通过利用差动放大器与电流检测放大器执行高边电流检测功能
- 格式:doc
- 大小:22.00 KB
- 文档页数:6
Visit/zh应用简介针对电机控制解决方案,ADI 公司提供了门类齐全的产品组合,其中包括了模数/数模转换器、放大器、嵌入式处理器、i Coupler ®数字隔离器和电源管理器件;这些高性能的器件和增加系统集成度有助于实现更新型的拓扑结构设计,为客户实现系统的差异化设计带来价值,比如,更快主频的处理器可以运行更加复杂的算法,高性能的ADC 可以支持更高性能的电流环控制等等。
伺服驱动系统的性能同用户最终所构建的运动控制系统的性能和所能提供的精度密切相关,多数情况下,最终的用途可以是一个高精度数控机床系统、运动控制系统或机器人系统,这些系统要求能够精确控制位置及电机的扭矩;ADI 公司能够提供涵盖信号链中所有重要器件的完整解决方案。
系统设计考虑和主要挑战X 伺服控制中,高精度电流和电压检测可提高速度和扭矩控制性能。
要求达到至少12位精度,具备多通道以及同步采样功能的ADC 。
ADI 公司可提供完整系列产品。
X 使用电阻进行电流采样的伺服系统中,采样信号质量对电流控制性能的影响至关重要,ADI 公司提供基于Σ-Δ调制器的业界最佳性能解决方案。
X 位置检测性能是伺服控制的关键,常常使用光学编码器和旋转变压器作为位置传感器。
伺服控制技术从模拟向数字的转换推动了现代伺服系统的发展,也满足了对于电机控制的性能和效率的高要求。
X 从优先考虑安全和保护的角度,信号采样和功率器件驱动应采用隔离技术。
ADI 公司的i Coupler 数字隔离器产品可满足高压安全隔离要求。
X IGBT 功率器件驱动保护电路的性能决定了产品的可靠性和安全性,ADI 公司的功率器件驱动芯片集成有丰富的保护功能,使设计更为简单可靠。
X 使用DSP 等高性能处理器可实现高性能的矢量控制和无传感器控制。
X 使用集成的功率因素矫正(PFC )控制器,可以更容易地实现减小伺服系统功率输入端电流畸变的效果。
X 在工业应用的设计中,长生命周期和高可靠性的IC 产品是工程师的首选。
恒流LED驱动方案设计方法剖析文章发表于:2008-02-18 12:13为了优化性能,高亮LED需用电流源而非电压源来驱动.本文我们将了解一种恒流LED驱动方案,它可以用于驱动一条串联地LED串.为了驱动LED串,我们采用改进后地降压-增压转换器电源拓扑,将LED串置于DC-DC转换器输出端和输入电压源之间.运用这种连接方式,可以为LED串提供低于或高于输入地驱动电压. b5E2R。
虽然LED串两端地电压存在降压-增压转换器提供地直流增益,但其输入电流是非脉动方式,这不同于典型地降压-增压转换器地脉动输入电流,非脉动电流有效降低了EMI.本文所讨论地PWM控制器采用平均电流控制模式. p1Ean。
图1所示LED驱动器有如下直流特性:(1)由于,此处D为占空比(2)在平均电流控制模式下,输入电流由输入电压返回环路地检流电阻检测(图2).该电压送入电流误差放大器(CEA)地反相输入端.放大器地同相输入端连至电流控制电压.误差信号经过放大器放大后,驱动PWM比较器地输入端,与开关频率地斜坡信号进行比较.电流环路地增益带宽特性可通过CEA附近地补偿网络进行优化. DXDiT。
电流环路补偿设计业内已经有多种集成驱动方案,为了帮助用户选择方案,我们对MAX16818集成控制系统进行了检验.这个平均电流模式控制器利用跨导放大器(transconductance amplifier)放大电流误差信号.检流电阻两端地电压由内部放大器放大34.5倍,电流误差放大器地跨导是550 uS,锯齿波信号峰值为2V.该电路中,输入电流在返回通路上由电阻Rs检测(图3). RTCrp。
