第七章 原子的壳层结构及 基态光谱项
- 格式:ppt
- 大小:1.53 MB
- 文档页数:72
大一化学第七章知识点大一化学第七章主要讲解了电子结构和周期性。
本章的知识点包括原子的电子结构、电子排布规则、周期表中的规律以及原子半径和离子半径等内容。
下面将逐一介绍这些知识点。
一、原子的电子结构1. 原子的组成:原子由质子、中子和电子组成,质子和中子位于原子核中,电子绕核运动。
2. 原子的电子层:电子按能级分布在不同的电子层,分别命名为K层、L层、M层等,能级越高离核越远。
3. 原子的电子壳层:原子的电子层按主量子数分为不同的壳层,第一壳层为K壳层,第二壳层为L壳层,以此类推。
4. 原子的电子云:电子在空间中的分布形成电子云,电子云表示了电子的可能位置。
二、电子排布规则1. 轨道和亚轨道:电子在不同壳层的电子层中沿不同轨道运动,轨道可分为s轨道、p轨道、d轨道和f轨道。
每个轨道可进一步分为不同的亚轨道。
2. 电子填充原则:按能级从低到高的顺序填充电子,每个轨道最多容纳一对电子。
3. 朗德规则:在同一轨道上填充电子时,优先尽量使电子自旋相反。
三、周期表中的规律1. 元素周期表:由元素按照一定的顺序排列形成的表格,主要包括元素的原子序数、元素符号和元素名称。
2. 周期:周期表中的横行称为一个周期,每个周期代表不同壳层的元素。
3. 主族元素和过渡族元素:周期表中,主族元素位于周期表的左侧,过渡族元素位于周期表的中间。
4. 周期表中的规律:周期表中元素的位置和性质呈现出周期性规律,例如电子层的增加、半径的变化、电离能的变化、电负性的变化等。
四、原子半径和离子半径1. 原子半径:原子半径是指原子核与最外层电子云之间的距离,通常以PM(皮克米)为单位。
2. 原子半径的变化:原子半径随着周期数的增加而逐渐减小,在同一周期内,随着原子序数的增加,原子半径逐渐增大。
3. 离子半径:当原子失去或获得电子形成带电离子时,离子半径会发生变化。
正离子的半径比原子半径小,负离子的半径比原子半径大。
以上就是大一化学第七章的主要知识点,包括原子的电子结构、电子排布规则、周期表中的规律以及原子半径和离子半径的相关内容。
第七章 原子的壳层结构7.1 有两种原子,在基态时其电子壳层是这样添充的:(1)n=1壳层、n=2壳层和3s 次壳层都填满,3p 次壳层填了一半。
(2)n=1壳层、n=2壳层、n=3壳层及4s、4p、4d 次壳层都填满。
试问这是哪两种原子?解:每个壳层上能容纳的最多电子数为,每个次壳层上能容纳的最多电子数为。
22n )12(2+l (1)n=1壳层、n=2壳层填满时的电子数为:10221222=×+×3s 次壳层填满时的电子数为:2)102(2=+×3p 次壳层填满一半时的电子数为:3)112(221=+×× 此种原子共有15个电子,即Z=15,是P(磷)原子。
(2)与(1)同理:n=1,2,3三个壳层填满时的电子数为28个4s、4p、4d 次壳层都填满的电子数为18个。
所以此中原子共有46个电子,即Z=46,是(钯)原子。
Pd 7.2 原子的3d 次壳层按泡利原理一共可以填多少电子?为什么?答:根据泡利原理,在原子中不能有两个电子处在同一状态,即不能有两个电子具有完全相同的四个量子数。
对每一个次壳层,最多可以容纳个电子。
3d 次壳层的,所以3d 次壳层上可以容纳10个电子,而不违背泡利原理。
l )(122+l 2=l 7.3 原子的S、P、D 项的量子修正值Na 01.0,86.0,35.1=Δ=Δ=ΔD p s 。
把谱项表达成22)(n Z R σ−形式,其中Z 是核电荷数。
试计算3S、3P、3D 项的σ分别为何值?并说明σ的物理意义。
解:用量子数亏损表征谱项时 形式为 22)(*Δ−=n R n R 用有效电荷表征时 形式为 2222)(*n Z R n RZ σ−= 两种形式等价。
令二者相等,则得到 Δ 与 σ 之间的关系Δ−=−n n Z σ Δ−−=n n Z σ 用 Z = 11 和 n = 3 代入上式得 3S、3P、3D 项的σ值分别为:3119.183 1.35S σ=−=− 3119.630.86P σ=−=− 3111030.01D σ=−≈− σ 代表因内层电子对核电荷的屏蔽效应、价电子的轨道贯穿效应和原子实的极化效应而使价电子感受到的核电荷数的亏损。
原子结构知识:原子的壳层结构原子是构成物质的基本单位,由一个中心的原子核和围绕其运动的电子构成。
在量子力学理论中,原子的电子分布在不同的壳层上,每个壳层可以容纳一定数量的电子。
原子的壳层结构对于解释原子的化学性质和物理性质至关重要,因此我们有必要深入了解原子的壳层结构及其性质。
1.原子的壳层结构原子的壳层结构由一系列能量不同的壳层构成,这些壳层依次编号为K、L、M、N、O、P等。
每个壳层内又包含不同的亚壳层,分别用s、p、d、f等字母来表示。
这些壳层和亚壳层的能级顺序是确定的,而且每个壳层和亚壳层也有一定的容纳电子数。
2.壳层的命名壳层的命名是根据德国物理学家C.G. Moseley的工作而得到的。
