t=4﹣t﹣t,∴t=.∴t=时,D关于直线m的对称点为点D′,当点D′恰好落在直线l上.。
2016年浙江省温州市苍南县中考数学一模试卷一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选,多选,错选,均不给分)1.﹣6的相反数是()A.﹣6 B.﹣ C.D.62.在网上搜索引擎中输入“2014中考”,能搜索到与之相关的结果个数约为56400000,这个数用科学记数法表示为()A.5.64×104B.5.64×105C.5.64×106D.5.64×1073.由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.4.下列运算正确的是()A.a3•a3=a9B.(﹣3a3)2=9a6C.5a+3b=8ab D.(a+b)2=a2+b25.一名射击爱好者7次射击的中靶环数如下(单位:环):7,10,9,8,7,9,9,这7个数据的中位数是()A.7环B.8环C.9环D.10环6.为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加书法兴趣小组的频率是()A.0.1 B.0.15 C.0.2 D.0.37.如图,AC是旗杆AB的一根拉线,测得BC=6米,∠ACB=50°,则拉线AC的长为()A.6sin50° B.6cos50° C.D.8.在半径为13的圆柱形油槽内装入一些油后,截面如图,若油面宽AB=24,则油的最大深度CD为()A.7 B.8 C.9 D.109.某校组织1080名学生去外地参观,现有A、B两种不同型号的客车可供选择.在每辆车刚好满座的前提下,每辆B型客车比每辆A型客车多坐15人,单独选择B型客车比单独选择A型客车少租12辆,设A型客车每辆坐x人,根据题意列方程为()A.B.C.D.10.如图.正方形ABCD的边长为4,点E为AD边上一点.,AE=1,连接AC,CE,过点E作AB的平行线交AC于点P1,过点P1作AD的平行线交CE于Q1,再过Q1作AB的平行线交AC 于P2,…如此不断进行下去形成△AEP1,△P1Q1P2,△P2Q2P3,…,记它们的面积之和为S1,类似地形成△EP1Q1,△Q1P2Q2,△Q2P3Q3,…,记它们的面积之和为S2,则的值为()A.B.C.D.二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:2x2﹣8= .12.请写出一个图象有经过第二、四象限的函数解析式:.(填一次函数或反比例函数)13.不等式组的正整数解为.14.如图,在四边形ABCD中,∠A=45°.直线l与边AB,AD分别相交于点M,N,则∠1+∠2= .15.如图,小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”阴影图案的面积为.16.如图,在直角坐标系中,平行四边形ABCD的顶点A(0,2)、B(1,0)在x轴、y轴上,另两个顶点C、D在第一象限内,且AD=3AB.若反比例函数(k>0)的图象经过C,D 两点,则k的值是.三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:(2)解方程:x2﹣2x﹣1=0.18.如图,在△ABC中,AC=BC,∠ACB=90°,D为AC延长线上一点,点E在BC边上,且CE=CD,连结AE、BD、DE.①求证:△ACE≌△BCD;②若∠CAE=25°,求∠BDE的度数.19.如图,在6×8方格纸中,△ABC的三个顶点和点P都在小方格的顶点上.按要求画一个三角形,使它的顶点在方格的顶点上.(1)在图1中画△DEF,使△DEF与△ABC全等,且使点P在△DEF的内部.(2)在图2中画△MNH,使△MNH与△ABC的面积相等,但不全等,且使Q在△MNH的边上.20.不透明的布袋里装有红、蓝、黄三种颜色小球共40个,它们除颜色外其余都相同,其中红色球20个,蓝色球比黄色球多8个.(1)求袋中蓝色球的个数;(2)现再将2个黄色球放入布袋,搅匀后,求摸出1个球是黄色球的概率.21.如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F.(1)求证:BE=CE;(2)求∠CBF的度数;(3)若AB=6,求的长.22.乐清市虹桥镇的淡溪水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到30年,则该镇居民人均每年需节约多少立方米才能实现目标?23.如图,已知抛物线y=x2+bx与直线y=2x交于点O(0,0),A(a,16),点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点C,E.(1)求抛物线的函数解析式;(2)若OC=AC,求BC的长;(3)以BC,BE为边构造矩形BCDE,设点D的坐标为(m,n),直接写出m,n之间的关系式.24.如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm,点E、F、G分别从A、B、C 三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F.设点E、F、G运动的时间为t(单位:s).(1)当t= s时,四边形EBFB′为正方形;(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B′在射线BO上?若存在,求出t的值;若不存在,请说明理由.2016年浙江省温州市苍南县钱库一中中考数学一模试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选,多选,错选,均不给分)1.﹣6的相反数是()A.﹣6 B.﹣ C.D.6【考点】相反数.【分析】相反数就是只有符号不同的两个数.【解答】解:根据概念,与﹣6只有符号不同的数是6.即﹣6的相反数是6.故选D.2.在网上搜索引擎中输入“2014中考”,能搜索到与之相关的结果个数约为56400000,这个数用科学记数法表示为()A.5.64×104B.5.64×105C.5.64×106D.5.64×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将56400000用科学记数法表示为:5.64×107.故选:D.3.由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看第一层是三个正方形,第二层是左边一个正方形.故选:B.4.下列运算正确的是()A.a3•a3=a9B.(﹣3a3)2=9a6C.5a+3b=8ab D.(a+b)2=a2+b2【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.【分析】A、利用同底数幂的乘法法则计算得到结果,即可作出判断;B、利用积的乘方与幂的乘方运算法则计算得到结果,即可作出判断;C、本选项不能合并,错误;D、利用完全平方公式展开得到结果,即可作出判断.【解答】解:A、a3•a3=a6,故A错误;B、(﹣3a3)2=9a6,故B正确;C、5a+3b不能合并,故C错误;D、(a+b)2=a2+2ab+b2,故D错误,故选:B.5.一名射击爱好者7次射击的中靶环数如下(单位:环):7,10,9,8,7,9,9,这7个数据的中位数是()A.7环B.8环C.9环D.10环【考点】中位数.【分析】根据中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:7,7,8,9,9,9,10,则中位数为9.故选C.6.为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加书法兴趣小组的频率是()A.0.1 B.0.15 C.0.2 D.0.3【考点】频数(率)分布直方图.【分析】根据频率分布直方图可以知道书法兴趣小组的频数,然后除以总人数即可求出加绘画兴趣小组的频率.【解答】解:∵根据频率分布直方图知道书法兴趣小组的频数为8,∴参加书法兴趣小组的频率是8÷40=0.2.故选C.7.如图,AC是旗杆AB的一根拉线,测得BC=6米,∠ACB=50°,则拉线AC的长为()A.6sin50° B.6cos50° C.D.【考点】解直角三角形的应用.【分析】根据余弦定义:cos50°=可得AC的长为=.【解答】解:∵BC=6米,∠ACB=50°,∴拉线AC的长为=,故选:D.8.在半径为13的圆柱形油槽内装入一些油后,截面如图,若油面宽AB=24,则油的最大深度CD为()A.7 B.8 C.9 D.10【考点】垂径定理的应用;勾股定理.【分析】连接OA,先求出油槽的半径和油面宽的一半AC的长,再根据勾股定理求出弦心距OC的长,即可求出油的深度.【解答】解:连接OA,∵OA=OD=13,AC=AB=×24=12,∴OC===5,∴CD=OD﹣OC=13﹣5=8.故选B.9.某校组织1080名学生去外地参观,现有A、B两种不同型号的客车可供选择.在每辆车刚好满座的前提下,每辆B型客车比每辆A型客车多坐15人,单独选择B型客车比单独选择A型客车少租12辆,设A型客车每辆坐x人,根据题意列方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】根据题意,可以列出相应的分式方程,从而可以得到哪个选项是正确的.【解答】解:由题意可得,=,故选D.10.如图.正方形ABCD的边长为4,点E为AD边上一点.,AE=1,连接AC,CE,过点E作AB的平行线交AC于点P1,过点P1作AD的平行线交CE于Q1,再过Q1作AB的平行线交AC 于P2,…如此不断进行下去形成△AEP1,△P1Q1P2,△P2Q2P3,…,记它们的面积之和为S1,类似地形成△EP1Q1,△Q1P2Q2,△Q2P3Q3,…,记它们的面积之和为S2,则的值为()A.B.C.D.【考点】正方形的性质.【分析】先证明: =3:4,同理:: =3:4,…由此即可解决问题.【解答】解:正方形ABCD中,∠CAD=45°,∵P1Q1∥P2Q2=P3Q3…,∴∠Q1PC=∠Q2P2C=Q3P3C=…=45°.∵P1E∥P2Q1∥P3Q2∥…∥AB,∴△AP1E,△P1Q1P2,△P2Q2P3都是等腰直角三角形,∴P1E=AE,P1Q1=P2Q1,P3Q2=P2Q2,…∵CD∥EP1,∴∠DCE=∠Q1EP1,∴tan∠DCE=tan∠Q1EP1,==,∴=,∴: =•EP1•P1Q1:•AE•EP1=3:4,同理:: =3:4,…∴=.故选B.二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:2x2﹣8= 2(x+2)(x﹣2).【考点】因式分解-提公因式法.【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2x2﹣8=2(x+2)(x﹣2).12.请写出一个图象有经过第二、四象限的函数解析式:y=﹣.(填一次函数或反比例函数)【考点】反比例函数的性质.【分析】位于二、四象限的反比例函数比例系数k<0,据此写出一个函数解析式即可.【解答】解:∵反比例函数位于二、四象限,∴k<0,解析式为:y=﹣.故答案为:y=﹣.13.不等式组的正整数解为1,2,3,4 .【考点】一元一次不等式组的整数解.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后确定解集中的正整数解即可.【解答】解:,解①得:x>﹣,解②得x<5,则不等式的解集是﹣<x<5.则正整数解是:1,2,3,4.故答案是:1,2,3,4.14.如图,在四边形ABCD中,∠A=45°.直线l与边AB,AD分别相交于点M,N,则∠1+∠2= 225°.【考点】多边形内角与外角.【分析】先根据四边形的内角和定理求出∠B+∠C+∠D,然后根据五边形的内角和定理列式计算即可得解.【解答】解:∵∠A=45°,∴∠B+∠C+∠D=360°﹣∠A=360°﹣45°=315°,∴∠1+∠2+∠B+∠C+∠D=(5﹣2)•180°,解得∠1+∠2=225°.故答案为:225°.15.如图,小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”阴影图案的面积为2π﹣4 .【考点】扇形面积的计算;中心对称图形.【分析】连接AB,则阴影部分面积=2(S扇形AOB﹣S△ABO),依此计算即可求解.【解答】解:由题意得,阴影部分面积=2(S扇形AOB﹣S△AOB)=2(﹣×2×2)=2π﹣4.故答案为:2π﹣4.16.如图,在直角坐标系中,平行四边形ABCD的顶点A(0,2)、B(1,0)在x轴、y轴上,另两个顶点C、D在第一象限内,且AD=3AB.若反比例函数(k>0)的图象经过C,D 两点,则k的值是24 .【考点】反比例函数图象上点的坐标特征;平行四边形的性质.【分析】设D(x,)(x>0,k>0),根据平行四边形的对边平行得到C(x+1,﹣2);然后由两点间的距离公式和反比例函数图象上点的横纵坐标的乘积等于k列出方程组,通过解方程组可以求得k的值.