函数有且只有一个零点
- 格式:docx
- 大小:60.98 KB
- 文档页数:3
高考数学《函数零点的个数问题》知识讲解与例题讲解一、知识点讲解与分析:1、零点的定义:一般地,对于函数()()y f x x D =∈,我们把方程()0f x =的实数根x 称为函数()()y f x x D =∈的零点2、函数零点存在性定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b <,那么在开区间(),a b 内至少有函数()f x 的一个零点,即至少有一点()0,x a b ∈,使得()00f x =。
(1)()f x 在[],a b 上连续是使用零点存在性定理判定零点的前提 (2)零点存在性定理中的几个“不一定”(假设()f x 连续) ① 若()()0f a f b <,则()f x 的零点不一定只有一个,可以有多个 ② 若()()0f a f b >,那么()f x 在[],a b 不一定有零点 ③ 若()f x 在[],a b 有零点,则()()f a f b 不一定必须异号3、若()f x 在[],a b 上是单调函数且连续,则()()()0f a f b f x <⇒在(),a b 的零点唯一4、函数的零点,方程的根,两图像交点之间的联系设函数为()y f x =,则()f x 的零点即为满足方程()0f x =的根,若()()()f x g x h x =−,则方程可转变为()()g x h x =,即方程的根在坐标系中为()(),g x h x 交点的横坐标,其范围和个数可从图像中得到。
由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化。
(详见方法技巧) 二、方法与技巧:1、零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内。
例如:对于方程ln 0x x +=,无法直接求出根,构造函数()ln f x x x =+,由()110,02f f ⎛⎫>< ⎪⎝⎭即可判定其零点必在1,12⎛⎫⎪⎝⎭中 2、函数的零点,方程的根,两函数的交点在零点问题中的作用 (1)函数的零点: 工具:零点存在性定理作用:通过代入特殊值精确计算,将零点圈定在一个较小的范围内。
2022-2023高一上期末复习重难点函数的应用(二)一、单选题1.关于用二分法求方程的近似解,下列说法正确的是( )A .用二分法求方程的近似解一定可以得到()0f x =在[],a b 内的所有根B .用二分法求方程的近似解有可能得到()0f x =在[],a b 内的重根C .用二分法求方程的近似解有可能得出()0f x =在[],a b 内没有根D .用二分法求方程的近似解有可能得到()0f x =在[],a b 内的精确解 【答案】D【分析】根据二分法求近似解的定义,可得答案.【解析】利用二分法求方程()0f x =在[],a b 内的近似解,即在区间[],a b 内肯定有根存在,而对于重根无法求解出来,且所得的近似解可能是[],a b 内的精确解. 故选:D.2.函数f (x )=x 2﹣4x +4的零点是( ) A .(0,2) B .(2,0)C .2D .4【答案】C【分析】由函数零点的定义列出方程x 2﹣4x +4=0,求出方程的根是函数的零点. 【解析】由f (x )=x 2﹣4x +4=0得,x =2, 所以函数f (x )=x 2﹣4x +4的零点是2, 故选:C .3.若函数()f x 在区间[]1,1-上的图像是连续不断的曲线,且()f x 在()1,1-内有一个零点,则()()11f f -⋅的值( ) A .大于零 B .小于零C .等于零D .不能确定【答案】D【分析】由题意,分类讨论()()1,1f f -不同情况下的正负,从而得出不同的结论.【解析】因为()f x 在区间[]1,1-上的图像是连续不断的曲线,且()f x 在()1,1-内有一个零点,若()()10,10-<>f f (或()()10,10-><f f ),此时()()110f f -⋅<;若()10f -=(或()10f =),此时()()110-⋅=f f ;若()()10,10->>f f (或()()10,10-<<f f ),此时()()110f f -⋅>,所以()()11f f -⋅的值不能确定. 故选:D4.函数()()ln 1f x x x=+-的零点所在的大致区间是( )A .()0,1B .()1,2C .()2,3D .()3,4【答案】B【分析】计算区间端点处函数值,根据零点存在定理确定.【解析】()()21ln 11ln 2201f =+-=-<,()()2ln 21ln 31022f =+-=->由()21201f x x x'=+>+,则()f x 在()0,∞+上单调递增. 所以函数()()2ln 1f x x x=+-的零点所在的大致区间是()1,2故选:B5.函数()22xf x x =+的零点所在的区间为( )A .0,1B .1,0C .1,2D .()2,3【答案】B【分析】根据函数解析式,判断()1f -、()0f 等函数值的符号,由零点存在性定理即可确定零点所在的区间.【解析】()3102f -=-<,()010f =>,且函数为增函数,由函数零点存在定理,()f x 的零点所在的区间是1,0.故选:B.6.已知函数221,0()2,0x x f x x x x ⎧->=⎨--≤⎩,若函数()()g x f x m =-有3个零点,则实数m 的取值范围( )A .()1,0-B .[]1,0-C .(0,1)D .[]0,1【答案】C【分析】作出f (x )图像,判断y =m 与y =f (x )图像有3个交点时m 的范围即可.【解析】∵()()g x f x m =-有3个零点, ∴()()0g x f x m =-=有三个实根,即直线y m =与()y f x =的图像有三个交点. 作出()y f x =图像,由图可知,实数m 的取值范围是(0,1). 故选:C.R (2,2)-内的零点个数至少为( )A .1B .2C .3D .4【答案】C【分析】根据奇函数()f x 的定义域为R 可得(0)0f =,由(2)(1)0f f -=≠和奇函数的性质可得(2)(1)0f f <、(2)(1)0f f --<,利用零点的存在性定理即可得出结果.【解析】奇函数()f x 的定义域为R ,其图象为一条连续不断的曲线, 得(0)0f =,由(2)(1)0f f -=≠得(2)(1)0f f -=≠, 所以(2)(1)0f f <,故函数在(12),之间至少存在一个零点,由奇函数的性质可知函数在(21)--,之间至少存在一个零点, 所以函数在(22)-,之间至少存在3个零点. 故选:C8.已知定义在R 上的函数()f x 的图像连续不断,若存在常数R λ∈,使得()()0f x f x λλ++=对于任意的实数x 恒成立,则称()f x 是“回旋函数”.若函数()f x 是“回旋函数”,且2λ=,则()f x 在[]0,2022上( ) A .至多有2022个零点 B .至多有1011个零点 C .至少有2022个零点 D .至少有1011个零点 【答案】D【分析】根据已知可得:()()2200f f +=,当()00f ≠时利用零点存在定理,可以判定区间()0,2内至少有一个零点,进而判定()2,4,()4,6,…,()2020,2022上均至少有一个零点,得到()f x 在[]0,2022上至少有1011个零点.可以构造“回旋函数”,使之恰好有1011个零点;当()00f =时,可以得到()()()0220220f f f ==⋅⋅⋅==,此时()f x 在[]0,2022上至少有1012个零点.从而排除BC,判定D 正确;举特例函数()0f x =,或者构造函数()(1),022(2),222()x x x f x f x k x k k Z -≤<⎧=⎨--≤<+∈⎩,可以排除A .【解析】因为()()220f x f x ++=对任意的实数x 恒成立,令0x =,得()()2200f f +=.若()00f ≠,则()2f 与()0f 异号,即()()200f f ⋅<,由零点存在定理得()f x 在()0,2上至少存在一个零点.由于()()220f k f k ++=,得到()20()f k k Z ≠∈,进而()()()220f k f k f k +=-<⎡⎤⎣⎦,所以()f x 在区间()2,4,()4,6,…,()2020,2022内均至少有一个零点,所以()f x 在[]0,2022上至少有1011个零点.构造函数()1,022(2),222()x x f x f x k x k k Z -≤<⎧=⎨--≤<+∈⎩,满足()()220f x f x ++=对任意的实数x 恒成立,是“回旋函数”,在[]0,2022上恰好有1011个零点.若()00f =,则()()()()()024620220f f f f f ====⋅⋅⋅==,此时()f x 在[]0,2022上至少有1012个零点. 综上所述,()f x 在[]0,2022上至少有1011个零点,且可能有1011个零点,故C 错误,D 正确; 可能零点各数个数至少1012,大于1011,故B 错误;对于A,[解法一]取函数()0f x =,满足()()220f x f x ++=,但()f x 在[]0,2022上处处是零点,故A 错误.[解法二] 构造函数()(1),022(2),222()x x x f x f x k x k k Z -≤<⎧=⎨--≤<+∈⎩,满足()()220f x f x ++=对任意的实数x 恒成立,是“回旋函数”,在[]0,2022上恰好有2023个零点,故A 错误. 故选:D .9.对于函数()f x ,若()00f x x =,则称0x 为函数()f x 的“不动点”;若()()00f f x x =,则称0x 为函数()f x 的“稳定点”.如果函数()()2R f x x a a =+∈的“稳定点”恰是它的“不动点”,那么实数a 的取值范围是( )A .14⎛⎤-∞ ⎥⎝⎦,B .34∞⎛⎫-+ ⎪⎝⎭, C .3144⎛⎤- ⎥⎝⎦,D .3144⎡⎤-⎢⎥⎣⎦,【答案】D【分析】函数的“不动点”一定是“稳定点”,而函数的“稳定点”恰是它的“不动点”,即不存在非“不动点”的“稳定点”,所以()f x x =有解,但方程组()()()121221f x x x x f x x ⎧=⎪≠⎨=⎪⎩无解,然后利用判别式即得. 【解析】因为函数的“不动点”一定是“稳定点”,而函数的“稳定点”恰是它的“不动点”,即不存在非“不动点”的“稳定点”,所以()f x x =有解,但方程组()()()121221f x x x x f x x ⎧=⎪≠⎨=⎪⎩无解, 由()f x x =,得20x x a -+=有解,所以140a -≥,解得14a ≤. 由()()1221f x x f x x ⎧=⎪⎨=⎪⎩,,得212221x a x x a x ⎧+=⎨+=⎩,,两式相减,得()()121221x x x x x x -+=-,因为12x x ≠,所以211x x =--,消去2x ,得21110x x a +++=,因为方程21110x x a +++=无解或仅有两个相等的实根,所以()1410a -+≤,解得34a ≥-,故a 的取值范围是3144⎡⎤-⎢⎥⎣⎦,.故选:D.10.已知()313log f x x x =-时,当0a b c <<<时,满足()()()0f a f b f c ⋅⋅<,则关于以下两个结论正确的判断是( )①函数()y f x =只有一个零点;②函数()y f x =的零点必定在区间(a ,b )内. A .①②均对 B .①对,②错 C .①错,②对 D .①②均错 【答案】B【分析】由题可得函数在()0,∞+上为增函数,且()10f >,103f ⎛⎫< ⎪⎝⎭,再结合零点存在定理及符号法则即可判断.【解析】因为13y x =和13log y x=-均为区间()0,∞+上的严格增函数,因此函数1313log y x x =-也是区间()0,∞+上的严格增函数,且()10f >,103f ⎛⎫< ⎪⎝⎭.所以()y f x =只有一个零点,①对.因为()()()0f a f b f c ⋅⋅<, 所以()()(),,f a f b f c 的符号为两正一负或者全负,又因为0a b c <<<, 所以必有()0f a <,()0f b <,()0f c <或者()0f a <,()0f b >,()0f c >.当()0f a <,()0f b <,()0f c <时,零点在区间(),c +∞内;当()0f a <,()0f b >,()0f c >时,零点在区间(a ,b )内,所以②错. 故选:B .11.函数()21,25,2xx f x x x ⎧-≤⎪=⎨-+>⎪⎩,若函数()()()g x f x t t R =-∈有3个不同的零点a ,b ,c ,则222a b c ++的取值范围是( ) A .[)16,32 B .[)16,34C .(]18,32D .()18,34【答案】D【分析】作出函数()y f x =的图象和直线y t =,它们的交点的横坐标即为()g x 的零点,利用图象得出,,a b c 的性质、范围,从而可求得结论.【解析】作出函数()y f x =的图象和直线y t =,它们的交点的横坐标即为()g x 的零点,如图,则1221a b -=-,45c <<,222a b +=,2(16,32)c∈,所以1822234a b c <++<. 