他发现原子的核电荷数Z与原子的光谱线关系密切,根据他的工作,原子核电荷数Z也就是原子序数也就是元素周期数。
3.壳层的能级原子的壳层能级随着壳层的增加而变化。
一般情况下,第一层K的能级最低,依次为L、M、N等。
在同一壳层内,不同亚壳层的能级也有所不同,通常s亚壳层的能级最低,依次为p、d、f等。
4.壳层的容纳电子数每个壳层可以容纳一定数量的电子,这个数量是按照一定规律排布的。
第一壳层K能容纳2个电子,第二壳层L能容纳8个电子,第三壳层M能容纳18个电子,第四壳层N能容纳32个电子,第五壳层O 能容纳50个电子,以此类推。
5.壳层的电子排布在填充壳层的电子时,遵循“先满足低能级,再填充高能级”的原则,即按照泡利的排斥原理,不同自旋的电子首先占据同一个轨道,并且每条轨道最多容纳两个电子,且二者的自旋量子数应相反。
其次是哈特里-福克定则,也就是说,同壳层的电子排布时首先填充s轨道然后填充p轨道。
6.壳层的化学性质壳层结构对原子的化学性质产生了重要影响。
原子的壳层结构决定了原子的电子结构、原子的化学键合方式、原子的物理性质等。
例如,稀有气体的原子壳层结构十分稳定,因此它们不易与其他元素发生化学反应。
而某些元素由于壳层结构的特殊性质,能够形成特定的化合物和离子,从而展现出特殊的化学性质。
原子结构知识:原子的壳层结构原子是物质的基本单位,由质子、中子和电子组成。
电子以壳层分布在原子核周围,这种壳层结构对原子的性质和化学行为起着重要作用。
本文将从壳层结构的概念及组成、壳层能级、壳层填充规律等方面进行详细介绍。
一、壳层结构的概念及组成1.1壳层结构的概念壳层结构是指原子中电子的分布方式。
由于电子是负电荷,它们在原子核周围的运动会受到核的引力和相互排斥力的作用。
壳层结构是原子电子在不同轨道上的排布方式,根据不同的能级,电子在原子核周围的轨道上运动。
1.2壳层的组成根据原子结构理论,电子以壳层的形式分布在原子核周围,壳层的数量和电子的填充顺序受到原子序数的影响。
壳层以数字和字母的组合来表示,如1s,2s,2p等。
其中,数字代表能级,字母代表角量子数。
角量子数的不同代表了电子运动的不同方式,也决定了电子的运动轨道。
二、壳层能级2.1能级的概念在原子结构中,能级是指原子核对电子施加的引力所产生的能量的层次划分。
电子在这些能级上的运动跃迁以及填充顺序是由泡利不相容原理决定的。
每个能级有特定的能量值,代表了电子运动的状态。
2.2壳层的能级结构壳层的能级结构按照量子力学理论可以得出。
以氢原子为例,其能级结构由布尔模型和薛定谔方程给出。
布尔模型认为,原子的能级是固定的,电子只能在这些能级上运动。
而薛定谔方程则描述了电子在原子中的波动性质,得出了几个量子数,分别控制了每个壳层的能级结构。
2.3壳层的能级跃迁电子可以在不同的能级之间进行能级跃迁,这种跃迁会伴随着光子的吸收或发射。
这是原子发光和吸收光的基础。
能级跃迁的能级差代表了电子的能量变化,而光子的频率则与能级差有直接的关系。
三、壳层填充规律3.1量子数和填充规律原子的每个壳层都有一定数量的电子,这些电子的分布是有规律的。
每个壳层由不同的角量子数,每个角量子数代表一个轨道。
填充规律是指每个轨道上能够放几个电子以及填充的次序。
3.2泡利不相容原理根据泡利不相容原理,原子中不能有两个电子具有完全相同的四个量子数。
第7章原子的壳层结构及基态光谱项前面我们已经讨论了原子中电子所处的状态及其规律性,为了进一步讨论整个原子的结构及核外电子的排布规律,本章我们从元素的物理性质与化学性质的周期性出发,讨论原子的电子壳层结构及它同元素性质周期性变化之间的关系,从而对电子排布有一个全面的了解.§7.1 元素性质的周期变化及壳层结构一、元素性质的周期性早在1869年,化学家门捷列夫(Д·И·Менделеев)在分析大量实验材料的基础上,避免了按原子量大小的顺序机械排列元素的错误,根据元素的性质随原子量变化的系统规律加以调整(K和Ar,Te和I,Co和Ni),从而使元素性质显示出周期性变化.为说明这一周期性,将周期表以图7-1的形式排列.此图与化学中的周期表形式不一样,每一行表一个周期,共七个周期.第一周期只有两个元素,第二周期八个元素等.各周期中元素数目不等,最后一周期在自然界只发现了少数几个Z=号元素铀为止,铀以后的是在实验室用人工方法获得的,称铀后元素到92元素.物理化学性质相近光谱也相仿的元素用直线连接起来,这些元素称为在同一族中. 图7-2给出了各原子的电离曲线,即将原子从基态激发一个电子电离时需要的能量曲线.从图上可明显看出元素的周期性质.所有第八族元素(惰性气体元素)电离能量最大,说明这些元素具有相对稳定的原子系统.而所有第一族元素(碱金属元素)电离能最小,说明这些原子是较易电离的,同时由于易失去电子它们的化学性质也比较活泼. 各种元素为什么具有周期性Bohr 认为,这可以用原子内电子按一定壳层排列的观点来解释.第一层电子的主量子数等于1,第二层电子的主量子数等于2,依此类推,每壳层内的电子都有相同的主量子数.元素的物理、化学性质主要取决于原子最外层电子(价电子)的数目和排列.每一新的周期是从电子填充一个新的壳层开始的.