【解答】解:如图,∵在直角坐标系中,平行四边形ABCD的顶点A(0,2)、B(1,0),∴CD=AB=,AB∥CD.又∵AD=3AB,∴AD=3.设D(x,)(x>0,k>0),则C(x+1,﹣2),则,解得.故答案是:24三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算:(2)解方程:x2﹣2x﹣1=0.【考点】实数的运算;零指数幂;解一元二次方程-配方法;特殊角的三角函数值.【分析】(1)分别根据0指数幂的计算法则、特殊角的三角函数值及数的开方法则计算出各数,再根据实数混合运算的法则进行计算即可;(2)把方程左边化为完全平方式的形式,再利用直接开方法求出x的值即可.【解答】解:(1)原式=4+1﹣1=4;(2)将原方程变形,得x2﹣2x=1,配方得(x﹣1)2=2,两边开平方得x﹣1=±,解得 x1=1+ x2=1﹣.18.如图,在△ABC中,AC=BC,∠ACB=90°,D为AC延长线上一点,点E在BC边上,且CE=CD,连结AE、BD、DE.①求证:△ACE≌△BCD;②若∠CAE=25°,求∠BDE的度数.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】①由全等三角形的判定定理SAS证得结论;②利用①中全等三角形的对应角相等,等腰直角三角形的性质可以求得∠BDE=20°.【解答】①证明:如图,在△ACE与△BCD中,,∴△ACE≌△BCD(SAS);②解:∵CE=CD,∠DCB=90°∴△ECD是等腰直角三角形.∴∠EDC=45°∵由①知,△ACE≌△BCD,∴∠CAE=∠CBD=25°∴∠BDC=∠AEC=90°﹣25°=65°∴∠BDE=65°﹣45°=20°.19.如图,在6×8方格纸中,△ABC的三个顶点和点P都在小方格的顶点上.按要求画一个三角形,使它的顶点在方格的顶点上.(1)在图1中画△DEF,使△DEF与△ABC全等,且使点P在△DEF的内部.(2)在图2中画△MNH,使△MNH与△ABC的面积相等,但不全等,且使Q在△MNH的边上.【考点】作图—应用与设计作图.【分析】(1)利用三角形平移的规律进而得出对应点位置即可;(2)利用三角形面积公式求出符合题意的图形即可.【解答】解:(1)如图所示:△DEF即为所求;(2)如图所示:△MNH即为所求..20.不透明的布袋里装有红、蓝、黄三种颜色小球共40个,它们除颜色外其余都相同,其中红色球20个,蓝色球比黄色球多8个.(1)求袋中蓝色球的个数;(2)现再将2个黄色球放入布袋,搅匀后,求摸出1个球是黄色球的概率.【考点】概率公式.【分析】(1)设篮球有x个,则黄球有(x﹣8)个,根据不透明的布袋里装有红、蓝、黄三种颜色小球共40个以及红色球有20个列出方程,求解即可;(2)先求出黄色球的个数,再除以全部情况的总数,即可求解.【解答】解:(1)设篮球有x个,黄球有(x﹣8)个,根据题意列方程:20+x+(x﹣8)=40,解得x=14.答:袋中有14个篮球;(2)∵三种颜色小球共40+2=42个,其中红色球14﹣8+2=8个,∴摸出1个球是黄色球的概率为: =.21.如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F.(1)求证:BE=CE;(2)求∠CBF的度数;(3)若AB=6,求的长.【考点】切线的性质;圆周角定理;弧长的计算.【分析】(1)连接AE,求出AE⊥BC,根据等腰三角形性质求出即可;(2)求出∠ABC,求出∠ABF,即可求出答案;(3)求出∠AOD度数,求出半径,即可求出答案.【解答】(1)证明:连接AE,∵AB是⊙O直径,∴∠AEB=90°,即AE⊥BC,∵AB=AC,∴BE=CE.(2)解:∵∠BAC=54°,AB=AC,∴∠ABC=63°,∵BF是⊙O切线,∴∠ABF=90°,∴∠CBF=∠ABF﹣∠ABC=27°.(3)解:连接OD,∵OA=OD,∠BAC=54°,∴∠AOD=72°,∵AB=6,∴OA=3,∴弧AD的长是=.22.乐清市虹桥镇的淡溪水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到30年,则该镇居民人均每年需节约多少立方米才能实现目标?【考点】二元一次方程组的应用.【分析】(1)设年降水量为x万立方米,每人年平均用水量为y立方米,根据水库可用水量+降水量×时间=时间×居民数×每人年平均用水量即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设该镇居民年平均用水量为z立方米才能实现目标,根据水库可用水量+降水量×时间=时间×居民数×每人年平均用水量即可得出关于z的一元一次方程,解之即可得出z值,再用50减去z值即可得出结论.【解答】解:(1)设年降水量为x万立方米,每人年平均用水量为y立方米,根据题意得:,解得:.答:年降水量为200万立方米,每人年平均用水量为50立方米.(2)设该镇居民年平均用水量为z立方米才能实现目标,根据题意得:12000+30×200=20×30z,解得:z=30,50﹣30=20(立方米).答:该城镇居民人均每年需要节约20立方米的水才能实现目标.23.如图,已知抛物线y=x2+bx与直线y=2x交于点O(0,0),A(a,16),点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点C,E.(1)求抛物线的函数解析式;(2)若OC=AC,求BC的长;(3)以BC,BE为边构造矩形BCDE,设点D的坐标为(m,n),直接写出m,n之间的关系式.【考点】二次函数综合题.【分析】(1)将点A的坐标代入直线解析式求出a的值,继而将点A的坐标代入抛物线解析式可得出b的值,继而得出抛物线解析式;(2)根据OC=AC以及点A的坐标,求出点C的坐标,将点B的纵坐标代入二次函数解析式求出点B的横坐标,继而可求出BC的长度;(3)根据点D的坐标,可得出点E的坐标,点C的坐标,继而确定点B的坐标,将点B的坐标代入抛物线解析式可求出m,n之间的关系式.【解答】解:(1)∵点A(a,16)在直线y=2x上,∴16=2a,解得:a=8,∴A(8,16).又∵点A是抛物线y=x2+bx上的一点,∴16=×82+8b,解得b=﹣2,∴抛物线解析式为y=x2﹣2x;(2)∵OC=AC,A(8,16),∴C(3,6),∴点B的纵坐标是6,∴x2﹣2x=6,解得x1=6,x2=﹣2,∴点B的坐标是(6,6),∴BC=6﹣3=3;(3)∵直线OA的解析式为:y=2x,点D的坐标为(m,n),∴点E的坐标为(n,n),点C的坐标为(m,2m),∴点B的坐标为(n,2m),把点B(n,2m)代入y=x2﹣2x,可得2m=•(n)2﹣2×n,∴m、n之间的关系式为m=n2﹣n.24.如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm,点E、F、G分别从A、B、C 三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F.设点E、F、G运动的时间为t(单位:s).(1)当t= 2.5 s时,四边形EBFB′为正方形;(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B′在射线BO上?若存在,求出t的值;若不存在,请说明理由.【考点】相似形综合题.【分析】(1)根据四边形EBFB′为正方形,得出BE=BF,从而得出10﹣t=3t,求出t的值即可;(2)分两种情况讨论,若△EBF∽△FCG和△EBF∽△GCF时,分别得出=, =,求出符合条件的t的值即可;(3)根据题意先假设存在,分别求出在不同条件下的t值,它们互相矛盾,得出不存在.【解答】解:(1)若四边形EBFB′为正方形,则BE=BF,即:10﹣t=3t,解得t=2.5;则t=2.5s时,四边形EBFB′为正方形;故答案为:2.5;(2)根据题意分两种情况讨论:①若△EBF∽△FCG,则有=,即=,解得:t=2.8;②若△EBF∽△GCF,则有=,即=,解得:t=﹣14﹣2(不合题意,舍去)或t=﹣14+2.∴当t=2.8s或t=(﹣14+2)s时,以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似.(3)假设存在实数t,使得点B′与点O重合.如图,过点O作OM⊥BC于点M,则在Rt△OFM中,OF=BF=3t,FM=BC﹣BF=6﹣3t,OM=5,由勾股定理得:OM2+FM2=OF2,即:52+(6﹣3t)2=(3t)2解得:t=,过点O作ON⊥AB于点N,则在Rt△OEN中,OE=BE=10﹣t,EN=BE﹣BN=10﹣t﹣5=5﹣t,ON=6,由勾股定理得:ON2+EN2=OE2,即:62+(5﹣t)2=(10﹣t)2解得:t=3.9.∵≠3.9,∴不存在实数t,使得点B′与点O重合.。
一、选择趙(本■有10小■•算小越,分•共40分・H小■只有一个选项是正&的•不选、多选、错选•均不佶分)1 •计算( + 5) + (-2)ft结變是(▲ >A.7B.-7C.3D.-32•右图是九(1〉班45名同学每周课外阅渎时何的荻数宜方图(每组含前一个边界值・不含后一个边界值)•由图可知•人数最多的一粗是(▲)人2〜4小时B・4~6小时U6〜8小时 D.8〜2小时3 •三本相同的书本受成JDBE所示的几何体•它的主视图是(▲)4 •已知甲、乙肖数的和是7,甲数是乙数的2倍•设甲数为吳乙效为意,列方程组正谕的是(▲)入即B•臨7S•若分式笄|的值为O.Mz的值耿▲)A.-3B.-2C.0D.26•—个不透明的袋中•製有2个黄球.3个红球和5个白球•它幻除■色外郁相同•从袋中任倉摸出一个球•是白域的辄率是(▲〉D i• 10 •10.加图■在△ABC中.ZACB-90\AC-4• BC-2. P是AB边上一动点・PD丄AC于点D•点E在P的右剑•且PE=i.连结CE.P(第3题)A. a c. D./x+2>-7U lx»2yc w7 •六边形的内角和是(▲)A. 540* B72L C.900, D. 1080#8. 标紬的正半紬分别交于A.B W点』是牧段A"上任意一点(不包第號点〉•过P分JM作两坐标紬的itSl与卿坐标轴国成的矩形的周长为】0•则该直线的函敢表达式是(▲)人'匸工+5 B.y・j:+10D. b>c>aP+5 D. x+10从点A出发•沿AB方向运动,当E到达点B时.P停止运动•在整个运动过程中,图中阴形部分ifcflS,十S的大小变化悄况是(▲)A. 一宜頤小B. 一直不变Q先離小后增大 D.先堆大后减小• 11 •二■填空6小題•毎小逼5分,共30分)1】•刃式分—a- ▲・】2•某小姐6名同学的体育成分40分)分别为:36,0・38・38・32・35,这姐数|g的中位散足▲分.13.方程姐{;::二7的解是▲•H.iDffl.WAABCtt点C按瓢时针方向敦转至△ "B'C•使点片第在BCfOII长线上•巳知ZA-27*.19. (*H 8分〉如图•£是UAHCD的边CD的中点,建长AE交BC的延长线千点F.(1〉求if«A ADES2AFCE.(2)若ZBAF=90\BC=5t EF-3.求CD 的长.20.(本题8分)如图•在方格祇中•点A.B.P都在格点上•灣枚要求画出以A〃为边的格点四边形•使P在四边形内部(不包括边界上)•且P封四边形的两个II点的距冑村铮・ZB・40・・M»ZACB'N_」_度.(第ISfl)15 •七巧板是我们之阿的关晟拼成一16 •如图•点A.B在反比例^tty-y(4>0)的图进行抽样・誉・并捡制筑计图•其中统计图中没有惊注和应人效的苗分忆•谓根辦疣计图回答下MW«:(】)求■非常了«T的人数的百分务少人?簾学校学生•垃毁分类.如谋TMffflt的纹计图32& 比ttTMC:幕車了解(第19 «>(l)ftffi甲中■岀一个OABCD・(2〉在图乙中■出-个PB边形A/JCD•使ZD・90°・且ZAH90'.(注屈甲•图乙在答题纸t)• 11 •21. (减题10分)如图.ttAABC 中.ZC-90\D 是BC 边上一点,以DB 为 直径的eOftHAB的中点E,交AD 的廷长线于点F •连结EF ・(】)求 i£:Zl = ZF.⑵若sin B ■睜・EF=2代虑CD 的长.(2)为了使什怫第的单价每千克至少降低2元•商家计划在什佛糖中加入甲■丙两种糖果共100千克•问 其中最多可加入丙种耨果多少千克?23.(本題12分〉如图物线-mx —3S>0)交,输于点GCA. 线于点九点B 在從物线上.且衣第一象限内,BE 丄,釉•交y 较于& 延长线于A D.BE^2AQ《1)用含加的代数式表示BE 的长.G )当m-V3时•判斷点D 是否慕在宛物线上•并说明理由.(3)作AG//y 轴•交OB 于点F,交BD 于点GC^ADOE 与/kfiGF 的面枳相聲■求m 的值.②连结AE ■交OB 于点M.若AAMF ^^BGF 的面积相等•则 是▲・2<(*IS 】4分)如图•在射线HA.BC.AD 9CD 国或的菱形ABCD 中■ZABC=6『• AB・6冷・O 是射线BD 上一点■ 6)0与BA.BC 郡相切,与EO 的jg 长线交于点M.