故选:D .【点睛】关键点点睛:本题考查函数零点问题,解题关键是把函数零点转化为函数图象与直线的交点的横坐标,从而可通过作出函数图象与直线,得出零点的性质与范围.12.已知函数()2log ,01,0x x f x x x ⎧>⎪=⎨+≤⎪⎩若()()()()1234f x f x f x f x ===(1234,,,x x x x 互不相等),则1234x x x x +++的取值范围是( )A .1,02⎛⎫- ⎪⎝⎭B .1,02⎡⎤-⎢⎥⎣⎦C .10,2⎡⎫⎪⎢⎣⎭D .10,2⎛⎤⎥⎝⎦【答案】D【分析】先画函数图象,再进行数形结合得到122x x +=-和2324log log x x =,结合对勾函数单调性解得441x x +的范围,即得结果. 【解析】作出函数()y f x =的图象,如图所示:设1234x x x x <<<,则()12212x x +=⨯-=-.因为2324log log x x =,所以2324log log x x -=, 所以()2324234log log log 0x x x x +==,所以341x x =,即341x x=.当2log 1x =时,解得12x =或2x =,所以412x <≤.设34441t x x x x =+=+, 因为函数1y x x =+在()1,+∞上单调递增,所以441111212x x +<+≤+,即34522x x <+≤, 所以1234102x x x x <+++≤. 故选:D.二、多选题13.用二分法求函数()()ln 11f x x x =++-在区间[]0,1上的零点,要求精确到0.01时,所需二分区间的次数可以为( ) A .5 B .6C .7D .8【答案】CD【分析】由原来区间的长度等于1 ,每经过一次操作,区间长度变为原来的一半,经过n 此操作后,区间长度变为12n,由10.012n ≤即可求解. 【解析】由题意,知区间[]0,1的长度等于1,每经过一次操作,区间长度变为原来的一半, 经过n 此操作后,区间长度变为12n, 用二分法求函数()()ln 11f x x x =++-在区间()0,1上近似解,要求精确到0.01, ∴10.012n≤,解得7n ≥, 故选:CD .A .已知方程8x e x =-的解在()(),1k k k Z +∈内,则1k =B .函数()223f x x x =--的零点是()1,0-,()3,0C .函数3x y =,3log y x =的图像关于y x =对称D .用二分法求方程3380x x +-=在()1,2x ∈内的近似解的过程中得到()10f <,()1.50f >,()1.250f <,则方程的根落在区间()1.25,1.5上 【答案】ACD【解析】由函数零点的概念判断选项B ,由函数零点存在性定理判断选项AD ,由函数3x y =与函数3log y x =互为反函数判断选项C.【解析】对于选项A ,令()=8xf x e x +-,因为()f x 在R 上是增函数,且()()2170,260f e f e =-<=->,所以方程8x e x =-的解在()1,2,所以1k =,故A 正确;对于选项B ,令2230x x --=得=1x -或3x =,故函数()f x 的零点为1-和3,故B 错误; 对于选项C ,函数3x y =与函数3log y x =互为反函数,所以它们的图像关于y x =对称,故C 正确; 对于选项D ,由于()()()()1.2550,1 1.250f f f f ⋅<⋅>,所以由零点存在性定理可得方程的根落在区间()1.25,1.5上,故D 正确.故选:ACD15.(多选)已知函数f x 在区间[],a b 上的图象是一条连续不断的曲线,若0f a f b ⋅<,则在区间[],a b 上( )A .方程()0f x =没有实数根B .方程()0f x =至多有一个实数根C .若函数()f x 单调,则()0f x =必有唯一的实数根D .若函数()f x 不单调,则()0f x =至少有一个实数根【答案】CD【分析】根据零点存在定理可得答案.【解析】由函数零点存在定理,知函数()f x 在区间[],a b 上至少有一个零点, 所以若函数()f x 不单调,则()0f x =至少有一个实数根,若函数()f x 单调,则函数()f x 有唯一的零点,即()0f x =必有唯一的实数根, 故选:CD .16.已知函数()223,02ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩,令()()h x f x k =-,则下列说法正确的是( )A .函数()f x 的单调递增区间为()0,+∞B .当(]43k ,∈--时,()h x 有3个零点C .当2k =-时,()h x 的所有零点之和为-1D .当(),4k ∈-∞-时,()h x 有1个零点 【答案】BD【分析】画出()f x 的图象,然后逐一判断即可. 【解析】()f x 的图象如下:由图象可知,()f x 的增区间为()()1,0,0,-+∞,故A 错误当(]43k ,∈--时,()y f x =与y k =有3个交点,即()h x 有3个零点,故B 正确; 当2k =-时,由2232x x +-=-可得12x =-±,由2ln 2x -+=-可得1x = 所以()h x 的所有零点之和为1212--+=-,故C 错误;当(),4k ∈-∞-时,()y f x =与y k =有1个交点,即()h x 有1个零点,故D 正确; 故选:BD三、填空题17.函数223,(0)y ax ax a =++≠的一个零点为1,则其另一个零点为______. 【答案】3-【分析】由函数零点解出a 的值后再计算另一个零点,或利用韦达定理计算即可. 【解析】解法一:因为函数223,(0)y ax ax a =++≠的一个零点为1, 将(1,0)代入得230a a ++=,解得1a =-. 所以223y x x =--+.令2x 2x 30--+=,解得11x =,23x =-, 所以函数的另一个零点为3-.解法二:由函数223,(0)y ax ax a =++≠的一个零点为1,可得方程2230,(0)ax ax a ++=≠的一个根为1,根据根与系数的关系可得1222ax x a+=-=-,所以另一个根为3-.故函数的另一个零点为3-. 故答案为:3-.R ③当12,(0,)x x ∈+∞且12x x ≠,1212()()0f x f x x x ->-;④()f x 恰有两个零点,请写出函数()f x 的一个解析式________【答案】2()1f x x =- (答案不唯一)【分析】由题意可得函数()f x 是偶函数,且在(0,)+∞上为增函数,函数图象与x 轴只有2个交点,由此可得函数解析式【解析】因为x ∀∈R ,()()f x f x =-,所以()f x 是偶函数,因为当12,(0,)x x ∈+∞且12x x ≠,1212()()0f x f x x x ->-, 所以()f x 在(0,)+∞上为增函数, 因为()f x 恰有两个零点,所以()f x 图象与x 轴只有2个交点,所以函数()f x 的一个解析式可以为2()1f x x =-, 故答案为:2()1f x x =- (答案不唯一) 19.已知()f x 是定义域为()(),00,∞-+∞的奇函数,函数()()g x f x x=+,()11f =-,当210x x >>时,()()12111222x x f x x x x f x x ->-恒成立.现有下列四个结论:①()g x 在()0,∞+上单调递增;②()g x 的图象与x 轴有2个交点;③()()1326f f +-<;④不等式()0g x >的解集为()()1,00,1-.___________【答案】②③【分析】根据给定条件,探讨函数()g x 的性质,再逐一分析各个命题即可判断作答. 【解析】因当210x x >>时,()()12111222x x f x x x x f x x ->-恒成立,则()()122111f x f x x x ->-恒成立, 即()()121211f x f x x x +>+恒成立,因此()()12g x g x >恒成立,则()g x 在()0,∞+上单调递减, 而()f x 是()(),00,∞-+∞上的奇函数,1y x=是()(),00,∞-+∞上的奇函数,则()g x 是()(),00,∞-+∞上的奇函数,因此函数()g x 是()(),00,∞-+∞上的奇函数,且在()0,∞+上单调递减,命题①不正确;因()11f =-,即()()11101g f =+=,()10g -=,显然()g x 在(),0∞-上单调递减,于是得()g x 的图象与x 轴有2个交点,命题②正确;显然()()32g g <,即()()113232f f +<+,则()()1326f f -<,因此()()1326f f +-<,命题③正确;因奇函数()g x 在(),0∞-,()0,∞+上单调递减,且()1(1)0g g -==,则当()0,1x ∈时,()0g x >,当(),1x ∈-∞-时,()0g x >,不等式()0g x >的解集为()(),10,1-∞-⋃,命题④不正确. 故答案为:②③20.中国古代近似计算方法源远流长,早在八世纪,我国著名数学家、天文学家张隧(法号:一行)为编制《大衍历》发明了一种近似计算的方法——二次插值算法(又称一行算法,牛顿也创造了此算法,但是比我国张隧晚了上千年):对于函数()y f x =在()123123,,x x x x x x <<处的函数值分别为()11y f x =,()22y f x =,()33y f x =,则在区间[]13,x x 上()f x 可以用二次函数()()()()111212f x y k x x k x x x x =+-+--来近似代替,其中21121y y k x x -=-,3232y y k x x -=-,1231k k k x x -=-.若令10x =,22x π=,3x π=,请依据上述算法,估算2sin 5π的近似值是_______. 【答案】2425##0.96【分析】根据题意先求出123,,y y y ,进而求出12,,k k k ,然后求得()f x ,最后求得2sin 5π的近似值. 【解析】函数()sin y f x x ==在10x =,22x π=,3x π=处的函数值分别为()100y f ==,212y f π⎛⎫== ⎪⎝⎭,()30y f π==,故211212y y k x x π-==-,32322y y k x x π-==--,122314k k k x x π-==--, 故()22224442f x x x x x x πππππ⎛⎫=--=-+ ⎪⎝⎭, 即2244sin x x x ππ≈-+,所以2224242sin 555πππππ⎛⎫≈-⨯+⨯= ⎪⎝⎭2425. 故答案为:2425.四、解答题21.已知函数()()()ln 3ln 3f x x x =++-.(1)证明:函数()f x 是偶函数;(2)求函数()f x 的零点. 【答案】(1)证明见解析; (2)22-和22【分析】(1)先证明函数()f x 的定义域关于原点对称,再证明()()f x f x -=即可;(2)利用对数运算对函数()f x 的解析式进行化简,求解方程()0f x =即可得到函数()f x 的零点. (1)证明:由3030x x +>⎧⎨->⎩,解得33x -<<,∴函数的定义域为{}33x x -<<,且定义域关于原点对称, 又∵()()()()ln 3ln 3f x x x f x -=-++=,∴()f x 是偶函数. (2)解:()()()()2ln 3ln 3ln 9f x x x x =-++=-,令()()2ln 90f x x =-=,∴291x -=,解得22x =±. ∴函数()f x 的零点为22-和22.22.已知函数3f x a =-(0a >且1a ≠),若函数y f x =的图象过点(2,24).(1)求a 的值及函数()y f x =的零点;(2)求()6f x ≥的解集. 【答案】(1)3,零点是0(2)[1,+∞)【分析】(1)代值求出函数的表达式,再根据零点的定义求解即可; (2)解不等式即可求出解集.【解析】(1)因为函数f (x )=ax +1﹣3(a >0且a ≠1),图象过点(2,24), 所以24=a 2+1﹣3,a 3=27,a =3.函数f (x )=3x +1﹣3=0,得x +1=1,x =0. 所以函数的零点是0.(2)由f (x )≥6得3x +1﹣3≥6,即3x +1≥32, 所以x ≥1.则f (x )≥6的解集为[1,+∞).23.由历年市场行情知,从11月1日起的30天内,某商品每件的销售价格P (元)与时间t (天)的函数关系是()()20025,,452530,,t t t N P t t N ⎧+<<∈⎪=⎨≤≤∈⎪⎩日销售量Q (件)与时间t (天)的函数关系是()40030,Q t t t =-+<≤∈N . (1)设该商品的日销售额为y 元,请写出y 与t 的函数关系式(商品的日销售额=该商品每件的销售价格×日销售量);(2)求该商品的日销售额的最大值,并指出哪一天的销售额最大.【答案】(1)()()220800025,,1800452530,.t t t t N y t t t N ⎧-++<<∈⎪=⎨-≤≤∈⎪⎩(2)日销售额的最大值为900元,且11月10日销售额最大.