因此,周期地填充电子,就导致元素性质的周期性;换句话说,元素的周期律反映了原子内部电子排列的周期性.此观点已被原子光谱和X 射线谱的分析研究所证实. 72 −图元素周期表排列二、电子排列的壳层结构由于主量子数n 决定着椭圆轨道的长半轴,随着n 的不同,可把轨道电子分成许多壳层.主量子数 123456n =, , , , , ,…壳层符号 K L M N O P 、、、、、、… 轨道角量子数l 确定椭圆轨道的形状而把能级分裂,所以对不同的角量子数l 可把每一个壳层分成若干支壳层. 角量子数 012345l =, , , , , ,… 支壳层符号 s p d f g h 、、、、、、… 设想原子处在很强的磁场中,电子间的耦合以及每个电子的自旋同轨道的耦合都被解脱.这样每个电子的轨道运动和自旋的取向都相对独立,出现明显的对外场空间量子化.因而就可用 (l s n l m m 、、、)四个量子数推断原子中的电子组态. 先计算一个l 支壳层中最多容纳多少个电子.由于每个给定的l ,l m 可以取21l +个值,对每一个l m 值,s m 可取12±两个值.因此对每一个l ,可有2(21)l +72 −图元素的电离能个量子态.根据Pauli 原理,每个支壳层中可以容纳的最多电子数是 2(21)l N l =+ (7-1) 再计算每个壳层中最多容纳多少个电子.对于每个给定的n ,l 可以取0,1,2,…1n −,共n 个不同值.根据Pauli 原理,主量子数为n 的壳层中可以容纳的最多电子数是 1202(21)2n n N l n−=+=∑ (7-2)以上结论是在原子处于很强的磁场中的假定下推得的.实际上磁场的强弱并不影响各壳层和支壳层可以容纳的最多电子个数(此点可用n ,l ,j ,j m 四个量子数确定量子态个数给予证明).即使没有磁场,原子中各电子的轨道运动之间的相对取向也会量子化.只要有一个电子,它的轨道运动就会产生磁场,这时就为其它电子提供了一个特殊方向,其它电子的轨道运动相对于这个电子的轨道运动的取向就会量子化,又每一个电子的自旋相对于本身的轨道运动也可以有两个取向.因此l m 和s m 分别代表轨道运动和自旋有n 个可能取向仍有效,只是现在代表的是原子中各电子运动的相对取向,并不影响量子态数的计算.因而也不影响壳层和支壳层容纳最多电子个数. 表7-1列出了各壳层及支壳层中能容纳的最多电子个数. 表7-1 壳层、支壳层容纳最多电子个数0 1 2 3 4s p d f g n NK 1 2 2L2 2 6 8 M3 2 6 10 18 N4 2 6 10 14 32 O5 26 10 14 18 50从以上知识,便可初步解释元素系统的周期性.从氢原子开始,原子中的电子逐个地被填充到壳层中去时,它们的壳层填充次序不仅要遵守Pauli 原理,还要满足能量最小原理,即电子填充某一个壳层时,首先要占据能量最小的支壳层,只有这样原子才最稳定.一般来说,原子的能量主要取决于主量子数n ,而且也与轨道角量子数l 有关.当n 给定时,l 值最小的支壳层能量最小.对于由量子数n 和l 确定能级的高低,可以从光谱学的数据分析归纳出一条近似定律:对于原子的外层电子,当0.7n l +越小时,则其能级就越低;对于离子的外层电子,当0.4n l +越小时,则能级就越低.由此可得出各种原子按壳层的能级高低分布,如图7-3所示,能量次序和壳层分布次序的交叉随原子序数的增加而加深. §7.2 电子壳层建造 实际周期系是考虑了能量最低原理而得到的,原子的光谱,特别是等电子数序光谱的研究,使我们能够很详细的研究电子壳层的结构,并揭示周期律的物理本质.本节我们将研究实际周期系的结构,并确定什么地方填充壳层及支壳层的理想次序被破坏,以及由此产生的结果. 73−图 各支壳层的能量关系一、等电子原子及离子光谱、Mosely 定律及Mosely 图一切与它们的电子数目相同的离子叫做等电子数序的离子.如K Ⅰ,Ca Ⅱ,Sc Ⅲ,Ti Ⅳ,VⅤ,Cr Ⅵ,Mn Ⅶ …等,其中Ⅰ表中性,Ⅱ表示电离掉一个电子,….而光谱由价电子产生,实验证实,等电子原子及离子具有相仿的光谱,但对中性原子来说却大不一样. 类氢离子的光谱项可表示为22RZ T n= (7-3) 式中Z 为原子序数.碱金属原子的光谱项可表示为22*RZ T n = (7-4)式中*n 为有效量子数.推广到类碱离子,光谱项可表示为 22()*R Z K T n−= (7-5) 式中K 表示内层电子数目或原子实中电子数目,()Z K e −为原子实的电荷.据等电子原子及离子设想, (7-5) 式可进一步表示为22()R Z T nσ−= (7-6) 此时式中n 为主量子数,σ为屏蔽常数,()Z e σ−为有效核电荷.这是因为光学电子在核的Coulomb 场中运动,除受核的Coulomb 场的作用,还要受内层电子的作用,相当于削弱了核的作用,使核的有效电荷变为()Z e σ−,即其他电子产生了一个屏蔽作用.故σ表示了内层电子对核的Coulomb 场的抵消作用.由此称σ为屏蔽常数,()Z e σ−就叫有效核电荷. 