图1:高亮LED驱动器地简化框图.图2:采用平均电流控制模式(内部环路)地高亮LED驱动.图3:利用MAX16818(内部电流环路)构建地高亮LED驱动器.电流检测电阻值由平均电流极限设置,LED支路地最大电压为:此处n是LED地数目,Vfm(I f)是LED在满负荷电流I f下地最大压降.最大输入功率为Pmax = VLED(max) ×I f VLED(max) ×I f,效率为η.因而,最大输入电流为:5PCzV。
三相四线漏电保护器工作原理
三相四线漏电保护器是一种用于检测和保护电路中人身安全的装置。
它通常由电流互感器、差动放大器、判异电路和断路器组成。
工作原理是通过三个电流互感器分别检测三相电流的大小,然后将这三个电流信号输入差动放大器。
差动放大器将三个电流信号进行比较,并进行差动放大运算。
通过差动放大器的输出信号,判断三个电流信号是否平衡。
如果三个电流信号不平衡,说明电路中存在漏电。
差动放大器会产生漏电信号,并将其输入到判异电路。
判异电路会对漏电信号进行处理,并通过控制断路器触发断路动作,以切断电路中的电源。
在正常情况下,三个电流信号是相等且平衡的,即没有漏电。
此时差动放大器的输出信号为零,断路器保持处于闭合状态,电路正常工作。
但如果有部分电流通过其他路径流向地面,就会导致电流不平衡,进而触发差动放大器产生漏电信号,切断电路以防止触电事故的发生。
综上所述,三相四线漏电保护器通过检测电路中的电流信号是否平衡,及时切断电路以保护人身安全。
电流检测电路引言电流检测电路是电子设备中常见的一种电路,用于测量电路中的电流大小。
电流作为一种基本的电学量,对于许多电子设备的工作和保护至关重要。
因此,电流检测电路的设计和实现非常重要。
本文将介绍电流检测电路的基本原理、常见的电流检测方法以及一些电流检测电路的实例。
电流检测基本原理电流检测电路的基本原理是利用电流通过导体时产生的电压降来进行电流的测量。
根据欧姆定律,电流通过一个电阻时会在电阻两端产生电压降,而这个电压降正比于电流大小。
因此,通过测量电压降的大小,我们可以间接地得知电流的大小。
电流检测方法电压放大器检测法电压放大器检测法是一种常见的电流检测方法。
它基于电流通过电阻产生的电压降,通过放大这个电压信号来得到较大的电压输出。
常见的电流放大器电路包括差动放大器、仪表放大器等。
零漂补偿法由于电阻的温度、工艺等因素可能导致电阻值产生变化和偏差,进而影响电流检测的准确性。
为了解决这个问题,可以采用零漂补偿法。
零漂补偿法利用运算放大器的反馈功能,将电流检测电路的误差信号与补偿信号相抵消,实现零漂的补偿。
开环检测法开环检测法是一种简单直接的电流检测方法。
它通过在电路中引入感知电阻,然后测量该电阻上的电压降,进而获得电流的大小。
这种方法不需要放大器或者反馈电路,简化了电路的复杂度。
电流检测电路实例可调增益电流检测电路这是一种可调增益的电流检测电路。
它通过调节电阻的大小,可以实现对电流的不同范围的检测。
同时,它还具有高输入阻抗和低漂移的特点,能够提高电流检测的精度和稳定性。
电路中的运算放大器实现了电压放大器的作用,从而得到较大的输出电压。
通过调节电阻R1和R2的比例,可以实现对电流范围的调节。
同时,电路中的反馈电阻也可以用于进行零漂的补偿。
开环电流检测电路这是一种简单的开环电流检测电路。
它由一个感知电阻和一个测量电压的电压表组成。
运算放大器高边电流采样通常采用差分放大器进行电流检测。
这种放大器具有高共模抑制比和低噪声特性,能够精确地测量电流,并具有轨至轨的输入范围。
在具体实现中,可以将高端电流检测和低端电流检测相结合,以实现对整个电流范
围的精确测量。
例如,可以采用一个高端运算放大器(如LM258或LM358)来检测高端电流,同时采用一个低端运算放大器(如TL082)来检测低端电流。