【分析】(1)根据题目条件中给出的公式,直接计算,可得答案; (2)根据二次函数的性质,结合取值范围,可得答案. (1)由题意知()()()()()2040025,,45402530,,t t t t N y P Q t t t N ⎧+-<<∈⎪=⋅=⎨⨯-≤≤∈⎪⎩即()()220800025,,1800452530,.t t t t N y t t t N ⎧-++<<∈⎪=⎨-≤≤∈⎪⎩(2)当025t <<,t ∈N 时,()222080010900y t t t =-++=--+, 所以当10t =时,max 900y =;当2530t ≤≤,t ∈N 时,180045y t =-,所以当25t =时,max 675y =. 因为900675>,所以日销售额的最大值为900元,且11月10日销售额最大.24.已知函数f x 是定义在R 上的偶函数,且当0x ≤时,f x x mx =+,函数f x 在轴左侧的图象如图所示.(1)求函数()f x 的解析式;(2)若关于x 的方程()0f x a -=有4个不相等的实数根,求实数a 的取值范围.【答案】(1)()222,02,0x x x f x x x x ⎧+≤=⎨->⎩ (2)()1,0-【分析】(1)利用()20f -=可求0x ≤时()f x 的解析式,当0x >时,利用奇偶性()()=f x f x -可求得0x >时的()f x 的解析式,由此可得结果;(2)作出()f x 图象,将问题转化为()f x 与y a =有4个交点,数形结合可得结果. (1)由图象知:()20f -=,即420m -=,解得:2m =,∴当0x ≤时,()22f x x x =+;当0x >时,0x -<,()()2222f x x x x x ∴-=--=-,()f x 为R 上的偶函数,∴当0x >时,()()22f x f x x x =-=-;综上所述:()222,02,0x x x f x x x x ⎧+≤=⎨->⎩;(2)()f x 为偶函数,f x 图象关于y 轴对称,可得()f x 图象如下图所示,()0f x a -=有4个不相等的实数根,等价于()f x 与y a =有4个不同的交点, 由图象可知:10a -<<,即实数a 的取值范围为()1,0-. 25.已知函数()()20f x ax bx c a =++>,且()12a f =-.(1)求证:函数()f x 有两个不同的零点;(2)设1x ,2x 是函数()f x 的两个不同的零点,求12x x -的取值范围.【答案】(1)证明见解析 (2))2,⎡+∞⎣【分析】(1)根据()12a f =-可得32ac b =--,再代入证明判别式大于0即可;(2)根据韦达定理化简可得21222b x x a ⎛⎫-=++ ⎪⎝⎭,进而求得范围即可.(1)∵()12a f abc =++=-,∴32ac b =--.∴()232a f x ax bx b =+--.对于方程()0f x =,()222223464222a b a b b a ab a b a ⎛⎫∆=---=++=++ ⎪⎝⎭,∴0∆>恒成立.又0a >,∴函数()f x 有两个不同的零点. (2)由1x ,2x 是函数()f x 的两个不同的零点,得1x ,2x 是方程()0f x =的两个根.∴12b x x a+=-,1232b x x a =--.∴()2221212123442222b b b x x x x x x a a a ⎛⎫⎛⎫⎛⎫-=+-=----=++≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴12x x -的取值范围是)2,⎡+∞⎣.26.已知函数33f x a =+⋅为偶函数.(1)求实数a 的值;(2)设函数()()33x g x f x x -=+--的零点为0x ,求证:()0529210f x <<.【答案】(1)1a = (2)证明见解析【分析】(1)由()()f x f x -=可得答案;(2)求出()g x ,利用函数()g x 在R 上单调性得3030log 2log 2.51x <<<<. 再利用单调性定义判断出()f x 在()0,+∞上单调递增,利用单调性可得答案. (1)由()()f x f x -=,得3333x x x x a a --+⋅=+⋅,()223131-=⋅-x xa ,所以1a =,此时()33-=+x x f x ,x R ∈时,()()33--=+=x xf x f x ,()f x 为偶函数,所以1a =; (2) 由(1)得()33x x f x -=+,所以()333333xx x x g x x x --=++--=+-,因为函数()g x 在R 上单调递增,且()3log 2g 32log 230=+-<,()3log 2.5g 332.5log 2.53log 30.50=+->-=,所以3030log 2log 2.51x <<<<,又对任意120x x <<,()()1211221212123333333333x x x x x x x x x x f x f x ----=+--=--⋅()12121331033x x x x⎛⎫=--< ⎪⋅⎝⎭,所以()()12f x f x <,即()f x 在()0,+∞上单调递增, 所以()()()303log 2log 2.5f f x f <<, 即()0529210f x <<. 27.给出下面两个条件:①函数()的图象与直线只有一个交点;②函数()的两个零点的差的绝对值为2.在这两个条件中选择一个,将下面问题补充完整,使函数()f x 的解析式确定.已知二次函数()2f x ax bx c =++满足()()121f x f x x +-=-,且______.(1)求()f x 的解析式;(2)若对任意1,279x ⎡⎤∈⎢⎥⎣⎦,()32log 0f x m +≤恒成立,求实数m 的取值范围;(3)若函数()()()213232x xg x t f =--⨯-有且仅有一个零点,求实数t 的取值范围.【答案】(1)选①()22f x x x =-,选②()22f x x x =-(2)(],16-∞-(3)311,22⎧⎫+⎪⎪⎛⎫-+∞⎨⎬ ⎪⎝⎭⎪⎪⎩⎭【分析】(1)利用已知条件求出a 、b 的值,可得出()22f x x x c =-+.选①,由题意可得出()11f =-,可得出c 的值,即可得出函数()f x 的解析式; 选②,由根与系数的关系求出c 的值,即可得出函数()f x 的解析式;(2)3log h x =,[]2,3h ∈-,由参变量分离法可得出()min 2m f h ≤-⎡⎤⎣⎦,结合二次函数的基本性质可求得实数m 的取值范围;(3)令30x n =>,所以关于n 的方程()()21220t f n n ---=有且仅有一个正实根,对实数t 的取值进行分类讨论,结合二次函数的零点分布可得出关于实数n 的不等式组,综合可解得实数t 的取值范围. (1)解:因为二次函数()2f x ax bx c =++满足()()121f x f x x +-=-,()()()()22111221f x f x a x b x c ax bx c ax a b x +-=++++---=++=-,所以221a a b =⎧⎨+=-⎩,解得12a b =⎧⎨=-⎩,所以()22f x x x c =-+.选①,因为函数()f x 的图象与直线1y =-只有一个交点,所以()1121f c =-+=-,解得0c ,所以()f x 的解析式为()22f x x x =-.选②,设1x 、2x 是函数()f x 的两个零点,则122x x -=,且440c ∆=->,可得1c <, 由根与系数的关系可知122x x +=,12x x c =, 所以()21212124442x x x x x x c -=+-=-=,解得0c ,所以()f x 的解析式为()22f x x x =-.(2)解:由()32log 0f x m +≤,得()32log m f x ≤-,当1,279x ⎡⎤∈⎢⎥⎣⎦时,[]3log 2,3x ∈-,令3log h x =,则[]2,3h ∈-,所以对任意1,279x ⎡⎤∈⎢⎥⎣⎦,()32log 0f x m +≤恒成立,等价于()2m f h ≤-在[]2,3h ∈-上恒成立,所以()()min 22216m f h f ≤-=--=-⎡⎤⎣⎦,所以实数m 的取值范围为(],16-∞-. (3)解:因为函数()()()213232x xg x t f =--⨯-有且仅有一个零点,令30x n =>,所以关于n 的方程()()21220t f n n ---=有且仅有一个正实根,因为()22f x x x =-,所以()221420t n tn ---=有且仅有一个正实根,当210t -=,即12t =时,方程可化为220n --=,解得1n =-,不符合题意; 当210t ->,即12t >时,函数()22142y t x tx =---的图象是开口向上的抛物线,且恒过点()0,2-,所以方程()221420t n tn ---=恒有一个正实根;当210t -<,即12t时,要使得()221420t n tn ---=有且仅有一个正实根, ()21682102021t t tt ⎧=+-=⎪⎨>⎪-⎩,解得312t +=-. 综上,实数t 的取值范围为311,22⎧⎫+⎪⎪⎛⎫-+∞⎨⎬ ⎪⎝⎭⎪⎪⎩⎭.28.已知函数10f x ax bx a =++≠的图象关于直线x =1对称,且函数2y f x x =+为偶函数,函数()12x g x =-.(1)求函数()f x 的表达式;(2)求证:方程()()0f x g x +=在区间[]0,1上有唯一实数根; (3)若存在实数m ,使得()()f m g n =,求实数n 的取值范围. 【答案】(1)()()21f x x =- (2)证明见解析 (3)(],0-∞【分析】(1)根据二次函数的对称轴以及奇偶性即可求解,a b ,进而可求解析式, (2)根据函数的单调性以及零点存在性定理即可判断, (3)将条件转化为函数值域,即可求解. (1)∵()21f x ax bx =++的图象关于直线x =1对称,∴122bb a a-=⇒=-. 又()()2221y f x x ax b x =+=+++为偶函数,∴=2b -,=1a .∴()()22211f x x x x =-+=-. (2)设()()()()2112x h x f x g x x =+=-+-,∵()010h =>,()110h =-<,∴()()0?10h h <. 又()()21f x x =-,()12xg x =-在区间[]0,1上均单调递减,∴()h x 在区间[]0,1上单调递减,∴()h x 在区间[]0,1上存在唯一零点. ∴方程()()0f x g x +=在区间[]0,1上有唯一实数根. (3)由题可知()()210f x x =-≥,()121xg x =-<,若存在实数m ,使得()()f m g n =,则()[)0,1g n ∈, 即120n -≥,解得0n ≤.∴n 的取值范围是(],0-∞. 29.若函数()y f x =同时满足:①函数在整个定义域是严格增函数或严格减函数;②存在区间[],a b ,使得函数在区间[],a b 上的值域为22,a b ⎡⎤⎣⎦,则称函数()f x 是该定义域上的“闭函数”.(1)判断()2f x x =-是不是R 上的“闭函数”?若是,求出区间[],a b ;若不是,说明理由; (2)若()()211f x x t x =-≥是“闭函数”,求实数t 的取值范围;(3)若()()2222f x x kx k =-+≤在1,33⎡⎤⎢⎥⎣⎦上的最小值()g k 是“闭函数”,求a 、b 满足的条件.【答案】(1)不是,理由见解析;(2)3,14⎛⎤ ⎥⎝⎦;(3)222a b +=且11733a b ≤<≤. 【分析】(1)利用“闭函数”的定义判断函数()2f x x =-是否满足①②,由此可得出结论;(2)分析可知函数()21h m m m t =-+-在[)0,m ∈+∞有两个零点,利用二次函数的零点分布可得出关于实数t 的不等式组,由此可解得实数t 的取值范围;(3)利用二次函数的基本性质求得()21921,93312,23kk g k k k ⎧-<⎪⎪=⎨⎪-≤≤⎪⎩,然后分13a b <≤、123a b <≤≤、123a b ≤<≤三种情况讨论,分析函数()g k 的单调性,结合“闭函数”的定义可得出关于a 、b 的等式,由此可得出a 、b 满足的条件.【解析】(1)函数()2f x x =-为R 上的增函数,若函数()2f x x =-为“闭函数”,则存在a 、()b a b <,使得函数()f x 在[],a b 上的值域为22,a b ⎡⎤⎣⎦,则()()2222f a a a f b b b⎧=-=⎪⎨=-=⎪⎩,则关于x 的方程220x x -+=至少有两个不等的实根, 因为180∆=-<,故方程220x x -+=无实根,因此,函数()f x 不是“闭函数”; (2)因为函数()21f x x t =-+为[)1,+∞上的增函数, 若函数()21f x x t =-+为[)1,+∞上的“闭函数”,则存在a 、[)()1,b a b ∈+∞<,使得函数()f x 在[],a b 上的值域为22,a b ⎡⎤⎣⎦,则()()222211f a a t a f b b t b⎧=-+=⎪⎨=-+=⎪⎩,所以,关于x 的方程221x t x -+=在[)1,+∞上有两个不等的实根,令210m x =-≥,设()21h m m m t =-+-,则函数()h m 在[)0,m ∈+∞有两个零点,所以,()()1410010t h t ⎧∆=-->⎪⎨=-≥⎪⎩,解得314t <≤,因此,实数t 的取值范围是3,14⎛⎤⎥⎝⎦;(3)因为()()222f x x k k =-+-.当13k <时,函数()f x 在1,33⎡⎤⎢⎥⎣⎦上单调递增,则()1192393k g k f ⎛⎫==- ⎪⎝⎭;当123k ≤≤时,()()22g k f k k ==-.综上所述,()21921,93312,23kk g k k k ⎧-<⎪⎪=⎨⎪-≤≤⎪⎩. 所以,函数()g k 在1,3⎛⎫-∞ ⎪⎝⎭上为减函数,在1,23⎡⎤⎢⎥⎣⎦上也为减函数.①当13a b <≤时,则()()221929319293a g a b b g b a⎧=-=⎪⎪⎨⎪=-=⎪⎩,上述两式作差得()()()23a b a b a b -=-+,因为a b <,故23a b +=,因为13a b <<,则23a b +<,矛盾;②当123a b <≤≤时,则有222192932ab b a⎧-=⎪⎨⎪-=⎩,消去2b 可得29610a a -+=,解得13a =,不合乎题意;③当123a b ≤<≤时,则()()222222g a a b g b b a⎧=-=⎪⎨=-=⎪⎩,可得222a b +=.因此,a 、b 满足的条件为222a b +=且11733a b ≤<≤. 【点睛】方法点睛:“动轴定区间”型二次函数最值的方法: (1)根据对称轴与区间的位置关系进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析;(3)将分类讨论的结果整合得到最终结果.。