将(7-6)式改写为1()Z nσ=− (7-7) 就是推广了的Mosely 定律.可见光谱项值的平方根与原子序数Z 成直线关系,如图7-4所示,以Z为纵坐标,可得一条直线,其斜率可以决定主量子数n ,而它与Z 轴的交点可以决定屏蔽常数σ. 二、电子的壳层结构和周期系的构成依据Bohr 的壳层假说.按Pauli 原理和能量最低原理就可研究原子的电子壳层结构和周期系的构成1 第一周期 第一周期即1n =的K 壳层有两种元素,氢和氦.氢只有一个电子,基态电子组态为1s ,由此得其基态是212S .氦有两个电子,在基态时都在1s 态,形成基态是10S .到此第一电子壳层已填满而形成闭合壳层,则第一周期到比结束.所以氦的化学性质很不活泼. 2 第二周期 第二周期即1n =的L 壳层有8种元素.第一种是锂,有三个电子.在基态时两个电子填满K 壳层,第三个电子必须进入第二个壳层,并尽可能填在最低能7-4 KI CaII ScIII Mosely 图等电子数序,,等的图级,所以填在2s 支壳层.这样锂原子的基态是21S .铍原子有四个电子,它的基态电子组态是2212s s ,形成原子基态10S .而硼、碳、氮、氧、氟、氖分别有5,6,7,8,9,10个电子,前四个电子填充类似于铍原子,而新增电子依次填在2p 支壳层,到氖为止,2p 支壳层填满,同时L 壳层亦填满而形式闭合壳层,其电子组态是226122s s p ,相应原子基态为10S .到此第二周期结束. 在此周期中,锂的结构是一个满壳层之外加一个电子,此电子在原子中结合最不牢固最易被电离,所以锂原子易成为带一个单位正电荷的离子.而氟的第二壳层差一个电子就要填满,所以氟易俘获一个电子成为一个具有完满壳层的体系,而成为“带一个单位负电荷的离子.元素周期表中靠近左边的元素具有正电性,右边元素具有负电性原因就在此. 3 第三周期 第三周期即3n =的M 壳层也有8种元素.钠有11个电子,象氖一样填满了K 壳层和L 壳层.在基态时第11个电子只能填在第三壳层的3s 支壳层,形成钠的基态212S ,它具有同锂相仿的性质,这以后七种原子中电子逐一填充的情况同第二周期的原子相同,只是此处填充在第三壳层.到了氩,第三壳层的第一、二支壳层已填满,它的基态是10S .氩具有同氖和氦相仿的性质,它也是惰性元素. 由以上可见,第二周期和第三周期都是从碱金属元素开始到惰性气体元素终止.而从表7-1和表7-2可看出,在第三壳层中的3d 支壳层完全空着,下一个元素钾的第19个电子是否填充在3d 上呢?光谱的观察及其他性质都显示出最后填充的不是3d 而是4s 支壳层.钾原子中18个电子已经构成一个完整的壳层体系,第19个电子就要决定原子态的性质,如是3d 电子,原子基态应是2D ,但实验得出基态是212S .可见钾的第19个电子已进入第四壳层而开始新的周期.则第三周期到氩结束. 4 第四周期 第四周期即4n =的N 壳层有18种元素.开始的是钾,它的第19个电子不是填充在3d 而是4s 支壳层,这是为什么呢? 这是由于4s 的能量低于3d 的能量.按第四章的讨论,4s 轨道是一个偏心率很大的椭圆轨道,原子实的极化和轨道贯穿都能使它的能级下移.3d 是圆轨道,不会有贯穿,极化作用也很小,它的能级应接近氢原子的能级,因此4s 能级低于3d 能级.按Mosely 图也可解释,由图7-4又知,基本平行的四条线是属于4n =的,23D 线的斜度同这些线显然不同,它与24S 线相交于20Z =和21Z =之间.当19Z =和20Z =时,24S 的谱项值大于23D 的值,因能量与谱项值满足E hcT =−关系,可见K Ⅰ和Ca Ⅱ的24S 能级低于23D 能级,这就解释了K 和Ca 的第19个电子应先填4s 而不填3d 支壳层.Ca 的第20个电子也应先充4s 态.到了Sc Ⅲ及其余等电子离子中,23D 才被24S 态低,所以从钪到镍为止,第19个电子才填充在3d 支壳层.这些元素称为过渡元素.到铜(29Z =),它和钾原子相似正说明它的第29个电子填在4s 态,其余28个电子把K 、L 、M 壳层都填满了,从铜起开始正常填充第四壳层.到氧(36Z =)为止,4s 、4p 支壳层填满,形成原子态10S ,第四周期结束,但此时第四壳层4d 和4f 支壳层还空着. 5 第五周期 第五周期即5n =的O 壳层共有18种元素.从铷(37Z =)开始,它与钾原子有相仿的性质,它的第37个电子不是填在4d 而是填在5s 支壳层,从此开始了第五周期.此周期填充与第四周期相仿.铷和锶填充5s 支壳层.从钇(39Z =)到钯(46Z =)陆续填充4d 支壳层,与钪到镍类似构成另一组过渡族元素,此时4d 支壳层已被填满,但4f 支壳层还完全空着.从银(47Z =)到氙(54Z =)又恢复正常填充次序,新增电子依次填满了5s 和5p 支壳层,形成和氖、氩、氪类似的外壳层结构,成为第五个惰性气体元素Xe ,从而结束了第五周期. 6 第六周期 第六周期即6n =的P 壳层共有32种元素.到第五周期末,第四壳层的4f 和第五壳层的5d ,5f ,5g 都还空着.下一元素铯(55Z =)又是一个碱金属元素,它的最外边一个电子填充在6s 支壳层,从而开始了第六周期.