在采样电阻的选择上,应考虑其阻值和功率容量。
例如,如果采用2欧姆的采样电阻,当电流为6安培时,采样电阻上的电压降为0.12伏。
此时,可以采用一个低噪声、低失调的运算放大器(如TI的INA系列)来放大这个电压信号,并将其输出到
后续处理电路中。
需要注意的是,在选择运算放大器的电源电压时,应保证其输入电压范围能够覆盖采样电阻上的电压信号。
同时,还应考虑运算放大器的输入失调电压和增益带宽积等因素,以确保其能够准确地放大和传输采样信号。
总之,运算放大器高边电流采样需要结合具体的电流范围、精度要求和系统需求等因素进行综合考虑和设计。
电流检测放大器原理
电流检测放大器是一种电子设备,用于测量和放大电路中的电流信号。
电流检测放大器的原理基于欧姆定律和放大器的放大功能。
在一个电路中,电流通过导体中的电子流动。
通过将一个电流检测电阻连接到电路中,我们可以利用欧姆定律来测量通过电阻的电压。
电流检测放大器通过将该电压信号放大来实现对电流的测量。
电流检测放大器通常将电流检测电阻连接到一个差动放大器中。
差动放大器是一种放大器,可以将输入信号的差异放大为输出信号。
电流检测电阻连接到差动放大器的输入端,将通过电流检测电阻的电压信号作为输入信号。
差动放大器的输出信号经过放大后,可以连接到显示器、记录仪或其他测量设备中。
这样,我们就可以通过测量输出信号来得到电路中的电流值。
为了准确测量电流,电流检测电阻的阻值需要根据电流范围进行选择。
通常,我们可以使用可变电阻来调整电流检测电阻的阻值,以适应不同的测量需求。
总的来说,电流检测放大器通过将电流检测电阻连接到差动放大器中,并利用放大器的放大功能来实现对电流信号的测量和放大。
这种原理使得电流检测放大器成为实现精确电流测量的重要工具。
当代电子系统中的电源管理可以通过高效的电源分配优化系统效率。
电流检测是电源管理的关键技术之一,它不仅有助于保持理想的电压等级,而且能通过提供伺服调整保持电子系统处于正常状态,同时还能防止发生电路故障和电池过度放电。
电流的检测有两种基本的方案。
一种是测量电流流过的导体周围的磁场,另一种是在电流路径中插入一个小电阻,然后测量电阻上的压降。
第一种方法不会引起干扰或引入插损,但成本相对比较昂贵,而且容易产生非线性效应和温度系数误差。
因此磁场检测方法通常局限于能够承受与无插损相关的较高成本的应用。
本文主要讨论半导体行业中已经得到应用的电阻检测技术,它能为各种应用提供精确且高性价比的直流电流测量结果。
本文还介绍了高边和低边检测原理,并通过实际例子帮助设计师选择适合自己应用的最佳方法。
电阻检测在电流路径中以串联的方式插入一个低阻值的检测电阻会形成一个小的电压降,该压降可被放大从而被当作一个正比于电流的信号。
然而,根据具体应用环境和检测电阻的位置,这种技术将对检测放大器造成不同的挑战。
比如将检测电阻放在负载和电路地之间,那么该电阻上形成的压降可以用简单的运放进行放大(见图1B)。
这种方法被称为低边电流检测,与之相对应的方法为高边检测,即检测电阻放在电源和负载之间(见图1A)。
图1:上面简化的框图描述了一种基本的高边检测电路(图1A)和一种基本的低边检测电路(图1B)。
检测电阻值应尽可能低,以保持功耗可控,但也要足够大,以便产生能被检测放大器检测到并在目标精度内的电压。
值得注意的是,在检测电阻上得到的这种差分检测信号寄生在一个共模电压上,这个共模电压对低边检测方法来说接近地电平(0V),但对高边检测方法来说就接近电源电压。
这样,测量放大器的输入共模电压范围对低边方案来说应包含地,对高边方案来说应包含电源电压。
由于低边检测时的共模电压接近地电平,因此电流检测电压可以用一个低成本、低电压的运放进行放大。
低边电流检测简单且成本低,但许多应用不能容忍由于检测电阻引入的地线干扰。