2020-2021学年高考数学一轮复习 第四章 指数函数与对数函数 第5节 函数的应用(二)一、基础巩固1.(2020·全国高一课时练习)函数ln y x =的零点是( ) A .(0,0) B .0x =C .1x =D .不存在【答案】C【解析】函数ln y x =的零点等价于方程ln 0x =的根,∴函数ln y x =的零点是1x =,故选:C.2.(2020·全国高一课时练习)若函数f (x )的图象在R 上连续不断,且满足f (0)<0,f (1)>0,f (2)>0,则下列说法正确的是( )A .f (x )在区间(0,1)上一定有零点,在区间(1,2)上一定没有零点B .f (x )在区间(0,1)上一定没有零点,在区间(1,2)上一定有零点C .f (x )在区间(0,1)上一定有零点,在区间(1,2)上可能有零点D .f (x )在区间(0,1)上可能有零点,在区间(1,2)上一定有零点 【答案】C【解析】由题知()()010f f ⋅<,所以根据函数零点存在定理可得()f x 在区间()0,1上一定有零点, 又()()120f f ⋅>,因此无法判断()f x 在区间()1,2上是否有零点.3.(2020·全国高一课时练习)下列函数中,随x 的增大,增长速度最快的是( ) A .50y x =B .50y x =C .50x y =D .()*50log y x x N=∈【答案】C 【解析】随x 的增大,指数函数的增长速度最快,∴50x y =的增长速度最快,故选:C.4.(2020·全国高一课时练习)某物体一天中的温度T (单位:℃)是时间t (单位:h)的函数:3()360,0T t t t t =-+=表示中午12:00,其后t 取正值,则下午3时温度为( )A .8℃B .78℃C .112℃D .18℃【答案】B【解析】将3t =的值代入解析式可得:3(3)3336078T =-⨯+=, 故选:B.5.(2020·浙江高一课时练习)某研究小组在一项实验中获得一组关于,y t 之间的数据,将其整理得到如图所示的散点图,下列函数中最能近似刻画y 与t 之间关系的是( )A .22y t =B .2t y =C .2log y t =D .3y t =【答案】C【解析】根据图中的特殊点(2,1),(4,2),通过选项可知只有C :2log y t =满足题意.故选C. 6.(2020·浙江高一单元测试)利用计算器,列出自变量的函数值的对应值如下表:0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4…1.1491.5162.02.6393.4824.5956.0638.010.556…0.040.361.01.96[学3.244.846.769.011.56…那么方程的一个根位于下列区间 ( )A .(0.6,1.0)B .(1.4,1.8)C .(1.8,2.2)D .(2.6,3.0)【答案】C【解析】构造f (x )=2x -x 2,则f (1.8)=0.242,f (2.2)=-0.245,故在(1.8,2.2)内存在一点使f (x )=2x -x 2=0,所以方程2x =x 2的一个根就位于区间(1.8,2.2)上.选C 7.(2020·浙江高一课时练习)设函数1()ln (0)3f x x x x =->,则下列说法中正确的是( ). A .()f x 在区间1,1e ⎛⎫ ⎪⎝⎭,(1,e)内均有零点B .()f x 在区间1,1e ⎛⎫ ⎪⎝⎭,(1,e)内均无零点C .()f x 在区间1,1e ⎛⎫ ⎪⎝⎭内有零点,在区间(1,e)内无零点D .()f x 在区间1,1e ⎛⎫ ⎪⎝⎭内无零点,在区间(1,e)内有零点 【答案】D【解析】由题可知:1()ln (0)3f x x x x =-> 则113()33-'=-=x f x x x若()0,3x ∈,()0f x '<,函数()f x 单调递减 若(3,)x ∈+∞,()0f x '>,函数()f x 单调递增 所以函数()f x 在1,1e ⎛⎫⎪⎝⎭,(1,)e 单调递减,又1111ln 1033f e ee e ⎛⎫=-=+> ⎪⎝⎭,(1)031f =>,1()103f e e =-< 所以函数()f x 在1,1e ⎛⎫ ⎪⎝⎭无零点,在(1,)e 有零点8.(2020·陕西新城�西安中学高二期末(文))若函数()2020xlog x x f x a x ⎧=⎨--≤⎩,>,有且只有一个零点,则a 的取值范围是( ) A .(﹣∞,﹣1)∪(0,+∞) B .(﹣∞,﹣1)∪[0,+∞) C .[﹣1,0) D .[0,+∞)【答案】B【解析】当x >0时,因为log 21=0,所以有一个零点,所以要使函数()2020x log x x f x a x ⎧=⎨--≤⎩,>,有且只有一个零点,则当x ≤0时,函数f (x )没有零点即可,当x ≤0时,0<2x ≤1,∴﹣1≤﹣2x <0,∴﹣1﹣a ≤﹣2x ﹣a <﹣a , 所以﹣a ≤0或﹣1﹣a >0,即a ≥0或a <﹣1. 故选:B9.(2020·沈阳二中北校高三其他(文))函数()()2ln 1f x x x=+-的零点所在的区间是( ) A .(0,1) B .(1,2) C .(2,)eD .(3,4)【答案】B【解析】解:∵()2ln 22ln 201f e =-<-=,()2ln31ln 10f e =->-=,则(1)(2)0f f <, ∴函数()()2ln 1f x x x=+-的零点所在区间是 (1,2), 当0x >,且0x →时,()()2ln 10f x x x=+-< ()()22ln 1ln 0e e e e f e =+->->, ()()3322ln 3103ln f e =+->->, ()()1442ln 41ln 20f e =+->->, ACD 中函数在区间端点的函数值均同号,根据零点存在性定理,B 为正确答案. 故选:B.10.(2020·黑龙江松北�哈九中高三三模(文))下列函数在其定义域内,既是奇函数又存在零点的是( ) A .()1x f x e =- B .1()f x x x=+ C .2()f x x x =- D .22()f x x x=- 【答案】C【解析】根据函数奇偶性的概念可判断A 选项与D 选项所给函数不具有奇偶性; 对于B 选项,1()f x x x=+为奇函数,但不存在零点;对于C 选项,2()f x x x=-为奇函数,且(0f =; 故答案选:C.11.(2020·全国高三其他(文))已知函数()2,1ln ,1x x x f x x x ⎧-≤=⎨>⎩,()()g x f x ax a =-+,若()g x 恰有1个零点,则a 的取值范围是( )A .0,B .(],2-∞C .[]1,2D .[)1,+∞【答案】D【解析】()g x 恰有1个零点即()y f x =与y ax a =-的图像恰有一个交点,y ax a =-恒过()1,0点, 由ln y x =得'1y x=,所以曲线ln y x =在点()1,0处的切线的斜率为1, 由2yx x 得'21y x =-,所以曲线2yx x 在点()1,0处的切线的斜率为1,所以结合图像可知,()g x 恰有1个零点当且仅当1a ≥. 故选:D12.(2020·全国高三课时练习(理))在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名【答案】B【解析】由题意,第二天新增订单数为50016001200900+-=,故需要志愿者90018 50=名.故选:B13.(2020·全国高一课时练习)某大型超市为了满足顾客对商品的购物需求,对超市的商品种类做了一定的调整,结果调整初期利润增长迅速,随着时间的推移,增长速度越来越慢,如果建立恰当的函数模型来反映该超市调整后利润y与售出商品的数量x的关系,则可选用()A.一次函数B.二次函数C.指数型函数D.对数型函数【答案】D【解析】由题目信息可得:初期增长迅速,后来增长越来越慢,故可用对数型函数模型来反映y与x的关系.故选:D.14.(2020·全国高一课时练习)四人赛跑,假设他们跑过的路程f i(x)(其中i∈{1,2,3,4})和时间x(x>1)的函数关系分别是f1(x)=x2,f2(x)=4x,f3(x)=log2x,f4(x)=2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是( )A.f1(x)=x2B.f2(x)=4x C.f3(x)=log2x D.f4(x)=2x【答案】D【解析】由函数的增长趋势可知,指数函数增长最快,所以最终最前面的具有的函数关系为()42xf x =,故选D .15.(2020·全国高一课时练习)能使不等式22log 2xx x <<一定成立的x 的取值范围是( )A .(0,)+∞B .(2,)+∞C .(,2)-∞D .(4,)+∞【答案】D【解析】作出2log y x =、2y x (红色)、2xy =图像由图像可知,当4x >时,22log 2xx x <<16.(2020·浙江高一课时练习)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=,x A xx A A<≥(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16【答案】D【解析】由题意可得:f (A )A =15,所以A f (4)4=30, 可得出15A2=30A ,可得A=16从而故答案为D17.(2020·全国高三其他(文))已知函数()2,1,2,1,x a m x f x x a m x ⎧⋅->=⎨+-≤⎩其中0a >且1a ≠,若m ∃∈R ,使得函数()f x 有2个零点,则实数a 的取值范围为( ) A .()10,1,22⎛⎫ ⎪⎝⎭B .()()0,11,2C .()()0,12,⋃+∞D .()10,2,2⎛⎫+∞ ⎪⎝⎭【答案】B【解析】令()0f x =,()2,1,2,1,x a x g x x a x ⎧⋅>=⎨+≤⎩,则()g x m =,故问题转化为()y g x =,y m =的图像有两个交点, 显然当01a <<时,()y g x =,y m =的图像有两个交点; 当1a >时,只需22a a +>,解得12a <<; 综上所述,实数a 的取值范围为()()0,11,2,故选:B.18.(2020·辽宁省本溪满族自治县高级中学高三其他(理))已知函数()34f x x x =-,过点()2,0A -的直线l 与()f x 的图象有三个不同的交点,则直线l 斜率的取值范围为( ) A .()1,8-B .()()1,88,-⋃+∞C .()()2,88,-⋃+∞D .()1,-+∞【答案】B【解析】函数()34f x x x =-,可得()()()322420f -=--⨯-=,设直线l 的斜率为k ,方程为()2y k x =+,由题意可得()()()32422k x x x x x x +=-=+-有三个不等的实根,显然2x =-是其中的一个根,则22k x x =-有两个不等的实根,且2x ≠-,即8k ≠, 由220--=x x k 的>0∆,可得440k +>,解得1k >-, 则k 的范围是()()1,88,-⋃+∞.19.(多选题)(2020·化州市第一中学高二月考)(多选)已知函数()2211x f x x-=+,则下列对于()f x 的性质表述正确的是( ) A .()f x 为偶函数 B .()1f f x x ⎛⎫=-⎪⎝⎭C .()f x 在[]2,3上的最大值为35D .