过M 作EF 丄BD 交纹段BA (SW 线AD )于点E ■交钱段BC (或肘线CD 〉于点F.以EF 为边 作矩形EFGH .点GH 分别在国成菱形的另外两条射线上.《1〉求证:BO=2OM ・«2)设EF>HE.当矩形EFGH 的面积为24疗时•求©O 的半径. (3)当HE或HG 与©O 相切时,求岀所有摘足条件的BO 的长.果A4+M 果 单价(无/千尢)15 25 30 千尢微40402022. <^fi 10分)有即、乙■丙三种箝果混合而成的什椀覇】00千克,其中冬种 箱果的单价和千克数如下表所示•商家用加权平均数来确定什悅第的单价. (1)求该什锯箱的单价.数学参考答案砂号12345678910答窦C B B A D A B C D C1 — 3〉12.37 13. 14.46 心32血+⑹16.昭三"答IB(本JK«T8/h■■共80 分) 17.(^8 10 分)鱗⑴阿+( —3)1—"一1「= 275+9-1-27^+&(2)(2 + m)(2-m)+m(m-l) »4 —m:4 m1— m —4 —m.】8・《本題8分)«(1)由题童•得焉X100% ・20%・了#T的人数的百分比是20%・(2)由题意•得1200X^^-600(人〉.答:估计对“垃聂分类-知识达到•非常了#T和•比较了IT程度的学生共有600人.19. (*« 8 分〉(1) i£明•••AD〃BC■即AD//BF.-Z1-=ZF.ZD=Z2> ••• DE=CE.••• △ADEMFCE.(2) WVAAD£KAFCE.AAE-EF-3. •••AB〃CD・ AZAED-ZBAF-90\ 庄口ABCD 中MD-BC-5.ADE=丿AD1-AB1 =4, :・CD=2DE=8.20•(本IE 8 分)«(1)B法不險一•如田①.②•③竽.(2)B法不喰一•如图④•⑤•⑥髯.21 •(本Q 10 分)(】)证明连结DE・•: BD是©O的苴艮. .••ZOEB=93\ •••E是AB的中点• ADA = DB>AZ1 = ZB. VZB-ZF.AZ1-ZK⑵解・・y•••AE・EF・2屁AAB-2AE-4V5.〈第21fi>在 RtAABC<P.AC-AB> sinB-4.ABC- ・/AB —Ad ・8・ 设 则 AD-BD-8-x.由勾肢定理•得AO + CD-AD 1 ■ 即 v+^-ca-xJS 解得工=3.•••C"3・22•(本 48 10 分)答】诙什悌辖旬千克22元・ 《2)设加入丙斤需果工千克・0加人甲种W«(100-x )千克•由■童■得 30工+15(100—工>+22X100“* 十一处200WZO. wW x^20.可加入丙科楮果20千克.23.(本題12分)解⑴•••貳物线的对称轴是工=号・:• AC= Tn • •••BE 二 2ZC ・2m«2)当m-V3时,点DJS 在池詢钱上.現由如下'Vm=V3t•••AC* 疗,BE=2VJ ・把x —2^3代入—苗尤一3朋 厂(2V3)1-73X2^3-3=3.AOE--3-OC.••• Z DEO= ZACO- ©. Z DOE-ZAOC. :•△OEg^OCA.••• DE=AC ■疗.••• D ( 一孙・3〉・把 一疗代入 >=x^—V5*x —3.WB (-小一心(F)-3=3・ •••点 D«amw^ 上. (3)(D*D 图2•当x-2m 时Q ・2赫一3,OE ・2肿一3・ TAG 〃川.AEG-AC-yfiEt••・ FC N *OE ・••• S A «c ■ S—即 yDE • O E- yBG • KG,•\DE-yBG-yAC.V z DOE= ZAOC. Z.unZ D0£= UnZAOC, ••• ZDEO=Z A8= Rt 厶• DE AC"OE OC 9/.OE-yOC,②皿的值是晋.■⑴ 15 "0 匕為 X 2+ 3。
某某省某某二中2016届中考数学一模试题一、选择题(共10小题,每小题4分,满分40分)1.﹣2的倒数是()A.2 B.﹣2 C.D.﹣2.有一种美丽的图形,它具有独特的对称美,有无数条对称轴,这种图形是()A.等边三角形B.正方形C.正六边形 D.圆3.下列变形正确的是()A.(a2)3=a9B.2a×3a=6a2C.a6﹣a2=a4D.2a+3b=6ab4.由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.5.多项式x2﹣1与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)26.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是黄灯的概率是()A.B.C.D.7.如图是一个安全用电标记图案,可以抽象为下边的几何图形,其中AB∥DC,BE∥FC,点E,F在AD上,若∠A=15°,∠B=65°,则∠AFC的度数是()A.50° B.65° C.80° D.90°8.某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A. =B. =C. =D. =9.如图,面积为5的正方形ABCD的顶点A在y轴上,顶点D在反比例函数y=(x>0)的图象上,已知点B的坐标是(1,3),则k的值为()A.16 B.12 C.8 D.410.如图,矩形ABCD的外接圆O与水平地面相切于点A,已知圆O的半径为4,且=2.若在没有滑动的情况下,将圆O向右滚动,使得O点向右移动了66π,则此时与地面相切的弧为()A.B.C.D.二、填空题(共6小题,每小题5分,满分30分)m.12.不等式组的解是.13.某正n边形的一个内角为108°,则n=.14.如图,在边长为的菱形ABCD中,∠B=45°,AE是BC边上的高,将△AEB沿AE所在直线翻折得△AEB1,则△AEB1与四边形AECF重叠部分的面积为.15.如图,在直角坐标平面上,△AOB是直角三角形,点O在原点上,A、B两点的坐标分别为(﹣1,y1)、(3,y2),线段AB交y轴于点C.若S△AOC=1,记∠AOC为α,∠BOC为β,则sinα•sinβ的值为.16.如图,在正方形ABCD中,E为对角线AC,BD的交点,经过点A和点E作⊙O,分别交AB、AD 于点F、G.已知正方形边长为5,⊙O的半径为2,则AG•GD的值为.三、解答题(共8小题,满分80分)17.(1)计算: +(﹣1)2﹣2cos60°;(2)化简:÷.18.如图,在平面直角坐标系xOy中点A(6,8),点B(6,0).(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P到A,B两点的距离相等;②点P到∠xOy的两边的距离相等.(2)在(1)作出点P后,直接写出点P的坐标.19.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯的半径是4cm,水面宽度AB是4cm.(1)求水的最大深度(即CD)是多少?(2)求杯底有水部分的面积(阴影部分).20.为了解我省2015届九年级学生学业水平考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A:0﹣29分;B:30﹣39分;C:40﹣44分;D:45﹣49分;E:50分)统计如下:学业考试体育成绩(分数段)统计表分数段人数(人)频率A 12B 36 bC 84D aE 48根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为,b的值为,并将统计图补充完整;(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数.”请问:甲同学的体育成绩应在什么分数段内?(填相应分数段的字母).(3)如果把成绩在45分以上(含45分)定为优秀,那么该县2015年4020名九年级学生中体育成绩为优秀的学生人数约有多少名?21.如图,在矩形ABCD中,AB=2,AD=5,过点A、B作⊙O,交AD、BC于点E、F,连接BE、CE,过点F作FG⊥CE,垂足为G.(1)当点F是BC的中点时,求证:直线FG与⊙O相切;(2)若FG∥BE时,求AE的长.22.如图,在平面直角坐标系中,已知A,B两点的坐标分别是(0,2),0,﹣3),点P是x轴正半轴上一个动点,过点B作直线BC⊥AP于点D,直线BC与x轴交于点C.(1)当OP=2时,求点C的坐标及直线BC的解析式;(2)若△OPD为等腰三角形,则OP的值为.23.某超市有单价总和为100元的A、B、C三种商品.小明共购买了三次,其中一次购买时三种商品同时打折,其余两次均按单价购买,三次购买商品的数量和总费用如下表:商品A的数量商品B的数量商品C的数量总费用(元)第一次 5 4 3 390第二次 5 4 5 312第三次 0 6 4 420(1)小明以折扣价购买的商品是第次购物.(2)若设A商品的单价为x元,B商品的单价为y元.①C商品的单价是元(请用x与y的代数式表示);②求出x,y的值;(3)若小明单价(没打折)第四次购买商品A、B、C的数量总和为m个,其中购买B商品数量是A 商品数量的2倍,购买总费用为720元,m的最小值为.24.如图1,在平面直角坐标系中,点A、B、C的坐标分别为(﹣8,0),(﹣5,0),(0,﹣8),点P,E分别从点A,B同时出发沿x轴正方向运动,同时点D从点C出发沿y轴正方向运动.以PD,PE为邻边构造平行四边形EPDF,已知点P,D的一点速度均为每秒2个单位,点E的运动速度为每秒1个单位,运动时间为t秒.(1)当0<t<3时,PE=(用含t的代数式表示);(2)记平行四边形的面积为S,当S=12时,求t的值;(3)如图2,当0<t<4时,过点P的作抛物线y=ax2+bx+c交x轴于另一点为H(点H在点P的右侧),若PH=6,且该二次函数的最大值不变均为.①当t=2时,试判断点F是否恰好落在抛物线y=ax2+bx+c上?并说明理由;②若点D关于直线EF的对称点Q恰好落在抛物线y=ax2+bx+c,请直接写出t的值.2016年某某省某某二中中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.﹣2的倒数是()A.2 B.﹣2 C.D.﹣【考点】倒数.【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选D.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2.有一种美丽的图形,它具有独特的对称美,有无数条对称轴,这种图形是()A.等边三角形B.正方形C.正六边形 D.圆【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、是轴对称图形,有3条对称轴,故此选项错误;B、是轴对称图形,有4条对称轴,故此选项错误;C、轴对称图形,有6条对称轴,故此选项错误;D、是轴对称图形,有无数条对称轴,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.下列变形正确的是()A.(a2)3=a9B.2a×3a=6a2C.a6﹣a2=a4D.2a+3b=6ab【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方.【分析】根据幂的乘方、单项式乘法、合并同类项法则的运算方法,利用排除法求解.【解答】解:A、应为(a2)3=a6,故本选项错误;B、2a×3a=6a2是正确的;C、a6与a2不是同类项,不能合并,故本选项错误;D、3a与3b不是同类项,不能合并,故本选项错误.故选:B.【点评】本题主要考查了幂的乘方的性质,单项式的乘法法则,合并同类项的法则,熟练掌握运算法则是解题的关键.4.由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看第一层是三个正方形,第二层是左边一个正方形.故选:B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.多项式x2﹣1与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)2【考点】公因式.【分析】分别利用公式法分解因式,进而得出公因式.【解答】解:∵x2﹣1=(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴多项式x2﹣1与多项式x2﹣2x+1的公因式是:x﹣1.故选:A.【点评】此题主要考查了公因式,正确分解因式是解题关键.6.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是黄灯的概率是()A.B.C.D.【考点】概率公式.【专题】压轴题.【分析】让黄灯亮的时间除以总时间即为抬头看信号灯时,是黄灯的概率.【解答】解:每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒共60秒,所以是黄灯的概率是=.故选C.【点评】本题考查概率的基本计算;用到的知识点为:概率=所求情况数与总情况数之比.7.