钡(56Z =)和第四周期的钙、第五周期的锶都是二价碱土金属,所以新增电子仍然填充6s 支壳层.从铈(58Z =)到镥(71Z =)这14个元素新增电子都陆续填充4f 支壳层,直到填满为止.这14个元素自成一体系,具有相仿性质,称其为稀土元素.从铪(72Z =)到铂(78Z =),5d 支壳层被依次填充,这些元素与镧(57Z =)一起称为第六周期的过渡元素.到金(79Z =),5d 填满而余一个6s ,所以它具有同银和铜相仿的性质.下一元素是汞(80Z =),6s 支壳层填满.铊(81Z =)到氡(86Z =)电子依次将6p 支壳层填满,从而完成了第六周期. 7 第七周期 第七周期即7n =的Q 壳层共有23种元素.此周期是一个不完全周期.钫(87Z =)和镭(88Z =)的最外边一个电子填充7s 支壳层到满.锕(89Z =)和钍(90Z =)填充6d 支壳层,直到铹(103Z =)主要是填补5f 支壳层.这些元素同稀土族元素相仿,自成一体系,具有相仿的性质.从钅卢(104Z =)开始到109号元素,新增电子依次填充6d 支壳层.第七周期中钫(87Z =)到铀(92Z =)是自然界存在的,其余都是人造的. 表7-2给出了各种原子的电子壳层结构,与图7-1对照看,除第一周期只含氢、氦两种元素外,其它周期均从碱金属元素开始,以惰性气体元素结束.可见周期系以及元素的物理、化学性质的周期性完全可以用原子内的电子壳层结构得以解释.§7.3 原子基态光谱项的确定在讨论原子结构问题中,往往需要求出某一原子的基态光谱项,作出某一原子的能级图.本节将介绍利用LS耦合法确定原子基态光谱项的方法. 据核外电子的排布,由原子的基态电子组态可以得到原子的全部原子态的光谱项,再由Pauli不相容原理便可定出系统的可能态的光谱项,进而由Huad定则定出原子的基态光谱项. 对非同科电子,其主量子数n及角量数l已不相同,则自然满足Pauli不相容原理,所以求系统的可能态及基态时,可不考虑Pauli原理.对同科电子,其主量子数n及角量数l相同(亦即二电子是等价的),所以求系统的可能态及基态时,必须考虑Pauli原理. 一、闭合壳层基态光谱项为10S 原子状态仅由未闭合(支)壳层上电子的状态决定,且闭合(支)壳层基态光谱项为10S . 1.对于给定的主量子数数n 和角量数l 轨道磁量子数012l m l =±±±、、、…;自旋磁量子数12s m =±. 据泡利原理,一个量子态只能容纳一个电子,因而对于每一个闭合(支)壳层: =0L liM m =∑,则总轨道角量子数0L =,轨道角动量0LP =; =0SsiM m =∑, 则总自旋量子数0S =,自旋角动量0SP =; 所以,原子的总量子数0J L S =+=,于是原子的总角动量0J P =. 可见:原子核外电子的闭合壳层和闭合支壳层的L P 、S P 、J P 恒为零,原子状态仅由未闭合(支)壳层的电子状态来决定. 2 所有闭合(支)壳层,原子基态光谱项均为10S由上面讨论可知,对所有闭合(支)壳层0L =,0S =,0J =,而原子状态由21S J L +(或21L J L +)表示,于是可知,对所有闭合(支)壳层的原子基态光谱项均为10S . 二、原子基态光谱项的确定原子状态的光谱项用21S J L +表示,所以要定出原子的基态,关键要确定L ,S ,J . 方法一: 1.写出基态原子电子组态(只考虑未闭合(支)壳层的电子),从理论上讲,由原子基态电子组态可以构成全部原子态的光谱项. 2.据Pauli 原理及Huad 定则,由121212,1,L l l l l l l =++−−…,定出最低态L 值. 3.写出原子的S 值(定出重数). 电子在原子中处于能量最低时最稳定,因此电子填充时应遵从能量最低原理.由Huad 定则(实际上也就是能量最低原理的补充)可知,在同一电子组态形成的具有相同L 值的能级中,那重数最高的,亦即S 值最大的能级最低,所以电子填充将首先占据不同的轨道而保持自旋平行(自旋平行数目增多,可使能级降低). 4.由LS 耦合法,据Huad 定则定出J 值,一个(支)壳层中电子填充数超过满额的一半时,能级呈倒序,J 大者能级低,此时||J L S =+;当一个(支)壳层中电子填充数低于满额的一半时,能级呈正序,J 小者能级低,此时||J L S =−. 5.由求出的L ,S ,J 写出原子基态光谱项. 以下就原子中电子填充的几种情况各举一例说明. (1)C(碳),6Z =; (2)O(氧),8Z =; (3)Ce(铈),58Z =; (4)Nd(铌),41Z =; (5)Mo(钼),42Z =; (6)Pt(铂),78Z =; (1)C 原子基态电子组态为222122s s p ,此时只考虑22p . 求L ,S :对22p ,121l l ==,2,1,0L =.1212s s ==,1,0S =. 由Pauli 原理及Huad 定则知最低能态1L =,1S =. 求J :据Huad 定则可知,支壳层填充电子数未超过半满(622<,所以能级 呈正序,J 小者能级低,则||0J L S =−=. 