()()g x f x x =+在区间()1,0-上至少有一个零点 【答案】ABCD【解析】因为()2211x f x x-=+,所以其的定义域为R , A 选项,()22221()1()1()1----===+-+x x f x f x x x ,所以函数()f x 为偶函数,故A 正确; B 选项,22221111()111⎛⎫- ⎪-⎛⎫⎝⎭===- ⎪+⎝⎭⎛⎫+ ⎪⎝⎭x x f f x x x x ,故B 正确; C 选项,因为()22212111-==-+++x f x x x,当[]2,3x ∈,21y x =+单调递增,所以()2211=-++f x x 单调递减,因此()()max 2321145==-+=-+f x f ,故C 正确; D 选项,因为()()g x f x x =+,所以()()1111-=--=-g f ,()()0001=+=g f ,即()1(0)0-⋅<gg ,由零点存在性定理可得:()()g x f x x =+在区间()1,0-上存在零点,故D 正确;20.(多选题)(2019·山东枣庄�高二期末)有如下命题,其中真命题的标号为( )A .若幂函数()y f x =的图象过点12,2⎛⎫ ⎪⎝⎭,则1(3)2f > B .函数1()1x f x a -=+(0a >,且1a ≠)的图象恒过定点(1,2)C .函数212()1log f x x x =--有两个零点 D .若函数2()24f x x x =-+在区间[0,]m 上的最大值为4,最小值为3,则实数m 的取值范围是[1,2] 【答案】BD【解析】A. 设幂函数()f x x α=,代入12,2⎛⎫ ⎪⎝⎭,得到1121()2f x x αα=∴=-∴=,11(3)32f =<故A 不成立;B. 由于x y a =恒过定点(0,1),因此令10x -=,即1x =时,恒有(1)2f =,即图象恒过定点(1,2),故B 正确;C.转化212()1log 0f x x x =--=为2121=log x x -函数21y x =-与12log y x =在同一直角坐标系下的图像如图:两个函数只有一个交点,故函数()f x 只有一个零点,C 选项不正确. D.函数2()24f x x x =-+的图像如图所示,(0)(2)4,(1)3f f f ===数形结合,可得若函数在区间[0,]m 上的最大值为4,最小值为3,则实数m 的取值范围是[1,2],D 选项正确. 故选:BD二、拓展提升1.(2020·全国高一)判断下列函数是否存在零点,如果存在,请求出.(1)f (x )=;(2)f (x )=x 2+2x +4;【解析】(1)令3x x +=0,解得x =-3,所以函数f (x )=3x x+的零点是x =-3. (2)令x 2+2x +4=0,由于Δ=22-4×1×4=-12<0, 所以方程x 2+2x +4=0无实数根,所以函数f (x )=x 2+2x +4不存在零点.2.(2020·全国高一)函数f (x )=x 2-ax -b 的两个零点是1和2,求函数g (x )=ax 2-bx -1的零点.【解析】因为函数f (x )=x 2-ax -b 的两个零点是1和2,所以123122a a b b =+=⎧⎧⇒⎨⎨-=⨯=-⎩⎩, 所以g (x )=3x 2+2x -1,令()0g x =,解得1x =-或13, 故函数g (x )的零点为-1和13. 3.(2020·上海浦东新�华师大二附中高一期末)已知函数()f x 是定义在R 上的偶函数,且当0x ≥时,()22f x x x =-.(1)求()0f 及()()1f f 的值;(2)若关于x 的方程()0f x m -=有四个不同的实数解,求实数m 的取值范围.【解析】(1)()f x 是定义在R 上的偶函数,且当0x ≥时,()22f x x x =-, ()()1(1)(1)1(0)0,f f f f f ==-==-;(2)函数()f x 是定义在R 上的偶函数,关于x 的方程()0f x m -=有四个不同的实数解,只需0x >时,()f x m =有两个解,当0x ≥时,()222(1)1f x x x x =-=--, 所以10m -<<4.(2020·山东省枣庄市第十六中学高一月考)某厂家举行大型的促销活动,经测算某产品当促销费用为x万元时,销售量P 万件满足P =3﹣21x +(其中0≤x ≤2).现假定生产量与销售量相等,已知生产该产品P 万件还需投入成本(10+2P )万元(不含促销费用),产品的销售价格定为(4+20P )万元/万件. (1)将该产品的利润y 万元表示为促销费用x 万元的函数;(2)当促销费用投入多少万元时,厂家的利润最大?并求出最大利润.【解析】(1)当促销费用为x 万元时, 付出的成本是:210231x x ⎛⎫++- ⎪+⎝⎭ 销售收入是:220342131x x ⎛⎫ ⎪⎛⎫-⨯+ ⎪ ⎪+⎝⎭ ⎪-+⎝⎭, 故220234102321131y x x x x ⎛⎫ ⎪⎡⎤⎛⎫⎛⎫=-⨯+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦ ⎪-+⎝⎭ 整理可得4161y x x ⎛⎫=-+ ⎪+⎝⎭,0≤x ≤2. (2)根据(1)中所求,416111611y x x ⎛⎫⎛⎫=-++-≤- ⎪ ⎪ ⎪+⎝⎭⎝⎭16313=-=,当且仅当1x =时取得最大值.故当促销费用投入1万元时,厂家的利润最大,最大利润为13万元.5.(2019·浙江高一期中)已知函数()()(23)6f x x a x =-+-(Ⅰ)若1a =-,求()f x 在[3,0]-上的最大值和最小值;(Ⅱ)若关于x 的方程()140f x +=在(0,)+∞上有两个不相等实根,求实数a 的取值范围.【解析】(Ⅰ)若1a =-,则22549()(1)(23)62532()48f x x x x x x =++-=+-=+-, 因为二次函数()f x 开口向上,对称轴为:54x =-;又[3,0]x ∈-, 所以函数()f x 在53,4⎡⎫--⎪⎢⎣⎭上单调递减,在5,04⎛⎤- ⎥⎝⎦上单调递增; 因此min 549()()48f x f =-=-;又(3)0f -=,(0)3f =-, 所以max ()(3)0f x f =-=;(Ⅱ)由关于x 的方程()140f x +=在(0,)+∞上有两个不相等实根,可得方程22(32)380x a x a +--+=有两个不相等正根, 则2(32)8(38)032023802a a a a ⎧⎪∆=---+>⎪-⎪>⎨-⎪-+⎪>⎪⎩,解得5823a <<. 26.(2020·辽阳市第四高级中学高三月考)已知函数221,2()121.2x x x f x x x a x ⎧⎛⎫-> ⎪⎪⎪⎝⎭=⎨⎛⎫⎪++- ⎪⎪⎝⎭⎩(1)若1a =,求函数()f x 的零点;(2)若函数()f x 在[)1-+∞,上为增函数,求a 的取值范围. 【解析】(1)当12x >时,由20x x-=,得x =;当12x ≤时,由220x x +=得0x =或2x =-.∴1a =时,函数()f x 的零点为-2,0. (2)函数()g x x x 2=-在1,2⎡⎫+∞⎪⎢⎣⎭上是增函数,且1722g ⎛⎫=- ⎪⎝⎭, 函数()221h x x x a =++-在11,2⎡⎤-⎢⎥⎣⎦上为增函数,且1124h a ⎛⎫=+ ⎪⎝⎭, 若()f x 在[-1,+∞)上为增函数,则1742a +-,∴154a -.。
高三数学周期性和对称性试题1.设定义在R上的函数f(x)满足f(x)·f(x+2)=13,若f(1)=2,则f(2015)=()A.B.C.13D.【答案】B【解析】由f(x)f(x+2)=13,得f(x+2)f(x+4)=13,即f(x+4)=f(x),所以f(x)是以4为周期的周期函数,故f(2015)=f(503×4+3)=f(3)==,故选B.2.函数图像的对称中心是.【答案】【解析】因为,而函数为奇函数,对称中心是,因此函数图像的对称中心是【考点】奇函数性质,图像变换3.设命题p:函数y=sin2x的最小正周期为;命题q:函数y=cosx的图象关于直线对称.则下列判断正确的是()A.p为真B.¬q为假C.p∧q为假D.p∨q为真【答案】C【解析】由于函数y=sin2x的最小正周期为π,故命题P是假命题;函数y=cosx的图象关于直线x=kπ对称,k∈Z,故q是假命题由此结合复合命题的判断规则知:¬q为真命题,p∧q为假命题,p∨q为是假命题考查四个选项,C选项正确,故选C4.已知函数,记,,,,则()A.lg109B.2C.1D.10【答案】D【解析】∵,∴,∴,,,,故选D.【考点】1分段函数;2函数的周期性。
5.设定义在上的函数满足,若,则.【答案】【解析】∵,∴,∴,∴是一个周期为4的周期函数,∴.∵,∴==.【考点】抽象函数.6. x为实数,[x]表示不超过x的最大整数,则函数f(x)=x-[x]在R上为()A.奇函数B.偶函数C.增函数D.周期函数【答案】D【解析】因为f(x+1)=(x+1)-[x+1]=(x+1)-([x]+1)=x-[x]=f(x).所以f(x)是周期函数,故选D.7.设函数的定义域为R,是的极大值点,以下结论一定正确的是()A.B.是的极小值点C.是的极小值点D.是的极小值点【答案】D【解析】因为是函数的极大值点,并不是函数的最大值点所以A选项不正确.B选项中函数的图像表示与函数的图像是关于y轴对称.所以是函数的的极大值点.所以B选项不正确.C选项中函数图像与函数的图像关于x轴对称.所以是函数的的极小值点.所以C选项不正确.因为图像是关于中心对称.所以D选项正确.故填D.【考点】1.函数图像的对成性.2.学会看函数的表达式来了解函数的性质.8.设,两个函数,的图像关于直线对称.(1)求实数满足的关系式;(2)当取何值时,函数有且只有一个零点;(3)当时,在上解不等式.【答案】(1);(2);(3).【解析】(1)两个函数的图象关于某条直线对称,一般都是设是一个函数图象上的任一点,求出这个点关于直线对称的点,而点就在第二个函数的图象上,这样就把两个函数建立了联系;(2)函数有且只有一个零点,一般是求,通过讨论函数的单调性,最值,从而讨论零点的个数,当然本题中由于与的图象关于直线对称,因此的唯一零点也就是它们的的唯一交点必在直线上,这个交点是函数图象与直线的切点,这样我们可从切线方面来解决问题;(3)考虑,当然要解不等式,还需求,讨论的单调性,极值,从而确定不等式的解集.试题解析:(1)设是函数图像上任一点,则它关于直线对称的点在函数的图像上,,.(2)当时,函数有且只有一个零点,两个函数的图像有且只有一个交点,两个函数关于直线对称,两个函数图像的交点就是函数,的图像与直线的切点.设切点为,,,,,当时,函数有且只有一个零点;(3)当时,设,则,当时,,,当时,,.在上是减函数.又=0,不等式解集是.【考点】(1)两个函数图象的对称问题;(2)函数的零点与切线问题;(3)解函数不等式.9.已知R上的连续函数g(x)满足:①当时,恒成立(为函数的导函数);②对任意的都有,又函数满足:对任意的,都有成立。
高一数学概率试题答案及解析1.已知二次函数,若实数均是从集合中任取的元素(可以重复),则该函数只有一个零点的概率为__________.【答案】【解析】要使函数有且只有一个零点,当且仅当,即,从集合{0,1,2,3}随机取一个数作为,其中,可以是(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)共16个基本事件,其中满足(其中)的事件有(1,1),(2,2),(3,3)共3个,∴函数只有一个零点概率.【考点】基本事件的个数及事件的概率.2.将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷2次,将得到的点数分别记为a,b.(1)求直线ax+by+5=0与圆x2+y2=1相切的概率;(提示:点到直线的距离公式:)(2)将a,b,5的值分别作为三条线段的长,求这三条线段围成等腰三角形的概率.【答案】(1);(2).【解析】(1)先后2次抛掷一枚骰子,将得到的点数分别记为,事件总数为6×6=36.满足条件的情况只有或两种情况,由此能得出直线与圆相切的概率;(2)先后2次抛掷一枚骰子,将得到的点数分别记为,事件总数为6×6=36.满足条件的不同情况共有14种.由此能求出三条线段能围成不同的等腰三角形的概率 .试题解析:(1)先后2次抛掷一枚骰子,将得到的点数分别记为,事件总数为6×6=36.因为直线与圆相切,所以有,即,由于∈{1,2,3,4,5,6}.所以,满足条件的情况只有a=3,b=4或a=4,b=3两种情况.所以,直线与圆相切的概率是.(2)先后2次抛掷一枚骰子,将得到的点数分别记为,事件总数为6×6=36.因为,三角形的一边长为5,所以,当a=1时,b=5,(1,5,5)共1种;当a=2时,b=5,(2,5,5)共1种;当a=3时,b=3,5,(3,3,5),(3,5,5)共2种[ ;当a=4时,b=4,5,(4, 4,5),(4,5,5)共2种;当a=5时,b=1,2,3,4,5,6,(5,1,5),(5,2,5),(5,3,5),(5,4,5),(5,5,5),(5,6,5)共6种;当a=6时,b=5,6,(6,5,5),(6,6,5)共2种;故满足条件的不同情况共有14种.所以,三条线段能围成不同的等腰三角形的概率为.【考点】古典概型及其概率 .3.袋中装有4个白棋子、3个黑棋子,从袋中随机地取棋子,设取到一个白棋子得2分,取到一个黑棋子得1分,从袋中任取4个棋子.(1)求得分X的分布列;(2)求得分大于6的概率.【答案】(1)(2)【解析】(1)求随机变量的分布列的主要步骤:一是明确随机变量的取值,并确定随机变量服从何种概率分布;二是求每一个随机变量取值的概率,三是列成表格;(2)求出分布列后注意运用分布列的两条性质检验所求的分布列是否正确;(3)求解离散随机变量分布列和方差,首先要理解问题的关键,其次要准确无误的找出随机变量的所有可能值,计算出相对应的概率,写成随机变量的分布列,正确运用均值、方差公式进行计算.