如图是一个安全用电标记图案,可以抽象为下边的几何图形,其中AB∥DC,BE∥FC,点E,F在AD上,若∠A=15°,∠B=65°,则∠AFC的度数是()A.50° B.65° C.80° D.90°【考点】平行线的性质.【专题】应用题.【分析】先根据平行线的性质得出∠D=∠A,∠C=∠B,再由三角形外角的性质即可得出结论.【解答】解:∵AB∥DC,BE∥FC,∠A=15°,∠B=65°,∴∠D=∠A=15°,∠C=∠B=65°.∵∠AFC是△CDF的外角,∴∠AFC=∠D+∠C=15°+65°=80°.故选C.【点评】本题考查的是平行线的性质,先根据题意得出∠C及∠D的度数是解答此题的关键.8.某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A. =B. =C. =D. =【考点】由实际问题抽象出分式方程.【分析】根据题意可知现在每天生产x+50台机器,而现在生产800台所需时间和原计划生产600台机器所用时间相等,从而列出方程即可.【解答】解:设原计划平均每天生产x台机器,根据题意得: =,故选:A.【点评】此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.9.如图,面积为5的正方形ABCD的顶点A在y轴上,顶点D在反比例函数y=(x>0)的图象上,已知点B的坐标是(1,3),则k的值为()A.16 B.12 C.8 D.4【考点】反比例函数图象上点的坐标特征.【分析】过点B作BE⊥y轴于E,过点D作DF⊥y轴于F,根据正方形的性质可得AB=AD,∠BAD=90°,再根据同角的余角相等求出∠BAE=∠ADF,然后利用“角角边”证明△ABE和△DAF全等,根据全等三角形对应边相等可得AF=BE,DF=AE,再求出OF,然后写出点D的坐标,再把点D的坐标代入反比例函数解析式计算即可求出k的值.【解答】解:如图,过点B作BE⊥y轴于E,过点D作DF⊥y轴于F,在正方形ABCD中,AB=AD,∠BAD=90°,∴∠BAE+∠DAF=90°,∵∠DAF+∠ADF=90°,∴∠BAE=∠ADF,在△ABE和△DAF中,∵,∴△ABE≌△DAF(AAS),∴AF=BE,DF=AE,∵正方形的面积为5,B(1,3),∴BE=1,AE=2∴OF=OE+AE+AF=3+2+1=6,∴点D的坐标为(2,6),∵顶点D在反比例函数y=(x>0)的图象上,∴k=xy=2×6=12.故选B.【点评】本题考查的是反比例函数图象上点的坐标特点,涉及到正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点D的坐标是解题的关键.10.如图,矩形ABCD的外接圆O与水平地面相切于点A,已知圆O的半径为4,且=2.若在没有滑动的情况下,将圆O向右滚动,使得O点向右移动了66π,则此时与地面相切的弧为()A.B.C.D.【考点】弧长的计算;旋转的性质.【分析】根据圆的周长公式求出圆的周长以及圆转动的周数,根据题意分别求出和+的长,比较即可得到答案.【解答】解:∵圆O半径为4,∴圆的周长为:2π×r=8π,∵将圆O向右滚动,使得O点向右移动了66π,∴66π÷8π=8…2π,即圆滚动8周后,又向右滚动了2π,∵矩形ABCD的外接圆O与水平地面相切于A点, =2,∴=×8π=<2π, +=8π=4π>2π,∴此时与地面相切的弧为,故选:C.【点评】此题主要考查了旋转的性质以及圆的周长公式等知识,得出O点转动的周数是解题关键.二、填空题(共6小题,每小题5分,满分30分)2.5×10﹣6m.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 00025=2.5×10﹣6;故答案为2.5×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.不等式组的解是<x≤3.【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x>2,解②得:x≤3.则不等式组的解集是:2<x≤3.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.13.某正n边形的一个内角为108°,则n= 5 .【考点】多边形内角与外角.【分析】易得正n边形的一个外角的度数,正n边形有n个外角,外角和为360°,那么,边数n=360°÷一个外角的度数.【解答】解:∵正n边形的一个内角为108°,∴正n边形的一个外角为180°﹣108°=72°,∴n=360°÷72°=5.故答案为:5.【点评】考查了多边形内角与外角,用到的知识点为:多边形一个顶点处的内角与外角的和为180°;正多边形的边数等于360÷正多边形的一个外角度数.14.如图,在边长为的菱形ABCD中,∠B=45°,AE是BC边上的高,将△AEB沿AE所在直线翻折得△AEB1,则△AEB1与四边形AECF重叠部分的面积为﹣1 .【考点】翻折变换(折叠问题);菱形的性质.【分析】根据等腰直角三角形的性质求出BE、AE,根据翻转变换的性质得到△FCB1是等腰直角三角形,根据三角形的面积公式计算即可.【解答】解:∵AE⊥BC,∠B=45°,AB=∴BE=AE=1,∵将△AEB沿AE所在直线翻折得△AEB1,∴∠B1=∠B=45°,∴EB1=BE=1,CB1=2﹣,∴△AEB1的面积为×AE×EB1=,∵四边形ABCD是菱形,∴AB∥CD,∴∠FCB1=∠B=45°,∴△FCB1是等腰直角三角形,∴△FCB1的面积为×(2﹣)××(2﹣)=﹣,∴△AEB1与四边形AECF重叠部分的面积=﹣(﹣)=﹣1,故答案为:﹣1.【点评】本题考查的是翻转变换的性质和菱形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.15.如图,在直角坐标平面上,△AOB是直角三角形,点O在原点上,A、B两点的坐标分别为(﹣1,y1)、(3,y2),线段AB交y轴于点C.若S△AOC=1,记∠AOC为α,∠BOC为β,则sinα•sinβ的值为.【考点】相似三角形的判定与性质;坐标与图形性质;三角形的面积;锐角三角函数的定义.【分析】首先过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,由A、B两点的坐标分别为(﹣1,y1)、(3,y2),S△AOC=1,可求得OD,OE,OC的长,继而求得△AOB的面积,求得OA•OB的值,又由三角函数的定义,即可求得答案.【解答】解:过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,∵A、B两点的坐标分别为(﹣1,y1)、(3,y2),∴OD=1,OE=3,∵S△AOC=1,∴OC•OD=1,∴OC=2,∴S Rt△AOB=S△AOC+S△BOC=1+OC•OE=1+3=4,∴OA•OB=4,∴OA•OB=8,∵OA∥OC∥BE,∴∠OAD=∠AOC=α,∠OBE=∠BOC=β,∴sinα•sinβ=•==.故答案为:.【点评】此题考查了三角函数的定义、直角三角形的性质以及坐标与图形的性质.此题难度适中,解题的关键是准确作出辅助线,注意数形结合思想的应用.16.如图,在正方形ABCD中,E为对角线AC,BD的交点,经过点A和点E作⊙O,分别交AB、AD 于点F、G.已知正方形边长为5,⊙O的半径为2,则AG•GD的值为9 .【考点】相似三角形的判定与性质;正方形的性质;圆周角定理.【分析】连接EF、FG,GE如图,根据正方形的性质得到∠BAD=90°,∠BEA=90°证得△BPF≌△APE,根据全等三角形的性质得到BF=AE,求得DE=AF,根据圆周角定理得到GF为⊙O的直径,得到GF=4,根据勾股定理得到AF2+AG2=GF2=16,由①②联立起来组成方程组,即可得到结论.【解答】解:连接EF、FG,GE如图,∵四边形ABCD为正方形,∴∠BAD=90°,∠BEA=90°∴∠FEG=90°,∴∠BEF=∠AEG,又∵∠FBE=∠EAG=45°,在△BEF与△AGE中,,∴△BPF≌△APE,∴BF=AE,而AB=AD,∴DE=AF,∵∠BAD=90°,∴GF为⊙O的直径,而⊙O的半径为2,∴GF=4,∴AF2+AG2=GF2=16①,而DG=AF,DG2+AG2=16;又∵AD=AG+GD=AB,∴AG+GD=5②,由①②联立起来组成方程组,解得:AG=,GD=或AE=,ED=,∴AG•GD=9.故答案为:9.【点评】本题考查了全等三角形的判定和性质,圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.同时考查了直径所对的圆周角为直角、圆内接四边形的性质、正方形的性质以及方程组的解法.三、解答题(共8小题,满分80分)17.(1)计算: +(﹣1)2﹣2cos60°;(2)化简:÷.【考点】实数的运算;分式的乘除法;特殊角的三角函数值.【专题】计算题;实数.【分析】(1)原式利用算术平方根,乘方的意义,以及特殊角的三角函数值计算即可得到结果;(2)原式利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=2+1﹣1=2;(2)原式=•=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.如图,在平面直角坐标系xOy中点A(6,8),点B(6,0).(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P到A,B两点的距离相等;②点P到∠xOy的两边的距离相等.(2)在(1)作出点P后,直接写出点P的坐标(4,4).【考点】作图—复杂作图;坐标与图形性质;角平分线的性质;线段垂直平分线的性质.【专题】作图题.【分析】(1)作AB的垂轴平分线和∠xOy的角平分线,它们的交点即为P点;(2)由于点P在AB的垂轴平分线上,则P点的纵坐标为4,再利用点P在第一象限的角平分线上,则点P的横纵坐标相同,从而得到P点坐标.【解答】解:(1)如图,点P为所作;(2)P点坐标为(4,4).故答案为(4,4).【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.19.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯的半径是4cm,水面宽度AB是4cm.(1)求水的最大深度(即CD)是多少?(2)求杯底有水部分的面积(阴影部分).【考点】垂径定理的应用;勾股定理.【分析】(1)由垂径定理可得出BC的长,在Rt△OBC中,根据勾股定理求出OC的长,由DC=OD﹣OC即可得出结论.(2)解直角三角形求得∠AOB的度数,然后求S△AOB和S扇形OAB,然后根据S阴影=S扇形﹣S△AOB即可求得.【解答】解:(1)∵OD⊥AB,AB=4cm,∴BC=AB=×4=2cm,在Rt△OBC中,∵OB=4cm,BC=2cm,∴O C===2cm,∴DC=OD﹣OC=4﹣2=2cm.∴水的最大深度(即CD)是2cm.(2)∵OC=2,OB=4,∴OC=OB,∴∠ABO=30°,∵OA=OB,∴∠BAO=∠ABO=30°,∴∠AOB=120°,∵S△AOB=AB•OC=×4×2=4,∴S扇形OAB==π,∴S阴影=S扇形﹣S△AOB=π﹣4(cm)2.【点评】本题考查的是垂径定理的应用,解答此类问题的关键是构造出直角三角形,利用垂径定理及勾股定理进行解答.20.为了解我省2015届九年级学生学业水平考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A:0﹣29分;B:30﹣39分;C:40﹣44分;D:45﹣49分;E:50分)统计如下:学业考试体育成绩(分数段)统计表分数段人数(人)频率A 12B 36 bC 84D aE 48根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为60 ,b的值为0.15 ,并将统计图补充完整;(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数.”请问:甲同学的体育成绩应在什么分数段内? C (填相应分数段的字母).(3)如果把成绩在45分以上(含45分)定为优秀,那么该县2015年4020名九年级学生中体育成绩为优秀的学生人数约有多少名?【考点】条形统计图;用样本估计总体;频数(率)分布表;中位数.【分析】(1)首先根据A有12人,所占的频率是0.05即可求得抽查的总人数,则a,b的值即可求解;(2)根据中位数的定义即可求解;(3)利用4020乘以抽查的人数中优秀的人数所占的频率即可.【解答】解:(1)12÷0.05=240(人)240×0.25=60(人)补充后如下图:(2)根据中位数的定义即可求解;(3)0.45×4020=1809(名)答:该区九年级考生中体育成绩为优秀的学生人数有1809名.故答案为:60,0.15,C.【点评】此题考查读频数分布直方图的能力和利用统计图获取信息的能力.用到的知识点是:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.频率=频数÷总数,用样本估计整体让整体×样本的百分比即可.21.