于是基态光谱项为30P . (2)O原子的基态电子组态为224122s s p ,此时只考虑42p . 求L ,S :对42p ,12341l l l l ====.则4 3L =、、2、1、0.12s s == 3412s s ==,则S =2、1、0.由Pauli 原理及Huad 定则知最低能态L =1, S =1.求J :据Huad 定则知其支壳层填充电子数已超过半满,所以能级呈倒序,J 大者能级低,则||2J L S =+=. 于是基态光谱项为32P . (3)Ce 原子的基态电子组态为212611556s f s p d …4,此时只考虑116f d 4. 求L ,S :对116f d 4,13l =,22l =.则5 4L =、、3、2、1.1212s s ==, 则S =1、0.由Pauli 原理及Huad 定则知最低能态5L =,52S =.求J :其二支壳层填充电子数都未超过半满,据Huad 定则知,||4J L S =−=.于是基态光谱项为34H . (4)Nb 原子的基态电子组态是24115s d s …4,此时只需考虑415d s 4. 求L ,S :142l l ===…,则8 7L =、、…、1、0.1412s s ===…, 则S =531、、222.由Pauli 原理及Huad 定则知最低能态2L =,52S =.求J :其一支壳层填充电子数为半满,另一支壳层为低半满,由Huad 定则知,1||2J L S =−=. 于是基态光谱项为612D .(5)Mo 原子的基态电子组态为25115s d s …4,此时只需考虑515d s 4. 求L ,S :对515d s 4,152l l ===…,60l =则10 9L =、、…、2、1、0. 1612s s ===…,则S =3、2、1、0.由Pauli 原理及Huad 定则知最低能态 0L =,3S =.求J :其二支壳层填充电子数均为半满,则,||3J L S =±=. 于是基态光谱项为73S .(6)Pt 原子的基态电子组态为29116s d s …5,此时只需考虑916d s 5. 求L ,S :对916d s 5,192l l ===…,100l =则L =2、1、0.110s s ==…12=,则S =1、0.由Pauli 原理及Huad 定则知最低能态2L =,1S =. 求J :其一支壳层填充电子数超半满,另一支壳层等于半满,则||3J L S =+=. 于是基态光谱项为33D . 方法二: 为了很快找出某一原子基态光谱项,可采用图表法来找,也就是由等价电子轨道很方便的写出L ,S ,J 之值,而定出原子的基态光谱项.1 等价电子轨道可理解为同科电子轨道. :00l s l m ==,, 只有一个等价轨道. :1101l p l m ==−,,,; p 只有三个等价轨道. :221012l d l m ==−−,,,,,; 则d 有五个等价轨道.其它类推.2. S ,L ,J 的确定 (1)由s siM m=∑;求出最大的max S 就可得()s S S M =值.对i S ,为了保证体系能量最低,电子填充时首先是尽可能的保证自旋平行进入轨道,也即“先占位,后配对”. (2)由L liM m=∑,max L L M =可定出L 值.对Li ,其S 已占满了,而n ,l 相同s M 又不同,故l M 不能同,所以对Li 应“先占最大的,后配对”.(箭头向上表示12s m =+,,向下表示12s m =−)如对(3)如果有两个支壳层都填有电子,应先分别求和再相加. 对S ,11S s i M m=∑,22S s iM m=∑,12S s s M M M =+,进而可求得S . 对L ,11L l iM m=∑,22L l iM m=∑,12L L L M M M =+,进而可求得L .(4)对J 的确定有以下几种 a. 支壳层填充电子数低于半满,||J L S =−,能级最低; 3:l p m = 1 0 -1 5:l p m = 1 0 -1s 1 0 -121 0 -1 -2b. 支壳层填充电子数超过半满,||J L S =+,能级最低; c. 若有两个支壳层填充电子数都低于半满,||J L S =−,能级最低;d. 若有一支壳层填电子数低于半满,另一支壳层填充电子数等于半满,||J L S =−,能级最低; e. 若有二支壳层填电子数都等于半满,||J L S =±,能级最低;f.若有一支壳层填充电子数超过半满,一支层填充电子数等于半满.||J L S =+,能级最低; 以下仍以方法一中的六个例题为例说明. (1) C 的基态电子组态为22p .11122S si M m ==+=∑ 1S ∴= ,101L li M m ==+=∑ , 1L ∴= ,因支壳层填充电子数低于半满,所以||0J L S =−=. 于是基态光谱项为30P . (2)O 原子基态电子组态为42p111112222S si M m ==++−=∑ , 1S ∴= ,10111L li M m ==+−+=∑ , 1L ∴= ,因支壳层填充电子数超过半满,所以||2J L S =+=. 