试题解析:解:(1)X的取值为5、6、7、8.,,,.X的分布列为(2)根据X的分布列,可得到得分大于6的概率为【考点】(1)随机变量的分布列;(2)求随机变量的概率4.一纸箱中放有除颜色外,其余完全相同的黑球和白球,其中黑球2个,白球3个.(Ⅰ)从中同时摸出两个球,求两球颜色恰好相同的概率;(Ⅱ)从中摸出一个球,放回后再摸出一个球,求两球颜色恰好不同的概率.【答案】(1);.【解析】(1)古典概型的概率问题,关键是正确找出基本事件总数和所求事件包含的基本事件数,然后利用古典概型的概率计算公式计算;(2)当基本事件总数较少时,用列举法把所有的基本事件一一列举出来,要做到不重不漏,有时可借助列表,树状图列举,当基本事件总数较多时,注意去分排列与组合;(3)注意判断是古典概型还是几何概型,基本事件前者是有限的,后者是无限的,两者都是等可能性.试题解析:解(Ⅰ)设黑色球记为,白色球记为,摸出两球颜色恰好相同,有,即两个黑球或两个白球,共有4种可能情况.基本事件共有,共有10种情况,故所求事件概率.(Ⅱ)有放回地摸两次,两球颜色不同,即“先黑后白”或“先白后黑”.故事件包括:共有25种情况,颜色不同包括:12种情况故所求事件的概率.【考点】求随机事件发生的概率.5.某射手一次射击中,击中环、环、环的概率分别是,则这位射手在一次射击中不够环的概率是( )A.B.C.D.【答案】A【解析】由已知某射手一次射击中,击中环、环、环的事件是互斥的,而事件:“这位射手在一次射击中不够环”的对立事件为:“这位射手在一次射击中环或10环”,故所求概率P=1-(0.28+0.24)=0.48.故选A.【考点】互斥事件的概率和公式与对立事件.6.下列现象是随机事件的是()A.天上无云下大雨B.同性电荷,相互排斥C.没有水分,种子发芽D.从分别标有1,2,3,4,5,6,7,8,9,10的10张号签中任取一张,得到1号签【答案】D【解析】在一定条件下必然发生的事件叫做必然事件.在一定条件下不可能发生的事件叫做不可能事件.随机事件在一定的条件下可能发生也可能不发生的事件叫做随机事件。
高中数学零点问题经典题型1、 设()ln sin ,f x x x =+找出一个0(0,),x ∈+∞使得()00f x <。
2、 已知1()ln ,1x f x x x +=--找出一个0(0,1),x ∈使得()00f x >。
3、 已知230,(),a f x x a x>=+-找出一个0(,0)x ∈-∞使得()00f x >。
4、 设110,()e ,e x a f x ax x<<=-找出一个0(0,),x ∈+∞使得()00.f x <5、 设110,()(1)e ,e x a f x a x x<<=--找出一个0(0,)x ∈+∞使得()00.f x <6、 已知2(0,1),()(2),xx a f x ae a e x ∈=+--找出一个0(,0),x ∈-∞使得()00f x >。
7、 已知230,(),a f x x a x>=+-找出一个0(,0),x ∈-∞使得()00.f x <8、 设0,(),xa f x xe a >=-找出一个0(0,),x ∈+∞使得()00f x >9、 已知()(2)(1)2ln f x a x x =---在10,2⎛⎫ ⎪⎝⎭上无零点,求实数a 的取值范围。
10、 (2016江苏)若01,a b <<<函数()2x xg x a b =+-有且只有一个零点,求ab 的值。
11、(2018江苏19)若存在0x ∈满足()()()()0000,,f x g x fx g x ''==则称0x 为()f x 与()g x 的一个S “点”。
(I)若函数2()1,()ln f x ax g x x =-=存在“S 点”,求a ;(II)已知函数2e (),(),xb f x x a g x x=-+=对任意的0,a >判断是否存在0,b >使函数()f x 与()g x 在(0,)+∞内存在“S 点",并说明理由。
§2.9函数的零点与方程的解学习目标1.理解函数的零点与方程的解的联系.2.理解函数零点存在定理,并能简单应用.3.了解用二分法求方程的近似解.知识梳理1.函数的零点与方程的解(1)函数零点的概念对于一般函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.(2)函数零点与方程实数解的关系方程f(x)=0有实数解⇔函数y=f(x)有零点⇔函数y=f(x)的图象与x轴有公共点.(3)函数零点存在定理如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.2.二分法对于在区间[a,b]上图象连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数的零点就是函数的图象与x轴的交点.(×)(2)连续函数y=f(x)在区间(a,b)内有零点,则f(a)·f(b)<0.(×)(3)函数y=f(x)为R上的单调函数,则f(x)有且仅有一个零点.(×)(4)二次函数y=ax2+bx+c(a≠0),若b2-4ac<0,则f(x)无零点.(√)教材改编题1.(多选)已知函数f(x)的图象是连续不断的,且有如下对应值表:x 1234567f(x)-4-2142-1-3在下列区间中,函数f(x)必有零点的区间为()A.(1,2) B.(2,3) C.(5,6) D.(5,7)答案 BCD解析 由所给的函数值表知, f (1)f (2)>0,f (2)f (3)<0,f (5)f (6)<0, f (5)f (7)<0,∴f (x )在区间(2,3),(5,6),(5,7)内各至少有一个零点.2.已知函数f (x )=⎩⎪⎨⎪⎧x 2+x -2,x ≤0,-1+ln x ,x >0,则f (x )的零点为________.答案 -2,e解析 ⎩⎪⎨⎪⎧ x ≤0,x 2+x -2=0或⎩⎪⎨⎪⎧x >0,-1+ln x =0,解得x =-2或x =e.3.方程2x +x =k 在(1,2)内有解,则实数k 的取值范围是________. 答案 (3,6)解析 设f (x )=2x +x , ∴f (x )在(1,2)上单调递增, 又f (1)=3,f (2)=6, ∴3<k <6.题型一 函数零点所在区间的判定例1 (1)(多选)(2022·菏泽质检)函数f (x )=e x -x -2在下列哪个区间内必有零点( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)答案 AD解析 f (-2)=1e 2>0,f (-1)=1e -1<0,f (0)=-1<0,f (1)=e -3<0, f (2)=e 2-4>0,因为f (-2)·f (-1)<0,f (1)·f (2)<0, 所以f (x )在(-2,-1)和(1,2)内存在零点.(2)若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )·(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内 答案 A解析 函数y =f (x )是开口向上的二次函数,最多有两个零点,由于a <b <c ,则a -b <0,a -c <0,b -c <0,因此f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.所以f (a )f (b )<0,f (b )f (c )<0,即f (x )在区间(a ,b )和区间(b ,c )内各有一个零点. 教师备选(2022·湖南雅礼中学月考)设函数f (x )=13x -ln x ,则函数y =f (x )( )A .在区间⎝⎛⎭⎫1e ,1,(1,e)内均有零点 B .在区间⎝⎛⎭⎫1e ,1,(1,e)内均无零点C .在区间⎝⎛⎭⎫1e ,1内有零点,在区间(1,e)内无零点D .在区间⎝⎛⎭⎫1e ,1内无零点,在区间(1,e)内有零点 答案 D解析 f (x )的定义域为{x |x >0}, f ′(x )=13-1x =x -33x,令f ′(x )>0⇒x >3,f ′(x )<0⇒0<x <3,∴f (x )在(0,3)上单调递减,在(3,+∞)上单调递增, 又f ⎝⎛⎭⎫1e =13e +1>0,f (1)=13>0, ∴f (x )在⎝⎛⎭⎫1e ,1内无零点.又f (e)=e3-1<0,∴f (x )在(1,e)内有零点.思维升华 确定函数零点所在区间的常用方法(1)利用函数零点存在定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(2)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断. 跟踪训练1 (1)(2022·太原模拟)利用二分法求方程log 3x =3-x 的近似解,可以取的一个区间是( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)答案 C解析 设f (x )=log 3x -3+x , 当x →0时,f (x )→-∞,f (1)=-2, 又∵f (2)=log 32-1<0, f (3)=log 33-3+3=1>0, 故f (2)·f (3)<0,故方程log 3x =3-x 在区间(2,3)上有解,即利用二分法求方程log 3x =3-x 的近似解,可以取的一个区间是(2,3).(2)已知2<a <3<b <4,函数y =log a x 与y =-x +b 的交点为(x 0,y 0),且x 0∈(n ,n +1),n ∈N *,则n =________. 答案 2解析 依题意x 0为方程log a x =-x +b 的解, 即为函数f (x )=log a x +x -b 的零点, ∵2<a <3<b <4,∴f (x )在(0,+∞)上单调递增, 又f (2)=log a 2+2-b <0, f (3)=log a 3+3-b >0, ∴x 0∈(2,3),即n =2. 题型二 函数零点个数的判定例2 (1)(2022·绍兴模拟)若函数y =f (x )(x ∈R )满足f (x +1)=-f (x ),且x ∈[-1,1]时,f (x )=1-x 2,已知函数g (x )=⎩⎪⎨⎪⎧|lg x |,x >0,e x ,x <0,则函数h (x )=f (x )-g (x )在区间[-6,6]内的零点个数为( )A .14B .13C .12D .11 答案 C解析 因为f (x +1)=-f (x ),所以函数y =f (x )(x ∈R )是周期为2函数, 因为x ∈[-1,1]时,f (x )=1-x 2,所以作出它的图象,则y =f (x )的图象如图所示.(注意拓展它的区间)再作出函数g (x )=⎩⎪⎨⎪⎧|lg x |,x >0,e x ,x <0的图象,容易得出交点为12个.(2)函数f (x )=36-x 2·cos x 的零点个数为______. 答案 6解析 令36-x 2≥0,解得-6≤x ≤6, ∴f (x )的定义域为[-6,6].令f (x )=0得36-x 2=0或cos x =0, 由36-x 2=0得x =±6, 由cos x =0得x =π2+k π,k ∈Z ,又x ∈[-6,6],∴x 为-3π2,-π2,π2,3π2.故f (x )共有6个零点. 教师备选函数f (x )=2x |log 2x |-1的零点个数为( ) A .0 B .1 C .2 D .4 答案 C解析 令f (x )=0,得|log 2x |=⎝⎛⎭⎫12x ,分别作出y =|log 2x |与y =⎝⎛⎭⎫12x 的图象(图略), 由图可知,y =|log 2x |与y =⎝⎛⎭⎫12x的图象有两个交点,即原函数有2个零点. 思维升华 求解函数零点个数的基本方法(1)直接法:令f (x )=0,方程有多少个解,则f (x )有多少个零点; (2)定理法:利用定理时往往还要结合函数的单调性、奇偶性等;(3)图象法:一般是把函数拆分为两个简单函数,依据两函数图象的交点个数得出函数的零点个数.跟踪训练2 (1)函数f (x )是R 上最小正周期为2的周期函数,当0≤x <2时f (x )=x 2-x ,则函数y =f (x )的图象在区间[-3,3]上与x 轴的交点个数为( ) A .6 B .7 C .8 D .9 答案 B解析 令f (x )=x 2-x =0,所以x =0或x =1,所以f (0)=0,f (1)=0, 因为函数的最小正周期为2, 所以f (2)=0,f (3)=0,f (-2)=0,f (-1)=0,f (-3)=0.所以函数y =f (x )的图象在区间[-3,3]上与x 轴的交点个数为7.(2)(2022·泉州模拟)设定义域为R 的函数f (x )=⎩⎪⎨⎪⎧|lg x |,x >0,-x 2-2x ,x ≤0,则关于x 的函数y =2f 2(x )-3f (x )+1的零点的个数为( ) A .3 B .7 C .5 D .6 答案 B解析 根据题意,令2f 2(x )-3f (x )+1=0, 得f (x )=1或f (x )=12.作出f (x )的简图:由图象可得当f (x )=1和f (x )=12时,分别有3个和4个交点,故关于x 的函数y =2f 2(x )-3f (x )+1的零点的个数为 7. 