如图,在矩形ABCD中,AB=2,AD=5,过点A、B作⊙O,交AD、BC于点E、F,连接BE、CE,过点F作FG⊥CE,垂足为G.(1)当点F是BC的中点时,求证:直线FG与⊙O相切;(2)若FG∥BE时,求AE的长.【考点】切线的判定.【分析】(1)连接OF,由点F是BC的中点,得到BF=CF,在矩形ABCD中,∠A=90°,证得BE是⊙O的直径,求得BO=OE,根据三角形的中位线的性质得到OF∥CE,证得OF⊥FG,即可得到结论;(2)根据平行线的性质得到BE⊥CE,由余角的性质得到∠ABE=∠DEC,证得△ABE∽△CDE,根据相似三角形的性质即可得到结论.【解答】(1)证明:连接OF,∵点F是BC的中点,∴BF=CF,在矩形ABCD中,∵∠A=90°,∴BE是⊙O的直径,∴BO=OE,∴OF∥CE,∵FG⊥CE,∴OF⊥FG,∴直线FG与⊙O相切;(2)解:∵FG∥BE,FG⊥CE,∴BE⊥CE,∴∠AEB+∠DEC=90°,∵∠ABE+∠AEB=90°,∴∠ABE=∠DEC,∵∠A=∠D=90°,∴△ABE∽△CDE,∴,∵AB=2,AD=5,∴CD=AB=2,∴,∴AE=1,或AE=4.【点评】本题考查的是切线的判定,三角形的中位线的性质,相似三角形的判定和性质,平行线的判定和性质,正确的作出辅助线是解题的关键.22.如图,在平面直角坐标系中,已知A,B两点的坐标分别是(0,2),0,﹣3),点P是x轴正半轴上一个动点,过点B作直线BC⊥AP于点D,直线BC与x轴交于点C.(1)当OP=2时,求点C的坐标及直线BC的解析式;(2)若△OPD为等腰三角形,则OP的值为或4 .【考点】两条直线相交或平行问题;全等三角形的判定与性质;勾股定理;等腰直角三角形;相似三角形的判定与性质.【专题】分类讨论.【分析】(1)易证△BOC是等腰直角三角形,从而可求出点C的坐标,然后运用待定系数法就可解决问题;(2)由于等腰三角形OPD的顶角不确定,故需分情况讨论,然后运用全等三角形的性质、相似三角形的性质及勾股定理就可解决问题.【解答】解:(1)∵A,B两点的坐标分别是(0,2),0,﹣3),∴OA=2,OB=3.∵OP=2,∴OA=OP.∵∠AOP=90°,∴∠APO=45°,∴∠CPD=∠APO=45°.∵BC⊥AP,∴∠PCD=45°.∵∠BOC=90°,∴∠OBC=∠OCB=45°,∴OC=OB=3,∴点C的坐标为(3,0).设直线BC的解析式为y=kx+b,则有,解得,∴直线BC的解析式为y=x﹣3;(2)①当点P在点C左边时,如图1,此时∠OPD>90°.∵△OPD为等腰三角形,∴OP=DP.在△AOP和△CDP中,∴△AOP≌△CDP,∴AP=CP,∴OC=AD.在△ADB和△COB中,∴△ADB≌△COB,∴CB=AB=5,∴AD=OC==4,设OP=x,则有AP=CP=4﹣x,在Rt△AOP中,22+x2=(4﹣x)2,解得x=,∴OP=.②当点P在点C右边时,如图2,此时∠ODP>90°.∵△OPD为等腰三角形,∴OD=DP,∴∠DOP=∠DPO.∵∠AOP=90°,∴∠OAP+∠APO=90°,∠AOD+∠DOP=90°,∴∠OAP=∠AOD,∴AD=OD,∴AD=DP.设AD=x,则有AP=2x.∵∠DAB=∠OAP,∠ADB=∠AOP=90°,∴△ADB∽△AOP,∴=,∴=,解得x=(舍去).∴AP=2,∴OP===4.综上所述:OP的值为或4.故答案为或4.【点评】本题主要考查了等腰直角三角形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识,运用分类讨论的思想是解决第(2)小题的关键.23.某超市有单价总和为100元的A、B、C三种商品.小明共购买了三次,其中一次购买时三种商品同时打折,其余两次均按单价购买,三次购买商品的数量和总费用如下表:商品A的数量商品B的数量商品C的数量总费用(元)第一次 5 4 3 390第二次 5 4 5 312第三次 0 6 4 420(1)小明以折扣价购买的商品是第二次购物.(2)若设A商品的单价为x元,B商品的单价为y元.①C商品的单价是100﹣x﹣y 元(请用x与y的代数式表示);②求出x,y的值;(3)若小明单价(没打折)第四次购买商品A、B、C的数量总和为m个,其中购买B商品数量是A 商品数量的2倍,购买总费用为720元,m的最小值为18 .【考点】二元一次方程组的应用.【分析】(1)分析前两次购物,发现第二次购买数量比第一次多但是价钱反而降低了,故得出小明以折扣价购买的商品是第二次购物这个结论;(2)由A、B、C三种商品单价总和为100元,得出C商品的单价,由表格得出关于x、y的二元一次方程,解方程即可求得x、y的值;(3)根据总费用=单价×数量得出购买商品数量m关于购买商品A的数量a的一次函数,结合函数的单调性以及a的取值X围可以得出m的最小值.【解答】解:(1)分析一二次购物:第二次购物比第一次购物A、B商品购买数量没有减少,C商品购买数量增加总费用反而比第一购物少,所以小明以折扣价购买的商品是第二次购物.故答案为:二.(2)①∵某超市有单价总和为100元的A、B、C三种商品,且A商品的单价为x元,B商品的单价为y元,∴C商品的单价为100﹣x﹣y元.故答案为:100﹣x﹣y.②结合一三次购物可知:,解得:.答:A商品的单价为20元,B商品的单价为50元.(3)由(2)可知C商品的单价是100﹣20﹣50=30(元),设第四次购买商品A的数量为a个,则购买商品B的数量为2a个,购买商品C的数量为m﹣3a个,依据题意可知:20a+50×2a+30×(m﹣3a)=720,即m=24﹣a.又∵m﹣3a≥0,∴24﹣4a≥0,解得:a≤6.∵m关于a的函数单调递减,∴当a=6时,m最小,此时m=24﹣6=18.故答案为:18.【点评】本题考查了一次函数的性质以及解二元一次方程组,解题的关键是:(1)第二次购物比第一次多而费用少;(2)列出关于x、y的二元一次方程;(3)找出购买商品数量m关于购买商品A 的数量a的一次函数.本题属于中档题,(1)(2)难度不大,(3)需要结合一次函数的性质和解一元一次不等式得出a的取值X围,由一次函数的单调性得出最值问题.24.如图1,在平面直角坐标系中,点A、B、C的坐标分别为(﹣8,0),(﹣5,0),(0,﹣8),点P,E分别从点A,B同时出发沿x轴正方向运动,同时点D从点C出发沿y轴正方向运动.以PD,PE为邻边构造平行四边形EPDF,已知点P,D的一点速度均为每秒2个单位,点E的运动速度为每秒1个单位,运动时间为t秒.(1)当0<t<3时,PE= 3﹣t (用含t的代数式表示);。
xx 学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:.2的相反数为( )A.-2 B.2 C. D.试题2:为缓解中低收入人群和新参加工作的大学生住房的需求,某市将新建保障住房4800000平方米,把4800000用科学记数法表示应是()A.0.48×107 B.4.8×106 C.4.8×107 D.48×105试题3:从甲,乙,丙三人中任选一名代表,甲被选中的可能性是()A. B.1 C. D.试题4:与如图所示的三视图对应的几何体是()试题5:不等式-2x+1<0的解集是()A.x>﹣2 B.x>C.x<﹣2 D .x<试题6:一次函数y1=x+1与y2=-2x+4图像交点的横坐标是()A.4 B.2C.1 D.0试题7:“五一”前夕,某校社团进行爱心义卖活动,先用800元购进第一批康乃馨,包装后售完,接着又用400元购进第二批康乃馨,已知第二批所购数量是第一批所购数量的,且康乃馨的单价比第一批的单价多1元,设第一批康乃馨的单价是x 元,则下列方程正确的是()A .+1=B .=C .×=D.800x=3×400(x+1)试题8:如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则的长( )D.A. B. C.试题9:如图,正方形ABCD中,内部有4个全等的正方形,小正方形的顶点E、F、G、H分别在边AB、BC、CD、AD上,则tan∠AEH=( )A. B. C. D.试题10:如图,⊙O的半径为,四边形ABCD为⊙O的内接矩形,AD=6,M为DC中点,E为⊙O上的一个动点,连结DE,作DF⊥DE交射线EA于F,连结MF,则MF的最大值为()A.B. C.D.试题11:分解因式: .10题试题12:已知,则 .试题13:今年3月份某周,我市每天的最高气温(单位:℃)12,11,10,15,16,15,12,若这组数据的中位数是 .试题14:如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,则PQ的长为 ( ).试题15:如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点B的坐标为(12,6),反比例函数的图象分别交边BC、AB于点D、E,连结DE,ΔDEF与ΔDEB关于直线DE对称.当点F正好落在边OA上时,则k的值为.试题16:自行车车轮的辐条编制方式是多种多样的,同样大小的车轮,辐条编法不同,辐条的长度是不一样的,图2和图3是某种“24吋(指轮圈直径)”车轮一侧的辐条编法示意图,两个同心圆分别代表轮圈和花鼓,连接两圆的线段代表辐条,轮圈和花鼓上的穿辐条的孔都等分圆周,图2是直拉式编法,每根辐条的延长线都过圆心,优点是编法简单,缺点是轮强度较低,且力传递的效果较差,所以一般都采用如图3(两图中孔的位置一样)这样的错位式编法,若弧DC的长度和弧AB相等,则BE 的长度为吋.试题17:计算:3sin30°+试题18:化简:试题19:)某校积极开展“阳光体育”活动,并开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)该校共有3000名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?.试题20:如图,在△ABC中,点D 、E、F分别是边AB、BC、CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)若∠AHF=20°,∠AHD=50°,求∠DEF的度数.试题21:如图,网格中有一条线段AB,点A 、B都在格点上,网格中的每个小正方形的边长为1.(1)在图①中画出格点△ABC,使△ABC是等腰三角形;(2)以AB为斜边作Rt△ABC(见图②),在图②中找出格点D,作锐角△ADC,且使得∠ADC=∠B.试题22:如图,点P是圆O直径CA延长线上的一点,PB切圆O于点B,点D是圆上的一点,连接AB,AD,BD,CD,∠P=30°.(1)求证:PB=BC;(2)若AD=6,tan∠DCA=,求BD的长.试题23:已知如图,抛物线交x轴于A、C两点,点D是x轴上方抛物线上的点,以A,D为顶点按逆时针方向作正方形ADEF.(1)求点A的坐标和抛物线的对称轴的表达式;(2)当点F落在对称轴上时,求出点D的坐标;(3)连接OD交EF于点G,记OA和EF交于点H,当△AFH的面积是四边形ADEH面积的时,则= .(直接写出答案)试题24:一连锁店销售某品牌商品,该商品的进价是60元.因为是新店开业,所以连锁店决定当月前10天进行试营业活动,活动期间该商品的售价为每件80元,据调查研究发现:当天销售件数(件)和时间第x(天)的关系式为(),已知第4天销售件数是40件,第6天销售件数是44件.活动结束后,连锁店重新制定该商品的销售价格为每件100元,每天销售的件数也发生变化:当天销售数量(件)与时间第x(天)的关系为:().(1)求关于x的函数关系式;(2)若某天的日毛利润是1120元,求x的值;(3)因为该连锁店是新店开业,所以试营业结束后,厂家给这个连锁店相应的优惠政策:当这个连锁店日销售量达到60件后(不含60),每多销售1件产品,当日销售的所有商品进价减少2元,设该店日销售量超过60件的毛利润总额为W,请直接写出W关于x的函数解析式,及自变量x的取值范围:.试题25:在矩形ABCD中,AB=6,BC=8,BE⊥AC于点E,点O是线段AC上的一点,以AO为半径作圆O交线段AC于点G,设AO=m.(1)直接写出AE的长:AE= ;(2)取BC中点P,连接PE,当圆O与△BPE一边所在的直线相切时,求出m的长;(3)设圆O交BE于点F,连接AF并延长交BC于点H.①连接GH,当BF=BH时,求△BFH的面积;②连接DG,当tan∠HFB=3时,直接写出DG的长,DG= .试题1答案:A试题2答案:B试题3答案:C试题4答案:D试题5答案:A试题6答案:C试题7答案:C试题8答案:B试题9答案:A试题10答案:B试题11答案:;试题12答案:16;试题13答案:10;试题14答案:2;试题15答案:、27;试题16答案:试题17答案:试题18答案:2a+1 (4分)试题19答案:(1)40人(3分),(2)12人(2分),(3)1125人(3分)试题20答案:(1)证明略(4分),(2)70°(4分)试题21答案:答案略,每个小题4分试题22答案:(1)证明略(4分),(2)(6分)试题23答案:(1)A(4,0) 2分,对称轴是直线x=1 (2分)(2)求出点D的纵坐标是3 (2分),D(,3)或D(,3)(3分)写出1个给2分(3)(3分)试题24答案:(1)(5分)(2)第8天和第12天(4分,第8天得3分,第10天舍去得1分);(3)(3分)试题25答案:(1)AE=(2分);(2)(2分),(2分),(3分)(3)(3分),(4)DG=。