于是基态光谱项为32P . (3)Ce 原子基态电子组态为1145f d ,12l l m m ==l m = 1 0 -1 l m = 1 0 -11112S s i M m ==∑ , 2212S s i M m ==∑, 121S s s M M M =+= , 1S ∴= ,113L l i M m ==∑ , 222L l i M m ==∑ ,125L L L M M M =+= , 5L ∴= ,因二支壳层填充电子数都低于半满,所以||4J L S =−=. 于是基态光谱项为34H . (4)Nb 原子基态电子组态为4145d s11111122222S s i M m ==+++=∑ , 2212S s i M m ==∑, 1252S s s M M M =+=, 3S ∴= , 1122012L l i M m ==++−=∑ , 220L l i M m ==∑ ,122L L L M M M =+= , 2L ∴= ,因一支壳层填充电子数低于半满,另一支壳层填充电子数等于半满,所以1||2J L S =−=. 于是基态光谱项为612D . (5) Mo 原子基态电子组态为5145d s12l l m m == 2 1 0 -1 -20 12l l m m == 2 1 0 -1 -2 0- 178 - 第7章 原子的壳层结构及基态光谱项1152S s i M m ==∑,2212S s i M m ==∑,123S s s M M M =+=, 3S ∴= , 110L l i M m ==∑,220L l i M m ==∑,120L L L M M M =+=, 0L ∴= 因二支壳层填充电子数都等于半满,所以||3J L S =±= 于是基态光谱项为73S . (6)Pt 原子基态电子组态为9156d s , 1112S s i M m ==∑,2212S s i M m ==∑,121S s s M M M =+=, 1S ∴= , 112L l i M m ==∑,220L l i M m ==∑,122L L L M M M =+=, 2L ∴= 因一支壳层填充电子数超过半满,另一支壳层等于半满,所以||3J L S =+=. 于是基态光谱项为33D . 根据以上方法可以方便地确定原子的各种电子组态的基态光谱项.但对个别原子还不能准确求得,这主要是由于理论上的近似所致.但可借助于光谱实验和光谱分析来确定. 思 考 题7.1 为什么周期表按原子序数排列而不按原子量大小排列? 7.2 电子填充原子的壳层以形成周期表中各元素的原子时?应服从什么原则? 12l l m m == 2 1 0 -1 -2 0第7章 原子的壳层结构及基态光谱项 - 179 -7.3什么是壳层?什么是支壳层?各用什么符号表示? 7.4量子数为l 的支壳层和量子数为n 的壳层各能容纳多少个电子? 7.5每一周期总是从碱金属元素开始,以惰性元素终止,从电子壳层看,这意味着什么? 7.6为什么钾元素的第19个电子不填3d 而填4s 支壳层? 7.7 什么是Mosely 定律?利用它如何确定原子中电子能级的高低,进而确定原子在周期表中的位置. 7.8怎样确定原子的基态光谱项?方法步骤是什么? 习 题7.1某原子N 壳层可分为几个支壳层?该壳层和它的每个支壳层各有多少个量子态?能填充多少个电子? 7.2 原子的2p 支壳层最多可以填充多少个电子? 7.3某原子处在基态时,其K L M 、、壳层和444s p d 、、支壳层电子都填满电子.试问这是哪种原子? 7.4 Na 原子的S P D 、、项的量子改正数 1.350.860.01s p d Δ=Δ=Δ=,,, 把谱项表达成22()R Z nσ−形式,其中Z 是核电荷数.试计算3S 3P 3D 、、项的σ值 分别为多少?并说明σ的物理意义. 7.5 试根据Pauli 原理证明闭合壳层和支壳层电子的角动量L S J P P P 、、都等于零.7.6 如果电子自旋不是12而是32,周期表中头两个惰性元素的Z 将是多少? 7.7 根据Pauli 原理和能量最柢原理,写出硼(5)Z =原子正常的电子壳层结构(电子组态),并求出硼原子的基态光谱项? 7.8 试确定碳(6)Z =、氦(7)Z =、氧(8)Z =、磷(15)Z =、镝(66)Z =、 铀(92)Z =原子的基态光谱项. 。
第七章 原子的壳层结构§7.1 元素性质的周期性变化将元素按核电荷数的大小排列起来,其物理、化学性质将出现明显的周期性。
1869年,门捷列夫首先提出元素周期表。
当时,周期表是按原子量的次序排列起来的,虽然比较粗糙,但仍能反映元素性质的周期变化特性。
那时共知道62个元素,按其性质的周期性排列时,并不连续,而是出现了一些空位。
在周期性的前后特征的指导下,于1874—1875年发现了钪(Sc),它处于钙和钛之间;又发现了锗(Ce)和镓(Ga),它们填补了锌与砷之间的两个空位。
1925年泡利提出不相容原理之后,人们认识到元素的周期性是电子组态的周期性的反映,而电子组态的周期性则联系于特定轨道的可容性。