题型三 函数零点的应用命题点1 根据函数零点个数求参数例3 (2022·武汉模拟)已知函数f (x )=⎩⎪⎨⎪⎧|x 2+2x |,x ≤0,1x ,x >0,若关于x 的方程f (x )-a (x +3)=0有四个不同的实根,则实数a 的取值范围是( ) A .(-∞,4-23) B .(4+23,+∞) C .[0,4-23] D .(0,4-23)答案 D解析 画出f (x )的函数图象,设y =a (x +3),该直线恒过点(-3,0), 结合函数图象,若y =a (x +3)与y =-x 2-2x 相切,联立得x 2+(a +2)x +3a =0, Δ=(a +2)2-12a =0, 得a =4-23(a =4+23舍), 若f (x )=a (x +3)有四个不同的实数根, 则0<a <4-2 3.命题点2 根据函数零点范围求参数例4 (2022·北京顺义区模拟)已知函数f (x )=3x -1+axx .若存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围是( ) A.⎝⎛⎭⎫-∞,43 B.⎝⎛⎭⎫0,43 C .(-∞,0) D.⎝⎛⎭⎫43,+∞ 答案 B解析 由f (x )=3x -1+ax x =0,可得a =3x -1x,令g (x )=3x -1x ,其中x ∈(-∞,-1),由于存在x 0∈(-∞,-1),使得f (x 0)=0,则实数a 的取值范围即为函数g (x )在(-∞,-1)上的值域.由于函数y =3x ,y =-1x 在区间(-∞,-1)上均单调递增,所以函数g (x )在(-∞,-1)上单调递增.当x ∈(-∞,-1)时, g (x )=3x -1x <3-1+1=43,又g (x )=3x -1x>0,所以函数g (x )在(-∞,-1)上的值域为⎝⎛⎭⎫0,43. 因此实数a 的取值范围是⎝⎛⎭⎫0,43. 教师备选1.函数f (x )=xx +2-kx 2有两个零点,则实数k 的值为________.答案 -1解析 由f (x )=xx +2-kx 2=x ⎝⎛⎭⎫1x +2-kx ,函数f (x )=x x +2-kx 2有两个零点,即函数y =1x +2-kx 只有一个零点x 0,且x 0≠0.即方程1x +2-kx =0有且只有一个非零实根.显然k ≠0,即1k=x 2+2x 有且只有一个非零实根.即二次函数y =x 2+2x 的图象与直线y =1k 有且只有一个交点(横坐标不为零).作出二次函数y =x 2+2x 的图象,如图.因为1k ≠0,由图可知,当1k>-1时,函数y =x 2+2x 的图象与直线y =1k 有两个交点,不满足条件.当1k=-1,即k =-1时满足条件. 当1k <-1时,函数y =x 2+2x 的图象与直线y =1k无交点,不满足条件. 2.若函数f (x )=(m -2)x 2+mx +2m +1的两个零点分别在区间(-1,0)和区间(1,2)内,则m 的取值范围是________. 答案 ⎝⎛⎭⎫14,12解析 依题意,结合函数f (x )的图象分析可知,m 需满足⎩⎪⎨⎪⎧m ≠2,f (-1)·f (0)<0,f (1)·f (2)<0,即⎩⎪⎨⎪⎧m ≠2,(m -2-m +2m +1)(2m +1)<0,(m -2+m +2m +1)·[4(m -2)+2m +2m +1]<0, 解得14<m <12.思维升华 已知函数有零点求参数值或取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围. (2)分离参数法:将参数分离,转化成求函数值域的问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.跟踪训练3 (1)(多选)设函数f (x )=⎩⎪⎨⎪⎧|ln x |,x >0,e x (x +1),x ≤0.若函数g (x )=f (x )-b 有三个零点,则实数b 可取的值可能是( ) A .0 B.13 C.12 D .1答案 BCD解析 函数g (x )=f (x )-b 有三个零点等价于函数y =f (x )的图象与直线y =b 有三个不同的交点, 当x ≤0时,f (x )=(x +1)e x , 则f ′(x )=e x +(x +1)e x =(x +2)e x ,所以f (x )在(-∞,-2)上单调递减,在(-2,0]上单调递增,且f (-2)=-1e 2,f (0)=1,x →-∞时,f (x )→0,从而可得f (x )的图象如图所示,通过图象可知,若函数y =f (x )的图象与直线y =b 有三个不同的交点,则b ∈(0,1]. (2)已知函数f (x )=log 2(x +1)-1x +m 在区间(1,3]上有零点,则m 的取值范围为( )A.⎝⎛⎭⎫-53,0 B.⎝⎛⎭⎫-∞,-53∪(0,+∞) C.⎝⎛⎦⎤-∞,-53∪(0,+∞) D.⎣⎡⎭⎫-53,0 答案 D解析 由于函数y =log 2(x +1),y =m -1x 在区间(1,3]上单调递增,所以函数f (x )在(1,3]上单调递增,由于函数f (x )=log 2(x +1)-1x+m 在区间(1,3]上有零点,则⎩⎪⎨⎪⎧f (1)<0,f (3)≥0,即⎩⎪⎨⎪⎧m <0,m +53≥0,解得-53≤m <0.因此,实数m 的取值范围是⎣⎡⎭⎫-53,0.课时精练1.函数f (x )=x 3-⎝⎛⎭⎫12x -2的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)答案 B解析 由题意知,f (x )=x 3-⎝⎛⎭⎫12x -2,f (0)=-4,f (1)=-1,f (2)=7,因为f (x )在R 上连续且在R 上单调递增,所以f (1)·f (2)<0,f (x )在(1,2)内有唯一零点.2.设函数f (x )=4x 3+x -8,用二分法求方程4x 3+x -8=0近似解的过程中,计算得到f (1)<0,f (3)>0,则方程的近似解落在区间( )A.⎝⎛⎭⎫1,32 B.⎝⎛⎭⎫32,2 C.⎝⎛⎭⎫2,52 D.⎝⎛⎭⎫52,3 答案 A解析 取x 1=2,因为f (2)=4×8+2-8=26>0,所以方程近似解x 0∈(1,2),取x 2=32, 因为f ⎝⎛⎭⎫32=4×278+32-8=7>0, 所以方程近似解x 0∈⎝⎛⎭⎫1,32. 3.(2022·武汉质检)若函数f (x )=x 2-ax +1在区间⎝⎛⎭⎫12,3上有零点,则实数a 的取值范围是( )A .(2,+∞)B .[2,+∞) C.⎣⎡⎭⎫2,52 D.⎣⎡⎭⎫2,103 答案 D解析 由题意知方程ax =x 2+1在⎝⎛⎭⎫12,3上有实数解,即a =x +1x 在⎝⎛⎭⎫12,3上有解, 设t =x +1x,x ∈⎝⎛⎭⎫12,3, 则t 的取值范围是⎣⎡⎭⎫2,103. 所以实数a 的取值范围是⎣⎡⎭⎫2,103. 4.若函数f (x )=⎩⎪⎨⎪⎧log 4(x -1),x >1,-3x -m ,x ≤1存在2个零点,则实数m 的取值范围为( ) A .[-3,0)B .[-1,0)C .[0,1)D .[-3,+∞)答案 A 解析 因为函数f (x )在(1,+∞)上单调递增,且f (2)=0,即f (x )在(1,+∞)上有一个零点,函数f (x )=⎩⎪⎨⎪⎧log 4(x -1),x >1,-3x -m ,x ≤1存在2个零点, 当且仅当f (x )在(-∞,1]上有一个零点,x ≤1时,f (x )=0⇔m =-3x ,即函数y =-3x 在(-∞,1]上的图象与直线y =m 有一个公共点,而y =-3x 在(-∞,1]上单调递减,且有-3≤-3x <0,则当-3≤m <0时,直线y =m 和函数y =-3x (x ≤1)的图象有一个公共点.5.(2022·重庆质检)已知函数f (x )=⎝⎛⎭⎫13x -log 2x ,设0<a <b <c ,且满足f (a )·f (b )·f (c )<0,若实数x 0是方程f (x )=0的一个解,那么下列不等式中不可能成立的是( )A .x 0<aB .x 0>cC .x 0<cD .x 0>b答案 B解析 f (x )=⎝⎛⎭⎫13x -log 2x 在(0,+∞)上单调递减,由f (a )·f (b )·f (c )<0, 得f (a )<0,f (b )<0,f (c )<0或f (a )>0,f (b )>0,f (c )<0.∴x 0<a 或b <x 0<c ,故x 0>c 不成立.6.(2022·北京西城区模拟)若偶函数f (x )(x ∈R )满足f (x +2)=f (x )且x ∈[0,1]时,f (x )=x ,则方程f (x )=log 3|x |的根的个数是( )A .2B .3C .4D .多于4答案 C解析 f (x )=log 3|x |的解的个数,等价于y =f (x )的图象与函数y =log 3|x |的图象的交点个数,因为函数f (x )满足f (x +2)=f (x ),所以周期T =2,当x ∈[0,1]时,f (x )=x ,且f (x )为偶函数,在同一平面直角坐标系中画出函数y =f (x )的图象与函数y =log 3|x |的图象,如图所示.显然函数y =f (x )的图象与函数y =log 3|x |的图象有4个交点.7.(多选)函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 的交点个数可能是( )A .1B .2C .4D .6答案 ABC解析 由题意知,f (x )=sin x +2|sin x |,x ∈[0,2π],f (x )=⎩⎪⎨⎪⎧3sin x ,x ∈[0,π],-sin x ,x ∈(π,2π], 在坐标系中画出函数f (x )的图象如图所示.由其图象知,直线y =k 与y =f (x )的图象交点个数可能为0,1,2,3,4.8.(多选)(2022·南京模拟)在数学中,布劳威尔不动点定理可应用到有限维空间,并是构成一般不动点定理的基石,它得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer),简单的讲就是对于满足一定条件的连续函数f (x ),存在一个点x 0,使得f (x 0)=x 0,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是( )A .f (x )=2x +xB .g (x )=x 2-x -3C .f (x )=12x +1D .f (x )=|log 2x |-1答案 BCD解析 选项A ,若f (x 0)=x 0,则02x =0,该方程无解,故A 中函数不是“不动点”函数;选项B ,若g (x 0)=x 0,则x 20-2x 0-3=0,解得x 0=3或x 0=-1,故B 中函数是“不动点”函数;选项C ,若f (x 0)=x 0,则120x +1=x 0,可得x 20-3x 0+1=0,且x 0≥1,解得x 0=3+52,故C 中函数是“不动点”函数; 选项D ,若f (x 0)=x 0,则|log 2x 0|-1=x 0,即|log 2x 0|=x 0+1,作出y =|log 2x |与y =x +1的函数图象,如图,由图可知,方程|log 2x |=x +1有实数根x 0,即|log 2x 0|=x 0+1,故D 中函数是“不动点”函数.9.若函数f (x )=x 3+ax 2+bx +c 是奇函数,且有三个不同的零点,写出一个符合条件的函数:f (x )=________.答案 x 3-x (答案不唯一)解析 f (x )=x 3+ax 2+bx +c 为奇函数,故a =c =0,f (x )=x 3+bx =x (x 2+b )有三个不同零点,∴b <0,∴f (x )=x 3-x 满足题意.10.函数f (x )=⎩⎪⎨⎪⎧2x ,x ≥0,-x 2-2x +1,x <0,若函数y =f (x )-m 有三个不同的零点,则实数m 的取值范围是________.答案 (1,2)解析 画出函数y =f (x )与y =m 的图象,如图所示,注意当x =-1时,f (-1)=-1+2+1=2,f (0)=1,∵函数y =f (x )-m 有三个不同的零点,∴函数y =f (x )与y =m 的图象有3个交点,由图象可得m 的取值范围为1<m <2.11.(2022·枣庄模拟)已知函数f (x )=|ln x |,若函数g (x )=f (x )-ax 在区间(0,e 2]上有三个零点,则实数a 的取值范围是______________.答案 ⎣⎡⎭⎫2e 2,1e 解析 ∵函数g (x )=f (x )-ax 在区间(0,e 2]上有三个零点,∴y =f (x )的图象与直线y =ax 在区间(0,e 2]上有三个交点,由函数y =f (x )与y =ax 的图象可知,k 1=2-0e 2-0=2e2, f (x )=ln x (x >1),f ′(x )=1x, 设切点坐标为(t ,ln t ),则ln t -0t -0=1t , 解得t =e.∴k 2=1e. 则直线y =ax 的斜率a ∈⎣⎡⎭⎫2e 2,1e .12.(2022·济南质检)若x 1是方程x e x =1的解,x 2是方程x ln x =1的解,则x 1x 2=________. 答案 1解析 x 1,x 2分别是函数y =e x ,函数y =ln x 与函数y =1x的图象的交点A ,B 的横坐标,所以A ⎝⎛⎭⎫x 1,1x 1,B ⎝⎛⎭⎫x 2,1x 2两点关于y =x 对称,因此x 1x 2=1.13.