电池内阻测试仪制作说明一、原理电池内阻测试仪最基本的工作原理是采用四线法进行电池内阻的测量。
如图1所示,电池内阻测试仪(以下简称BK )总共有4根出线,一对Bat 蓝线是对电流采样的功率线路,一对sense 红线是对电压采样的信号线路,分开采样的优点是,红线电流约为0,电压采样准确,基本可以忽略BK 出线存在阻抗对测试结果产生影响的可能性。
图1 四线法基本原理图内阻的测量思想是:通过BK 分别测得电池空载和带载(BK 对其进行放电)时的电压,求得电压差,再除以带载时的电流值即可求出电池存在的内阻R ,即: V V R I -=空荷荷二、实现图2 电源接口BK 出线为4条,两两一对,如图2所示,左侧相当于图1的sense 线,用作控制系统供电和电压检测;右侧相当于Bat线,用作大电流回路进行电流采样。
图3 设计主电路图功率部分:图3为实际设计中的主电路结构,采用功率三极管作为主电路的功率耗散器件,BK进行电池放电时热量几乎都在Q1上耗散,设计中采用MJD31C达林顿管,额定3A。
R25用来进行电流检测,本设计中采用0.1%精度低温漂精密电阻。
驱动三极管采用的是通用运算放大器,由于dsp输出驱动信号并非直流,而是PWM,所以运算放大器还有进行二阶滤波的作用,上图的截止频率为10Hz,采用通用运算放大器LM2904实现。
由于本设计不设置另外供电电源,因此LM2904是由电池滤波后直接供电使用的。
图4 光耦隔离电路处于安全角度考虑,dsp输出的PWM信号没有直接送至LM2904进行使用,而是首先进行了光耦隔离,保证控制电路和dsp不受主电路故障的影响。
TLP521和PC817等光耦不满足截止频率和上升下降时间要求,因此采用快速性高的TLP109实现20k频率PWM传送。
图5 线性电源电路图图5 为线性电源,为光耦二次侧进行供电用,采用1117实现。
图6 电流采样的调理电路控制部分:电流采样部分:因为采样电阻(图3)没有放置在地和三极管的原因是防止由于在放电时,采样电阻的压降抬升三极管的发射极导致电流不稳。
通过利用差动放大器与电流检测放大器执行高边电流检测功能在许多应用中都需要精确的高端电流检测,包括电机控制,电磁阀控制和电源管理(例如,DC-DC转换器和电池监控)。
在这些应用中,高端电流监测- 而不是返回- 可以提高诊断能力,例如确定接地短路和连续监测再循环二极管电流- 并通过避免引入来保持接地路径的完整性分流电阻。
图1,2和3描述了用于电磁阀和电机控制的典型高侧电流分流配置。
在上面显示的所有配置中,分流电阻上的脉冲宽度调制(PWM)共模电压- 监视负载电流- 从整个范围从地面到电池摆动。
该PWM输入信号将具有由功率级到FET的控制信号建立的周期,频率和上升/下降时间。
因此,监测分流电阻两端电压的差分测量电路需要非常高的共模抑制和高压处理能力的严格组合,以及高增益,高精度和低偏移- 所有这些都是为了提供负载电流值的真实表示。
在使用单个控制FET的电磁阀控制(图1)中,电流始终以相同方向流动,因此单向电流传感器就足够了。
在电机控制配置中(图2和图3),将分流器置于电机相位意味着分流电阻器中的电流可以双向流动;因此,双向电流传感器是必要的。
研究高端电流检测功能选择的设计人员将从许多半导体供应商那里找到各种选择。
然而,一个关键的发现是,这些集成电路器件中的选择可以根据两种截然不同的高压架构进行分类:电流检测放大器和差分放大器
我们将在这里确定并解释这些架构之间的一些关键差异,以帮助需要高端电流检测的设计人员选择最适合应用的器件。
我们将比较两个高压部件,AD8206双向差动放大器和AD8210双向电流检测放大器。
两款器件均提供相同的引脚排列,均可执行高端电流分流监控,但其规格和架构不同。
那么,如何考虑哪种设备最适合应用?
工作原理。