2016年浙江省温州市中考数学试卷一、(共 小题,每小题 分,满分 分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确的选项填在题后的括号内).( 分)计算( ) (﹣ )的结果是(). .﹣ . .﹣.( 分)如图是九( )班 名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是(). ~ 小时 . ~ 小时 . ~ 小时 . ~ 小时.( 分)三本相同的书本叠成如图所示的几何体,它的主视图是(). . . ..( 分)已知甲、乙两数的和是 ,甲数是乙数的 倍.设甲数为 ,乙数为 ,根据题意,列方程组正确的是(). . . ..( 分)若分式的值为 ,则 的值是().﹣ .﹣ . ..( 分)一个不透明的袋中,装有 个黄球、 个红球和 个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是() . . . ..( 分)六边形的内角和是(). . . ..( 分)如图,一直线与两坐标轴的正半轴分别交于 , 两点, 是线段 上任意一点(不包括端点),过 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为 ,则该直线的函数表达式是(). . . ﹣ . ﹣.( 分)如图,一张三角形纸片 ,其中∠ , , .现小林将纸片做三次折叠:第一次使点 落在 处;将纸片展平做第二次折叠,使点 落在 处;再将纸片展平做第三次折叠,使点 落在 处.这三次折叠的折痕长依次记为 , , ,则 , , 的大小关系是(). > > . > > . > > . > >.( 分)如图,在△ 中,∠ , , . 是 边上一动点, ⊥ 于点 ,点 在 的右侧,且 ,连结 . 从点 出发,沿 方向运动,当 到达点 时, 停止运动.在整个运动过程中,图中阴影部分面积 的大小变化情况是( ).一直减小 .一直不变.先减小后增大 .先增大后减小二、填空题(共 小题,每小题 分,满分 分).( 分)因式分解: ﹣ .12.(5分)某小组6名同学的体育成绩(满分40分)分别为:36,40,38,38,32,35,这组数据的中位数是 分.13.(5分)方程组的解是 .14.(5分)如图,将△ABC 绕点C 按顺时针方向旋转至△A′B′C ,使点A′落在BC 的延长线上.已知∠A=27°,∠B=40°,则∠AC B′= 度.15.(5分)七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”,小明利用七巧板(如图1所示)中各板块的边长之间的关系拼成一个凸六边形(如图2所示),则该凸六边形的周长是 cm .16.(5分)如图,点A ,B 在反比例函数y=(k >0)的图象上,AC ⊥x 轴,BD ⊥x 轴,垂足C ,D 分别在x 轴的正、负半轴上,CD=k ,已知AB=2AC ,E 是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是.三、解答题(共8小题,满分80分)17.(10分)(1)计算:+(﹣3)2﹣(﹣1)0.(2)化简:(2+m)(2﹣m)+m(m﹣1).18.(8分)为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?19.(8分)如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.20.(8分)如图,在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点四边形,使P在四边形内部(不包括边界上),且P到四边形的两个顶点的距离相等.(1)在图甲中画出一个▱ABCD.(2)在图乙中画出一个四边形ABCD,使∠D=90°,且∠A≠90°.(注:图甲、乙在答题纸上)21.(10分)如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连结EF.(1)求证:∠1=∠F.(2)若sinB=,EF=2,求CD的长.22.(10分)有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果乙种糖果丙种糖果单价(元/千克)152530千克数404020(1)求该什锦糖的单价.(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?23.(12分)如图,抛物线y=x2﹣mx﹣3(m>0)交y轴于点C,CA⊥y轴,交抛物线于点A,点B在抛物线上,且在第一象限内,BE⊥y轴,交y轴于点E,交AO的延长线于点D,BE=2AC.(1)用含m的代数式表示BE的长.(2)当m=时,判断点D是否落在抛物线上,并说明理由.(3)若AG∥y轴,交OB于点F,交BD于点G.①若△DOE与△BGF的面积相等,求m的值.②连结AE,交OB于点M,若△AMF与△BGF的面积相等,则m的值是.24.(14分)如图,在射线BA,BC,AD,CD围成的菱形ABCD中,∠ABC=60°,AB=6,O是射线BD上一点,⊙O与BA,BC都相切,与BO的延长线交于点M.过M作EF⊥BD交线段BA(或射线AD)于点E,交线段BC(或射线CD)于点F.以EF为边作矩形EFGH,点G,H分别在围成菱形的另外两条射线上.(1)求证:BO=2OM.(2)设EF>HE,当矩形EFGH的面积为24时,求⊙O的半径.(3)当HE或HG与⊙O相切时,求出所有满足条件的BO的长.2016年浙江省温州市中考数学试卷参考答案与试题解析一、(共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确的选项填在题后的括号内)1.(4分)(2016•温州)计算(+5)+(﹣2)的结果是()A.7 B.﹣7 C.3 D.﹣3【分析】根据有理数的加法运算法则进行计算即可得解.【解答】解:(+5)+(﹣2),=+(5﹣2),=3.故选C.【点评】本题考查了有理数的加法,是基础题,熟记运算法则是解题的关键.2.(4分)(2016•温州)如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时B.4~6小时C.6~8小时D.8~10小时【分析】根据条形统计图可以得到哪一组的人数最多,从而可以解答本题.【解答】解:由条形统计图可得,人数最多的一组是4~6小时,频数为22,故选B.【点评】本题考查频数分布直方图,解题的关键是明确题意,利用数形结合的思想解答.3.(4分)(2016•温州)三本相同的书本叠成如图所示的几何体,它的主视图是()A.B.C.D.【分析】主视图是分别从物体正面看,所得到的图形.【解答】解:观察图形可知,三本相同的书本叠成如图所示的几何体,它的主视图是.故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.(4分)(2016•温州)已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x,乙数为y,根据题意,列方程组正确的是()A.B.C.D.【分析】根据题意可得等量关系:①甲数+乙数=7,②甲数=乙数×2,根据等量关系列出方程组即可.【解答】解:设甲数为x,乙数为y,根据题意,可列方程组,得:,故选:A.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是把已知量和未知量联系起来,找出题目中的相等关系.5.(4分)(2016•温州)若分式的值为0,则x的值是()A.﹣3 B.﹣2 C.0 D.2【分析】直接利用分式的值为0,则分子为0,进而求出答案.【解答】解:∵分式的值为0,∴x﹣2=0,∴x=2.故选:D.【点评】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.6.(4分)(2016•温州)一个不透明的袋中,装有2个黄球、3个红球和5个白球,它们除颜色外都相同.从袋中任意摸出一个球,是白球的概率是()A.B.C.D.【分析】由题意可得,共有10可能的结果,其中从口袋中任意摸出一个球是白球的有5情况,利用概率公式即可求得答案.【解答】解:∵从装有2个黄球、3个红球和5个白球的袋中任意摸出一个球有10种等可能结果,其中摸出的球是白球的结果有5种,∴从袋中任意摸出一个球,是白球的概率是=,故选:A.【点评】此题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.7.(4分)(2016•温州)六边形的内角和是()A.540°B.720° C.900° D.1080°【分析】多边形内角和定理:n变形的内角和等于(n﹣2)×180°(n≥3,且n 为整数),据此计算可得.【解答】解:由内角和公式可得:(6﹣2)×180°=720°,故选:B.【点评】此题主要考查了多边形内角和公式,关键是熟练掌握计算公式:(n﹣2)•180°(n≥3,且n为整数)..8.(4分)(2016•温州)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A.y=x+5 B.y=x+10 C.y=﹣x+5 D.y=﹣x+10【分析】设P点坐标为(x,y),由坐标的意义可知PC=x,PD=y,根据题意可得到x、y之间的关系式,可得出答案.【解答】解:设P点坐标为(x,y),如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为10,∴2(x+y)=10,∴x+y=5,即y=﹣x+5,故选C.【点评】本题主要考查矩形的性质及点的坐标的意义,根据坐标的意义得出x、y之间的关系是解题的关键.9.(4分)(2016•温州)如图,一张三角形纸片ABC,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B落在C处;再将纸片展平做第三次折叠,使点A落在B处.这三次折叠的折痕长依次记为a,b,c,则a,b,c的大小关系是()A.c>a>b B.b>a>c C.c>b>a D.b>c>a【分析】(1)图1,根据折叠得:DE是线段AC的垂直平分线,由中位线定理的推论可知:DE是△ABC的中位线,得出DE的长,即a的长;(2)图2,同理可得:MN是△ABC的中位线,得出MN的长,即b的长;(3)图3,根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即c的长.【解答】解:第一次折叠如图1,折痕为DE,由折叠得:AE=EC=AC=×4=2,DE⊥AC∵∠ACB=90°∴DE∥BC∴a=DE=BC=×3=第二次折叠如图2,折痕为MN,由折叠得:BN=NC=BC=×3=,MN⊥BC∵∠ACB=90°∴MN∥AC∴b=MN=AC=×4=2第三次折叠如图3,折痕为GH,由勾股定理得:AB==5由折叠得:AG=BG=AB=×5=,GH⊥AB∴∠AGH=90°∵∠A=∠A,∠AGH=∠ACB∴△ACB∽△AGH∴=∴=∴GH=,即c=∵2>>∴b>c>a故选(D)【点评】本题考查了折叠的问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.本题的关键是明确折痕是所折线段的垂直平分线,准确找出中位线,利用经过三角形一边中点与另一边平行的直线必平分第三边这一性质得出对应折痕的长,没有中位线的可以考虑用三角形相似来解决.10.(4分)(2016•温州)如图,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB 边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是()A.一直减小B.一直不变C.先减小后增大D.先增大后减小【分析】设PD=x,AB边上的高为h,想办法求出AD、h,构建二次函数,利用二次函数的性质解决问题即可.【解答】解:在RT△ABC中,∵∠ACB=90°,AC=4,BC=2,∴AB===2,设PD=x,AB边上的高为h,h==,∵PD∥BC,∴=,∴AD=2x,AP=x,∴S1+S2=•2x•x+(2﹣1﹣x)•=x2﹣2x+4﹣=(x﹣1)2+3﹣,∴当0<x<1时,S1+S2的值随x的增大而减小,当1≤x≤2时,S1+S2的值随x的增大而增大.故选C.【点评】本题考查动点问题的函数图象、三角形面积,平行线的性质、勾股定理等知识,解题的关键是构建二次函数,学会利用二次函数的增减性解决问题,属于中考常考题型.二、填空题(共6小题,每小题5分,满分30分)11.(5分)(2016•温州)因式分解:a2﹣3a=a(a﹣3).【分析】直接把公因式a提出来即可.【解答】解:a2﹣3a=a(a﹣3).