这样,化学性质的周期性用原子结构的物理图像得到了说明,从而使化学概念“物理化”,化学不再是一门和物理学互不相通的学科了。
元素的化学、物理性质的变化呈现周期性,如原子光谱、电离能等。
各种元素为什么会有周期性?元素的周期性和原子中电子的分布有关,电子如何分布?§7.2 原子的电子壳层结构玻尔:原子内的电子按一定的壳层排列,每一壳层内的电子都有相同的主量子数,每一个新的周期是从电子填充新的主壳层开始,元素的物理、化学性质取决于原子最外层的电子即价电子的数目。
一、电子填充壳层结构的原则:1.泡利不相容原理:在一个原子中,不可能有两个或两个以上的电子具有完全相同的状态(完全相同的四个量子数)。
2.能量最小原理:电子按能量由低到高的次序填充各壳层。
二、各壳层所能容纳的最大电子数1.n 、l 相同的次壳层:)12(2+=l N l2.n 相同的主壳层:2102)12(2n l N n l n =+=∑-=三.各元素的原子壳层结构1.第一周期:从n=1的K壳层填起。
2.第二周期:从n=2的L壳层填起。
3.第三周期:从n=3的M壳层填起。
§7.3 原子基态的电子组态一、电子组态的能量——壳层的次序前面已经讲过,决定壳层次序的是能量最小原理。
第七章 原子的壳层结构§7.1 元素性质的周期性变化将元素按核电荷数的大小排列起来,其物理、化学性质将出现明显的周期性。
1869年,门捷列夫首先提出元素周期表。
当时,周期表是按原子量的次序排列起来的,虽然比较粗糙,但仍能反映元素性质的周期变化特性。
那时共知道62个元素,按其性质的周期性排列时,并不连续,而是出现了一些空位。
在周期性的前后特征的指导下,于1874—1875年发现了钪(Sc),它处于钙和钛之间;又发现了锗(Ce)和镓(Ga),它们填补了锌与砷之间的两个空位。
1925年泡利提出不相容原理之后,人们认识到元素的周期性是电子组态的周期性的反映,而电子组态的周期性则联系于特定轨道的可容性。
这样,化学性质的周期性用原子结构的物理图像得到了说明,从而使化学概念“物理化”,化学不再是一门和物理学互不相通的学科了。
元素的化学、物理性质的变化呈现周期性,如原子光谱、电离能等。
各种元素为什么会有周期性?元素的周期性和原子中电子的分布有关,电子如何分布?§7.2 原子的电子壳层结构玻尔:原子内的电子按一定的壳层排列,每一壳层内的电子都有相同的主量子数,每一个新的周期是从电子填充新的主壳层开始,元素的物理、化学性质取决于原子最外层的电子即价电子的数目。
一、电子填充壳层结构的原则:1.泡利不相容原理:在一个原子中,不可能有两个或两个以上的电子具有完全相同的状态(完全相同的四个量子数)。
2.能量最小原理:电子按能量由低到高的次序填充各壳层。
二、各壳层所能容纳的最大电子数1.n 、l 相同的次壳层:)12(2+=l N l2.n 相同的主壳层:2102)12(2n l N n l n =+=∑-=三.各元素的原子壳层结构1.第一周期:从n=1的K壳层填起。
2.第二周期:从n=2的L壳层填起。
3.第三周期:从n=3的M壳层填起。
§7.3 原子基态的电子组态一、电子组态的能量——壳层的次序前面已经讲过,决定壳层次序的是能量最小原理。
原子结构知识:原子的壳层结构原子是构成物质的基本单位,其结构由带电的质子和不带电的中子组成的原子核,以及围绕原子核的带负电的电子组成。
电子在形成原子中具有极为重要的作用,特别是它们围绕原子核的运动方式和组成原子的化学性质密切相关。
电子栖息在特定的排列方式中,这些排列方式成为壳层结构。
本文将深入探讨原子的壳层结构。
一、原子的壳层结构原子的电子以不同的方式凝聚在不同的能级(壳层)上。
壳层通常用字母K、L、M、N、O、P、Q等来表示,其中K表示离原子核最近的能级。
K壳层最多容纳2个电子,L壳层最多容纳8个电子,M壳层最多容纳18个电子,N壳层最多容纳32个电子,O壳层最多容纳50个电子,P壳层最多容纳72个电子,Q壳层最多容纳98个电子。
电子的排列遵循一定的规律,可以通过原子序数来预测原子的壳层结构。
二、壳层结构的规律1.饱和壳层和开壳层当一个壳层的电子容量达到最大值时,称该壳层为饱和壳层。
例如,氢原子只有一个电子,其壳层结构为1s1,即K壳层只包含一个电子,K壳层是氢原子的饱和壳层。
对于氦原子,其原子结构为1s2,即包括两个电子的K壳层,也是饱和壳层。
当电子填满饱和壳层时,原子结构稳定且具有较强的化学稳定性。
相反,当一个壳层的电子数目未达到最大值时,称该壳层为开壳层。
电子填充在开壳层中时,其原子不稳定,容易发生化学反应。
2.电子填充顺序的规律电子填充壳层的顺序主要遵循以下规律:1)阿伦尼乌斯规则在填充电子的过程中,电子首先填充能量较低的、空间较小的K 壳层,其次是容量更大的L壳层,随后依次填充较高的M壳层、N壳层等。
阿伦尼乌斯规则描述了壳层电子填充的基本顺序及其重要性。
2)泡利排斥原理泡利排斥原理说明,在一个原子同一个壳层内的电子不可能完全相同。
例如,在L壳层中的8个电子必须全部具有不同的自旋方向,以有效地充满空间。
3)洪德规则洪德规则说明,在电子填充时,壳层能级中存在多个子能级时,先占有单态电子,后占有双态电子。