已知函数f (x )=2x +x -1,g (x )=log 2x +x -1,h (x )=x 3+x -1的零点分别为a ,b ,c ,则a ,b ,c 的大小为( )A .c >b >aB .b >c >aC .c >a >bD .a >c >b答案 B解析 令f (x )=0,则2x +x -1=0,得x =0,即a =0,令g (x )=0,则log 2x +x -1=0,得x =1,即b =1,因为函数h (x )=x 3+x -1在R 上为增函数,且h (0)=-1<0,h (1)=1>0,所以h (x )在区间(0,1)上存在唯一零点c ,且c ∈(0,1),综上,b >c >a .14.(2022·厦门模拟)已知函数f (x )=⎩⎪⎨⎪⎧ x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))的所有零点之和为________.答案 12 解析 当x ≤0时,x +1=0,x =-1,由f (x )=-1,可得x +1=-1或log 2x =-1,∴x =-2或x =12;当x >0时,log 2x =0,x =1,由f (x )=1,可得x +1=1或log 2x =1,∴x =0或x =2;∴函数y =f (f (x ))的所有零点为-2,12,0,2,∴所有零点的和为-2+12+0+2=12.15.若关于x 的方程|x |x +4=kx 2有四个不同的实数解,则k 的取值范围为() A .(0,1) B.⎝⎛⎭⎫14,1C.⎝⎛⎭⎫14,+∞ D .(1,+∞)答案 C解析 因为|x |x +4=kx 2有四个实数解,显然,x =0是方程的一个解,下面只考虑x ≠0时有三个实数解即可.若x >0,原方程等价于1=kx (x +4),显然k ≠0,则1k =x (x +4).要使该方程有解,必须k >0,则1k +4=(x +2)2,此时x >0,方程有且必有一解;所以当x <0时必须有两解,当x <0时,原方程等价于-1=kx (x +4),即-1k=x (x +4)(x <0且x ≠-4),要使该方程有两解, 必须-4<-1k<0, 所以k >14. 所以实数k 的取值范围为⎝⎛⎭⎫14,+∞. 16.已知M ={α|f (α)=0},N ={β|g (β)=0},若存在α∈M ,β∈N ,使得|α-β|<n ,则称函数f (x )与g (x )互为“n 度零点函数”.若f (x )=32-x -1与g (x )=x 2-a e x 互为“1度零点函数”,则实数a 的取值范围为________.答案 ⎝⎛⎦⎤1e ,4e 2解析 由题意可知f (2)=0,且f (x )在R 上单调递减,所以函数f (x )只有一个零点2,由|2-β|<1,得1<β<3,所以函数g (x )=x 2-a e x 在区间(1,3)上存在零点.由g (x )=x 2-a e x =0,得a =x 2e x . 令h (x )=x 2e x ,则h ′(x )=2x -x 2e x =x (2-x )e x,所以h (x )在区间(1,2)上单调递增,在区间(2,3)上单调递减,且h (1)=1e ,h (2)=4e 2,h (3)=9e 3>1e,要使函数g (x )在区间(1,3)上存在零点,只需a ∈⎝⎛⎦⎤1e ,4e 2.。
专题13 函数的零点的问题一、题型选讲题型一 函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解. 例1、(2018南通、扬州、淮安、宿迁、泰州、徐州六市二调)设函数f(x)=⎩⎪⎨⎪⎧e -x -12,x>0,x 3-3mx -2,x ≤0(其中e 为自然对数的底数)有3个不同的零点,则实数m 的取值范围是________.例2、(2018扬州期末)已知函数f(x)=e x ,g(x)=ax +b ,a ,b ∈R . 若对任意实数a ,函数F (x )=f (x )-g (x )在(0,+∞)上总有零点,求实数b 的取值范围.例3、(2019苏州期末)已知函数f(x)=ax 3+bx 2-4a(a ,b ∈R ).(1) 当a =b =1时,求f (x )的单调增区间;(2) 当a ≠0时,若函数f (x )恰有两个不同的零点,求ba 的值;题型二 函数零点个数证明与讨论函数的零点:有“零点存在性定理”作为理论基础,可通过区间端点值的符号和函数的单调性确定是否存在零点。
例4、(2017南通一调)已知函数f (x )=ax 2-x -ln x ,a ∈R .(1) 当a =38时,求函数f (x )的最小值;(2) 若-1≤a ≤0,证明:函数f (x )有且只有一个零点; (3) 若函数f (x )有两个零点,求实数a 的取值范围.例5、(2016南通一调)已知函数f (x )=a +x ln x (a ∈R ).(1) 求f (x )的单调区间;(2) 试求f (x )的零点个数,并证明你的结论.题型三 函数零点问题的不等式的证明函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围以及证明零点方面的不等问题时,这些问题时要用到这三者的灵活转化。
专题:隐零点在导数中的应用我们在导数中会遇到一类问题,对于函数(或者导函数),能通过单调性得到零点存在,却零点的值求不出来,此时我们往往会令零点为0x ,然后代入根据条件求解。
此类问题我们称为隐零点。
例(南通、泰州市2017届高三第一次调研测)已知函数2()ln f x ax x x =--,a ∈R .(1)当38a =时,求函数()f x 的最小值; (2)若10a -≤≤,证明:函数()f x 有且只有一个零点;(3)若函数()f x 有两个零点,求实数a 的取值范围.【解】(1)当38a =时,23()ln 8f x x x x =--. 所以(32)(2)31()144x x f x x x x+-'=--=,(x>0). ………………2分 令()0f x '=,得2x =,当(02)x ∈,时,()0f x '<;当(2)x ∈+∞,时,()0f x '>, 所以函数()f x 在(02),上单调递减,在(2)+∞,上单调递增.所以当2x =时,()f x 有最小值1(2)ln 22f =--.………………4分 (2)由2()ln f x ax x x =--,得2121()210ax x f x ax x x x --'=--=>,. 所以当0a ≤时,221()<0ax x f x x--'=, 函数()f x 在(0+)∞,上单调递减,所以当0a ≤时,函数()f x 在(0+)∞,上最多有一个零点.………6分因为当0a -1≤≤时,(1)1<0f a =-,221e e ()>0e e a f -+=, 所以当0a -1≤≤时,函数()f x 在(0+)∞,上有零点.综上,当0a -1≤≤时,函数()f x 有且只有一个零点.……8分(3)解法一:由(2)知,当0a ≤时,函数()f x 在(0+)∞,上最多有一个零点.因为函数()f x 有两个零点,所以>0a . ……………………9分由2()ln f x ax x x =--,得221()(0)ax x f x x x --'=>,,令2()21g x ax x =--. 因为(0)10g =-<,2>0a ,所以函数()g x 在(0)+∞,上只有一个零点,设为0x .当0(0)x x ∈,时,()0()0g x f x '<<,;当0()x x ∈+∞,时,()0()0g x f x '>>,.所以函数()f x 在0(0)x ,上单调递减;在0()x +∞,上单调递增.要使得函数()f x 在(0+)∞,上有两个零点,只需要函数()f x 的极小值0()0f x <,即2000ln 0ax x x --<.又因为2000()210g x ax x =--=,所以002ln 10x x +->,又因为函数()2ln 1h x =x x +-在(0+)∞,上是增函数,且(1)0h =,所以01x >,得0101x <<. 又由200210ax x --=,得22000111112()()24a x x x =+=+-, 所以01a <<. …………………………………………13分以下验证当01a <<时,函数()f x 有两个零点.当01a <<时,21211()10a a g a a a a-=--=>, 所以011x a<<. 因为22211e e ()10e e e e a a f -+=-+=>,且0()0f x <. 所以函数()f x 在01()ex ,上有一个零点.0()0f x <.所以当01a <<时,函数()f x 在12()e a,内有两个零点.综上,实数a 的取值范围为(1)0,. …………………………………16分下面证明:ln 1x x -≤.设()1ln t x x x =--,所以11()1x t x x x-'=-=,(x>0). 令()0t x '=,得1x =.当(01)x ∈,时,()0t x '<;当(1)x ∈+∞,时,()>0t x '.所以函数()t x 在(01),上单调递减,在(1)+∞,上单调递增.所以当1x =时,()t x 有最小值(1)0t =.所以()1ln 0t x x x =--≥,得ln 1x x -≤成立.解法二:由(2)知,当0a ≤时,函数()f x 在(0+)∞,上最多有一个零点.因为函数()f x 有两个零点,所以>0a . ……………………9分 由2()ln 0f x ax x x =--=,得关于x 的方程2ln x x a x+=,(x>0)有两个不等 的实数解.又因为ln 1x x -≤, 所以222ln211(1)1x x x a x x x +-==--+≤,(x>0). 因为x>0时,21(1)11x--+≤,所以1a ≤. 又当=1a 时,=1x ,即关于x 的方程2lnx x a x +=有且只有一个实数解. 所以<<1a 0. ……………………………………………13分(以下解法同解法1)变式:1. 已知函数()ln f x x = ,21()22g x x x =- ,当1x > 时,不等式'(1)()2()3k x xf x g x -<++ 恒成立,则整数k 的最大值为 。
有且只有一个零点
常用题型方法:
题型方法一、能分离参数,则分离参数,构造函数,数形结合
题型方法二、不能分离参数,能构造简单函数,则构造函数,数形结合
题型方法三、三次函数问题,不能构造简单函数,求导得出极值,数形结合
题型方法四、不能分离参数,不能构造简单函数,求导得出极值,数形结合,分三种情况讨论。
1.已知函数f(x)=e x-ax有且只有一个零点,则实数a的取值范围为.
【分析】函数f(x)=e x-ax有且只有一个零点可转化为函数y=e x与y=ax的图象有且只有一个交点;作函数图象可知,分相切与不相切讨论即可.
解:方法一、分离参数,构造函数,数形结合
方法二、直接构造函数两个函数,数形结合
∵函数f(x)=e x-ax有且只有一个零点,
∴函数y=e x与y=ax的图象有且只有一个交点,
作函数y=e x与y=ax的图象如下,
结合图象知,当a<0时成立,
当a>0时,相切时成立,
故
x
x x
e
e e
x
-
'==
-
();
故x=1;
故a=e;
综上所述,实数a的取值范围为(-∞,0)∪{e}.故答案为:(-∞,0)∪{e}.
2.已知函数
2
x
a
f x e ax
=-
()有且只有一个零点,则实数a的取值范围为.
思路方法:不能分离参数,采用构造两个函数,数形结合。
解:∵函数
2
x
a
f x e ax
=-
()有且只有一个零点,
∴函数g(x)=
2
a
x
e与y=ax的图象有且只有一个交点;
当a<0时,作函数y=
2
a
x
e与y=ax的图象如下,
结合图象知,当a<0时成立,
当a >0时,作函数g(x)=2 a
x e 与y=ax 的图象如下,
时成立,
故g ′(x)=(2
a x e )′=
222? x x a a e x x e a =; 故22
a x =; 且切点(x ,2
a x e )在直线y=ax 上知,1
2•2
a e a =; 故32a e =;
综上所述,实数a 的取值范围为(-∞,0)∪{32a e =}。
3.(2015?河北区模拟)已知函数f (x )=x 3-3x 2+3.
(Ⅰ)求过点(3,3)与曲线f (x )相切的直线方程;
(Ⅱ)若函数g (x )=f (x )+
32kx 2-6kx-132
(k >0)有且只有一个零点,求实数k 的取值范围. 思路方法:不能构造简单函数,求导得出极值,数形结合 4.(2016?临沂二模)已知函数ln 2•x x f x a x
-+=()。
(I )若函数f (x )在点(1,f (x ))处的切线过点(0,4),求函数f (x )的最大值 (Ⅱ)当a <l 时,若函数g (x )=xf (x )+x 2-2x+2在区间(12
,2)内有且只有一个零点,求实数a 的取值范围.(参考数值:ln2≈0.7)
(Ⅱ)思路方法:不能分离参数,不能构造简单函数,求导得出极值,分三种情况讨论。
5.(2016临沂二模)已知e 为自然对数的底数,若对任意的x ∈[1e
,1],总存在唯一的y ∈[-1,1],使得lnx-x+1+a=y 2e y 成立,则实数a 的取值范围是( )
(A) 1,e e ⎛⎤ ⎥⎝⎦(B)2,e e ⎛⎤ ⎥⎝⎦ (C) 2,e ⎛⎤+∞ ⎥⎝⎦ (D)21,e e e ⎛⎤
+ ⎥⎝⎦
方法一,直接构造函数两个函数,数形结合
故答案为:e.。