故答案为:a(a﹣3).【点评】本题主要考查提公因式法分解因式,准确找出公因式是a是解题的关键.12.(5分)(2016•温州)某小组6名同学的体育成绩(满分40分)分别为:36,40,38,38,32,35,这组数据的中位数是37分.【分析】直接利用中位数的定义分析得出答案.【解答】解:数据按从小到大排列为:32,35,36,38,38,40,则这组数据的中位数是:(36+38)÷2=37.故答案为:37.【点评】此题主要考查了中位数的定义,正确把握中位数的定义是解题关键.13.(5分)(2016•温州)方程组的解是.【分析】由于y的系数互为相反数,直接用加减法解答即可.【解答】解:解方程组,①+②,得:4x=12,解得:x=3,将x=3代入①,得:3+2y=5,解得:y=1,∴,故答案为:.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.14.(5分)(2016•温州)如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=46度.【分析】先根据三角形外角的性质求出∠ACA′=67°,再由△ABC绕点C按顺时针方向旋转至△A′B′C,得到△ABC≌△A′B′C,证明∠BCB′=∠ACA′,利用平角即可解答.【解答】解:∵∠A=27°,∠B=40°,∴∠ACA′=∠A+∠B=27°+40°=67°,∵△ABC绕点C按顺时针方向旋转至△A′B′C,∴△ABC≌△A′B′C,∴∠ACB=∠A′CB′,∴∠ACB﹣∠B′CA=∠A′CB﹣∠B′CA,即∠BCB′=∠ACA′,∴∠BCB′=67°,∴∠ACB′=180°∠ACA′﹣∠BCB′=180°﹣67°﹣67°=46°,故答案为:46.【点评】本题考查了旋转的性质,解决本题的关键是由旋转得到△ABC≌△A′B′C.15.(5分)(2016•温州)七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”,小明利用七巧板(如图1所示)中各板块的边长之间的关系拼成一个凸六边形(如图2所示),则该凸六边形的周长是(32+16)cm.【分析】由正方形的性质和勾股定理求出各板块的边长,即可求出凸六边形的周长.【解答】解:如图所示:图形1:边长分别是:16,8,8;图形2:边长分别是:16,8,8;图形3:边长分别是:8,4,4;图形4:边长是:4;图形5:边长分别是:8,4,4;图形6:边长分别是:4,8;图形7:边长分别是:8,8,8;∴凸六边形的周长=8+2×8+8+4×4=32+16(cm);故答案为:32+16.【点评】本题考查了正方形的性质、勾股定理、等腰直角三角形的性质;熟练掌握正方形的性质,求出各板块的边长是解决问题的关键.16.(5分)(2016•温州)如图,点A,B在反比例函数y=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是.【分析】过点B作直线AC的垂线交直线AC于点F,由△BCE的面积是△ADE的面积的2倍以及E是AB的中点即可得出S△ABC =2S△ABD,结合CD=k即可得出点A、B的坐标,再根据AB=2AC、AF=AC+BD即可求出AB、AF的长度,根据勾股定理即可算出k的值,此题得解.【解答】解:过点B作直线AC的垂线交直线AC于点F,如图所示.∵△BCE的面积是△ADE的面积的2倍,E是AB的中点,∴S△ABC =2S△BCE,S△ABD=2S△ADE,∴S△ABC =2S△ABD,且△ABC和△ABD的高均为BF,∴AC=2BD,∴OD=2OC.∵CD=k,∴点A的坐标为(,3),点B的坐标为(﹣,﹣),∴AC=3,BD=,∴AB=2AC=6,AF=AC+BD=,∴CD=k===.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理,构造直角三角形利用勾股定理巧妙得出k值是解题的关键.三、解答题(共8小题,满分80分)17.(10分)(2016•温州)(1)计算:+(﹣3)2﹣(﹣1)0.(2)化简:(2+m)(2﹣m)+m(m﹣1).【分析】(1)直接利用二次根式的性质结合零指数幂的性质分别分析得出答案;(2)直接利用平方差公式计算,进而去括号得出答案.【解答】解:(1)原式=2+9﹣1=2+8;(2)(2+m)(2﹣m)+m(m﹣1)=4﹣m2+m2﹣m=4﹣m.【点评】此题主要考查了实数运算以及整式的混合运算,正确化简各数是解题关键.18.(8分)(2016•温州)为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?【分析】(1)根据扇形统计图可以求得“非常了解”的人数的百分比;(2)根据扇形统计图可以求得对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人.【解答】解:(1)由题意可得,“非常了解”的人数的百分比为:,即“非常了解”的人数的百分比为20%;(2)由题意可得,对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有:1200×=600(人),即对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有600人.【点评】本题考查扇形统计图好、用样本估计总体,解题的关键是明确扇形统计图的特点,找出所求问题需要的条件.19.(8分)(2016•温州)如图,E是▱ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ADE≌△FCE.(2)若∠BAF=90°,BC=5,EF=3,求CD的长.【分析】(1)由平行四边形的性质得出AD∥BC,AB∥CD,证出∠DAE=∠F,∠D=∠ECF,由AAS证明△ADE≌△FCE即可;(2)由全等三角形的性质得出AE=EF=3,由平行线的性质证出∠AED=∠BAF=90°,由勾股定理求出DE,即可得出CD的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAE=∠F,∠D=∠ECF,∵E是▱ABCD的边CD的中点,∴DE=CE,在△ADE和△FCE中,,∴△ADE≌△FCE(AAS);(2)解:∵ADE≌△FCE,∴AE=EF=3,∵AB∥CD,∴∠AED=∠BAF=90°,在▱ABCD中,AD=BC=5,∴DE===4,∴CD=2DE=8.【点评】此题考查了平行四边形的性质、全等三角形的判定方法、勾股定理;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.20.(8分)(2016•温州)如图,在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点四边形,使P在四边形内部(不包括边界上),且P到四边形的两个顶点的距离相等.(1)在图甲中画出一个▱ABCD.(2)在图乙中画出一个四边形ABCD,使∠D=90°,且∠A≠90°.(注:图甲、乙在答题纸上)【分析】(1)先以点P为圆心、PB长为半径作圆,会得到4个格点,再选取合适格点,根据平行四边形的判定作出平行四边形即可;(2)先以点P为圆心、PB长为半径作圆,会得到8个格点,再选取合适格点记作点C,再以AC为直径作圆,该圆与方格网的交点任取一个即为点D,即可得.【解答】解:(1)如图①:.(2)如图②,.【点评】本题主要考查了中垂线性质,平行四边形的判定、性质及圆周角定理的应用,熟练掌握这些判定、性质及定理并灵活运用是解题的关键.21.(10分)(2016•温州)如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连结EF.(1)求证:∠1=∠F.(2)若sinB=,EF=2,求CD的长.【分析】(1)连接DE,由BD是⊙O的直径,得到∠DEB=90°,由于E是AB的中点,得到DA=DB,根据等腰三角形的性质得到∠1=∠B等量代换即可得到结论;(2)根据等腰三角形的判定定理得到AE=EF=2,推出AB=2AE=4,在Rt△ABC中,根据勾股定理得到BC==8,设CD=x,则AD=BD=8﹣x,根据勾股定理列方程即可得到结论.【解答】解:(1)证明:连接DE,∵BD是⊙O的直径,∴∠DEB=90°,∵E是AB的中点,∴DA=DB,∴∠1=∠B,∵∠B=∠F,∴∠1=∠F;(2)∵∠1=∠F,∴AE=EF=2,∴AB=2AE=4,在Rt△ABC中,AC=AB•sinB=4,∴BC==8,设CD=x,则AD=BD=8﹣x,∵AC2+CD2=AD2,即42+x2=(8﹣x)2,∴x=3,即CD=3.【点评】本题考查了圆周角定理,解直角三角形的性质,等腰三角形的性质,勾股定理,正确的作出辅助线构造直角三角形是解题的关键.22.(10分)(2016•温州)有甲、乙、丙三种糖果混合而成的什锦糖100千克,其中各种糖果的单价和千克数如表所示,商家用加权平均数来确定什锦糖的单价.甲种糖果乙种糖果丙种糖果单价(元/千克)152530千克数404020(1)求该什锦糖的单价.(2)为了使什锦糖的单价每千克至少降低2元,商家计划在什锦糖中加入甲、丙两种糖果共100千克,问其中最多可加入丙种糖果多少千克?【分析】(1)根据加权平均数的计算公式和三种糖果的单价和克数,列出算式进行计算即可;(2)设加入丙种糖果x千克,则加入甲种糖果(100﹣x)千克,根据商家计划在什锦糖中加入甲、丙两种糖果共100千克和锦糖的单价每千克至少降低2元,列出不等式进行求解即可.【解答】解:(1)根据题意得:=22(元/千克).答:该什锦糖的单价是22元/千克;(2)设加入丙种糖果x千克,则加入甲种糖果(100﹣x)千克,根据题意得:≤20,解得:x≤20.答:加入丙种糖果20千克.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求15、25、30这三个数的平均数,对平均数的理解不正确.23.(12分)(2016•温州)如图,抛物线y=x2﹣mx﹣3(m>0)交y轴于点C,CA⊥y轴,交抛物线于点A,点B在抛物线上,且在第一象限内,BE⊥y轴,交y轴于点E,交AO的延长线于点D,BE=2AC.(1)用含m的代数式表示BE的长.(2)当m=时,判断点D是否落在抛物线上,并说明理由.(3)若AG∥y轴,交OB于点F,交BD于点G.①若△DOE与△BGF的面积相等,求m的值.②连结AE,交OB于点M,若△AMF与△BGF的面积相等,则m的值是.【分析】(1)根据A、C两点纵坐标相同,求出点A横坐标即可解决问题.(2)求出点D坐标,然后判断即可.(3)①首先根据EO=2FG,证明BG=2DE,列出方程即可解决问题.②求出直线AE、BO的解析式,求出交点M的横坐标,列出方程即可解决问题.【解答】解:(1)∵C(0,﹣3),AC⊥OC,∴点A纵坐标为﹣3,y=﹣3时,﹣3=x2﹣mx﹣3,解得x=0或m,∴点A坐标(m,﹣3),∴AC=m,∴BE=2AC=2m.(2)∵m=,∴点A坐标(,﹣3),∴直线OA为y=﹣x,∴抛物线解析式为y=x2﹣x﹣3,∴点B坐标(2,3),∴点D纵坐标为3,对于函数y=﹣x,当y=3时,x=﹣,∴点D坐标(﹣,3).∵对于函数y=x2﹣x﹣3,x=﹣时,y=3,∴点D在落在抛物线上.(3)①∵∠ACE=∠CEG=∠EGA=90°,∴四边形ECAG是矩形,∴EG=AC=BG,∵FG∥OE,∴OF=FB,∵EG=BG,∴EO=2FG,∵•DE•EO=•GB•GF,∴BG=2DE,∵DE∥AC,∴==,∵点B坐标(2m,2m2﹣3),∴OC=2OE,∴3=2(2m2﹣3),∵m>0,∴m=.②∵A(m,﹣3),B(2m,2m2﹣3),E(0,2m2﹣3),∴直线AE解析式为y=﹣2mx+2m2﹣3,直线OB解析式为y=x,由消去y得到﹣2mx+2m2﹣3=x,解得x=,∴点M横坐标为,∵△AMF的面积=△BFG的面积,∴•(+3)•(m﹣)=•m••(2m2﹣3),整理得到:2m4﹣9m2=0,∵m>0,∴m=.故答案为.【点评】本题考查二次函数综合题、三角形面积问题、一次函数等知识,解题的关键是学会构建一次函数,通过方程组解决问题,学会用构建方程的思想思考问题,属于中考压轴题.24.(14分)(2016•温州)如图,在射线BA,BC,AD,CD围成的菱形ABCD中,∠ABC=60°,AB=6,O是射线BD上一点,⊙O与BA,BC都相切,与BO的延长线交于点M.过M作EF⊥BD交线段BA(或射线AD)于点E,交线段BC(或射线CD)于点F.以EF为边作矩形EFGH,点G,H分别在围成菱形的另外两条射线上.(1)求证:BO=2OM.(2)设EF>HE,当矩形EFGH的面积为24时,求⊙O的半径.(3)当HE或HG与⊙O相切时,求出所有满足条件的BO的长.【分析】(1)设⊙O切AB于点P,连接OP,由切线的性质可知∠OPB=90°.先由菱形的性质求得∠OBP的度数,然后依据含30°直角三角形的性质证明即可;(2)设GH交BD于点N,连接AC,交BD于点Q.先依据特殊锐角三角函数值求得BD的长,设⊙O的半径为r,则OB=2r,MB=3r.当点E在AB上时.在Rt △BEM中,依据特殊锐角三角函数值可得到EM的长(用含r的式子表示),由图形的对称性可得到EF、ND、BM的长(用含r的式子表示,从而得到MN=18﹣6r,接下来依据矩形的面积列方程求解即可;当点E在AD边上时.BM=3r,则MD=18﹣3r,最后由MB=3r=12列方程求解即可;(3)先根据题意画出符合题意的图形,①如图4所示,点E在AD上时,可求得DM=r,BM=3r,然后依据BM+MD=18,列方程求解即可;②如图5所示;依据图形的对称性可知得到OB=BD;③如图6所示,可证明D与O重合,从而可求得OB的长;④如图7所示:先求得DM=r,OMB=3r,由BM﹣DM=DB 列方程求解即可.【解答】解:(1)如图1所示:设⊙O切AB于点P,连接OP,则∠OPB=90°.∵四边形ABCD为菱形,∴∠ABD=∠ABC=30°.∴OB=2OP.∵OP=OM,∴BO=2OP=2OM.(2)如图2所示:设GH交BD于点N,连接AC,交BD于点Q.∵四边形ABCD是菱形,∴AC⊥BD.∴BD=2BQ=2AB•cos∠ABQ=AB=18.设⊙O的半径为r,则OB=2r,MB=3r.∵EF>HE,∴点E,F,G,H均在菱形的边上.①如图2所示,当点E在AB上时.在Rt△BEM中,EM=BM•tan∠EBM=r.由对称性得:EF=2EM=2r,ND=BM=3r.∴MN=18﹣6r.∴S=EF•MN=2r(18﹣6r)=24.矩形EFGH解得:r1=1,r2=2.当r=1时,EF<HE,∴r=1时,不合题意舍当r=2时,EF>HE,∴⊙O的半径为2.∴BM=3r=6.如图3所示:当点E在AD边上时.BM=3r,则MD=18﹣3r.由对称性可知:NB=MD=6.∴MB=3r=18﹣6=12.解得:r=4.综上所述,⊙O的半径为2或4.(3)解设GH交BD于点N,⊙O的半径为r,则BO=2r.当点E在边BA上时,显然不存在HE或HG与⊙O相切.①如图4所示,点E在AD上时.∵HE与⊙O相切,∴ME=r,DM=r.∴3r+r=18.解得:r=9﹣3.∴OB=18﹣6.②如图5所示;由图形的对称性得:ON=OM,BN=DM.∴OB=BD=9.③如图6所示.∵HG与⊙O相切时,MN=2r.∵BN+MN=BM=3r.∴BN=r.∴DM=FM=GN=BN=r.∴D与O重合.∴BO=BD=18.④如图7所示:∵HE与⊙O相切,∴EM=r,DM=r.∴3r﹣r=18.∴r=9+3.∴OB=2r=18+6.综上所述,当HE或GH与⊙O相切时,OB的长为18﹣6或9或18或18+6.【点评】本题主要考查的是四边形的综合应用,解答本题主要应用了菱形的性质、切线的性质、特殊锐角三角函数值的应用、矩形的面积公式,根据题意画出符合题意的图形是解题的关键.2012年河南省郑州市郑东新区教师招聘考试真题试卷(一)参与本试卷答题和审题的老师有:星期八;zgm666;HJJ;三界无我;sd2011;Ldt;tcm123;弯弯的小河;HLing;sdwdmahongye;家有儿女;曹先生;gbl210;王学峰;lantin;梁宝华(排名不分先后)菁优网2017年3月1日.31。
第7题第8题2016年九年级第一次摸拟测试数学试题2016.03.20一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选,多选,错选,均不给分) 1.﹣6的相反数是( ▲ )A . ﹣6B . ﹣C .D .62. 在网上搜索引擎中输入“2016中考”,能搜索到与之相关的结果个数约为56 400 000,这个数用科学记数法表示为( ▲ )A .41064.5⨯ B .51064.5⨯ C .61064.5⨯ D .71064.5⨯ 3. 由5个相同的立方体搭成的几何体如图,则它的主视图是( ▲ )A .B .C .D .4. 下列运算正确的是( ▲ )A.933a a a =⋅ B .62393-a a =)( C .ab b a 835=+ D .222)(b a b a +=+ 5.一名射击爱好者7次射击的中靶环数如下(单位:环):7,10,9,8,7,9,9,这7个数据的中位数是( ▲ )A .7环B .8环C .9环D .10环6.为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加书法兴趣小组的频率是( ▲ )7. 如图,AC 是旗杆AB 的一根拉线,测得BC =6米,ACB ∠=50°,则拉线AC 的长为( ▲ )A .6sin 50︒B .6cos 50︒C .6sin 50︒ D .6cos50︒8.在半径为13的圆柱形油槽内装入一些油后,截面如图所示,若油面宽AB=24,则油的最大深度CD 为( ▲ ).A.7B.8 C .9 D . 109、某校组织1080名学生去外地参观,现有A 、B 两种不同型号的客车可供选择。
在每辆车刚好满第6题D座的前提下,每辆B 型客车比每辆A 型客车多坐15人,单独选择B 型客车比单独选择A 型客车少租12辆,设A 型客车每辆坐x 人,根据题意列方程为( ▲ )A 、108010801215x x =+- B 、108010801215x x =--C 、108010801215xx =-+D 、108010801215xx =++ 10、如图,正方形ABCD 的边长为5,点E 为AD 边上一点,AE=1,连结AC,CE,过点E 作AB 的平行线交AC 于点P 1,过点P 1作AD 的平行线交CE 于Q 1, 再过Q 1作AB 的平行线交AC 于P 2,…如此不断进行下去形 成△AEP 1,△P 1Q 1 P 2,△P 2Q 2 P 3,…记它们的面积之和为S 1, 类似地形成△EP 1 Q 1,△Q 1P 2 Q 2,△Q 2P 3 Q 3,…记它们的面积 之和为S 2,则21S S 的值为( ▲ )A 、35B 、34C 、45D 、56二、填空题(本题有6小题,每小题5分,共30分) 11.分解因式:822-x = ▲ .12.请写出一个图象有经过第二、四象限的函数解析式: ▲ .(填一次函数或反比例函数) 13.不等式组⎩⎨⎧->>+52012x x x 的正整数解为 ▲ .14.如图,在四边形ABCD 中,∠A =45°.直线l 与边AB ,AD 分别相交于点M,N ,则∠1+∠2= ▲ .(第14题) (第15题)15.如图,小方格都是边长为3的正方形,则以格点为圆心,半径为3和6的两种弧围成的“叶状”阴影图案的面积为 ▲ (结果保留π).16.如图,在直角坐标系中,平行四边形ABCD 的顶点A (0,2)、B (1,0)在x 轴、y 轴上,另两个顶点C 、D 在第一象限内,且AD=3AB.若反比例函数xk y =(k>0)的图像经过C ,DE两点,则k 的值是 ▲ .三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程) 17、(本题10分)(10(3)tan 45π--︒(2)解方程:x 2-2x-1=018、(本题8分)(本题8分)如图,在△ABC 中,AC=BC ,∠A C B=90°,D 为AC 延长线上一点,点E 在BC 边上,且CE=CD ,连结AE 、BD 、DE . ①求证:△A CE ≌ △B CD ; ②若∠CAE=25°,求∠BD E 的度数。
19、(本题8分)如图,在6×8方格纸中,△ABC 的三个顶点和点P 都在小方格的顶点上.按要求画一个三角形,使它的顶点在方格的顶点上.(1)在图1中画△DEF ,使△DEF 与△ABC 全等,且使点P 在△DEF 的内部。
(2)在图2中画△MNH ,使△MNH 与△ABC 的面积相等,但不全等,且使Q 在△MNH 的边上。
20、(本题8分)不透明的布袋里装有红、蓝、黄三种颜色小球共40个,它们除颜色外其余都相同,其中红色球20个,蓝色球比黄色球多8个.(1)求袋中蓝色球的个数;(2)现再将2个黄色球放入布袋,搅匀后,求摸出1个球是黄色球的概率.21、(本题10分)如图,在△ABC 中,AB =AC ,∠BAC =54°,以AB 为直径的⊙O 分别交AC ,BC 于点D ,E ,过点B 作⊙O 的切线,交AC 的延长线于点F .(1)求证:BE =CE ; (2)求∠CBF 的度数; (3)若AB =8,求 ⌒AD 的长.A图1BCAP.BCAQ.图222、(本题10分)乐清市虹桥镇的淡溪水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到30年,则该镇居民人均每年需节约多少立方米才能实现目标?23、(本题12分)如图,已知抛物线bx x y +=221与直线x y 2=交于点O (0,0),A ( a 错误!未找到引用源。
,16),点B 是抛物线上O ,A 之间的一个动点,过点B 分别作x 轴、y 轴的平行线与直线OA 交于点C ,E.(1)求抛物线的函数解析式;(2)若OC =53AC ,求BC(3)以BC ,BE 为边构造矩形BCDE ,设点D 的坐标为(m24. (本题满分14分)如图,点O 为矩形ABCD 的对称中心,AB =10cm ,BC =12cm .点E ,F ,G 分别从A ,B,C 三点同时出发,沿矩形的边按逆时针方向匀速运动,点E 的运动速度为1cm /s ,点F 的运动速度为3cm /s ,点G 的运动速度为1.5cm /s .当点F 到达点C (即点F 与点C 重合)时,三个点随之停止运动.在运动过程中,△EBF 关于直线EF 的对称图形是△EB ′F ,设点E ,F ,G 运动的时间为t (单位:s ).(1)当t = ▲ s 时,四边形EBFB ′为正方形;(2)若以点E ,B ,F 为顶点的三角形与以点F ,C ,G 为顶点的三角形相似,求t 的值;(3)是否存在实数t ,使得点B ′与点O 重合?若存在,求出t 的值;若不存在,请说明理由.2016年九年级第一次模拟考试数学参考答案2016.03.20一、选择题(本题有10小题,每题4分,共40分。
每小题只有一个选项正确,多选、错选、不选均不给分)二、填空题(本题有6小题,每题5分,共30分)11. 2(x+2)(x-2) 12. 略 13. 1,2,3,4 14. 225° 15. 18π﹣36 16. 24三、解答题(本题有8小题,共80分,解答需写出必要的文字说明,演算步骤或证明过程) 17.(本题满分10分)(1) 解:原式=4+1-1 …………3分 =4 …………2分 (2)解:将原方程变形,得x 2-2x =1 配方得(x-1)2=2…………2分两边开平方得21±=-x …………1分 解得 x 1=21+ x 2=2-1 …………2分 【本题方法不限,只要解法正确即得满分】 18.(本题8分)① 证明:在△A CE 与△B CD 中∴△A C E≌△B CD(SAS) ② 解:∵CE=CD,∠DCB=90°∴△ECD 是等腰直角三角形. ∴∠EDC=45°∵ △A C E≌△B CD ∵∠EAC=25° ∴∠BDC =∠AEC=90°-25°= 65° ∴∠BDE=65°-45°=20°…………4分 19. (本题8分)图形如下:AAC=BC∠A CE =∠BCD =90° CE=CDAA【答案不唯一,按要求画正确即给分】 20.(本题8分)(1)解:设篮球有X 个,黄球有(X-8)个,根据题意列方程:20(8)40x x ++-= (2分)228x =14x = (2分)答:袋中有14个篮球。
(2)P (摸出黄色球)=1482402-++ (2分)=421(2分) 21.(本题10分)(1)略 (4分) (2)27 (3分) (3)π58(3分)22.(本题满分10分).解:(1)设年降水量为x 万立方米,每人每年平均用水量为y 立方米,由他提议,得,解得:答:年降水量为200万立方米,每人年平均用水量为50立方米. (6分) (2)设该城镇居民年平均用水量为z 立方米才能实现目标,由题意,得 12000+30×200=20×30z , 解得:z =30 则50﹣30=20(立方米).(4分) 答:该城镇居民人均每年需要节约20立方米的水才能实现目标23.(本题满分12分)(1)∵ 点A (a,16)在直线y=2x 上∴ a=8 ∴6188212=+⨯b ∴ b=-2 ∴ 所求抛物线的解析式是2x 212-=x y …………4分(2) ∵ AC 53OC = A (8,16)∴ C(3,6) ∴ 点B 的纵坐标是6,∴62212=-x x∴ 61=x ,-22=x ∴ 点B 的坐标是(6,6) ∴ BC=6-3=3 …………5分 (3) n n m 211612-= …………3分B '24. (本题满分14分) 4+6+4 (1)2.5(2)由题意,得AE=t, BF=3t, CG=1.5t. ∵AB=10,BC=12 ∴BE=10-t,FC=12-3t ∵点F 在BC 上运动, ∴0≤t ≤4①当⊿EBF ∽⊿FCG 时,得CGBFFC EB = ∴t t t t 5.1331210=-- ∴t=514②当⊿EBF ∽⊿GCF 时,得FCBFCG EB = ∴tt t t 31235.110-=- ∴080282=-+t t 692141+-=t 692142--=t (舍去)∵0≤t ≤4 ∴t=514或692141+-=t 符合题意 (3)不存在。